Скорость роста и воспроизводимость для популяционных моделей с простым периодическим фактором

Math. Biosci. 210 (2007) 647-658 https://hal.archives-ouvertes.fr/hal-01293898

Nicolas Bacaër

Institut de Recherche pour le Développement, Бонди, Франция nicolas.bacaer@ird.fr

Рашид Оуифки

SACEMA, Центр передового опыта в области эпидемиологического анализа и моделирования DST / NRF, Университет Стелленбош, Южная Африка

резюме

Для моделей населенностей с периодическим синусоидальным коэффициентом мы показываем, что скорость роста и воспроизводимость являются решениями простых уравнений с непрерывными дробями. В качестве примера, мы вернемся к модели SEIS с фиксированным периодом задержки, экспоненциально распределенным инфекционным периодом и синусоидальной скоростью контакта, взятой из [Math. Biosci. 145 (1997) 77-88]. Мы показываем, что кроме нескольких исключительных значений параметров, эпидемический порог зависит не только от средней частоты контактов, но и от амплитуды колебаний.

1. Введение

Лотка (1939) изучил линейную модель населения, которая связывает число B(t) рождаемость за единицу времени в момент времени *t* с фертильностью f(x) и смертность $\mu(x)$ в возрасте x :

$$B(t) = \int_0^\infty \phi(x) B(t-x) \, dx \,, \tag{1}$$

где $\phi(x) = f(x) e^{-\int_0^x \mu(y) dy}$, Он показал, что B(t) и общая численность населения растет в геометрической прогрессии, а e^{rt} где r - единственный корень уравнения

$$1 = \int_0^\infty \phi(x) \, e^{-rx} \, dx \,. \tag{2}$$

Аналоги (1) и (2) с дискретным временем представляют собой матричную модель Лесли и характеристическое уравнение матрицы Лесли (1945). Эйлер уже изучил частный случай в 1760 году. Мы часто называем (2) «уравнением Эйлера-Лотки». Лотка использовал обозначение

$$R_0 = \int_0^\infty \phi(x) \, dx \,. \tag{3}$$

Это среднее число потомков, созданных человеком в течение его жизни. R_0 это воспроизводимость. Население растет (r > 0) если $R_0 > 1$, Уменьшается (r < 0) если $R_0 < 1$, Модель (1) также появляется в исследовании линейной стабильности безбалансового равновесия эпидемических моделей: тогда переменная x представляет время, прошедшее с момента заражения и B(t) Заболеваемость инфекциями в начале эпидемии (Diekmann and Heesterbeek, 2000).

Многие популяции животных и растений и многие инфекционные заболевания имеют сезонные колебания. Эти колебания влияют как на скорость роста, так и на воспроизводимость. (Thieme, 1984; Jagers, 1985) заменить модель (1) на

$$B(t) = \int_0^\infty \Phi(t, x) B(t - x) dx, \qquad (4)$$

где $\Phi(t, x)$ является периодической функцией *m* периода *T*. Тогда скорость роста *r* является единственным действительным числом, для которого спектральный радиус линейного интегрального оператора в пространстве непрерывных *T*- периодических функций равен 1

$$u(t) \mapsto \int_0^\infty \Phi(t,x) \, e^{-rx} \, u(t-x) \, dx. \tag{5}$$

(Bacaër and Guernaoui, 2006; Bacaër, 2007) предположили, что воспроизводимость может быть определена так же, как спектральный радиус оператора

$$u(t)\mapsto \int_0^\infty \Phi(t,x)\,u(t-x)\,dx$$

на том же пространстве *T*- периодических непрерывных функций. Как и раньше, r > 0 если $R_0 > 1$ и r < 0 если $R_0 < 1$, если $\Phi(t, x)$ не зависит от t, эти определения и результаты сводятся к определениям Лотки.

Теперь предположим, что

$$\Phi(t, x) = [1 + \varepsilon \cos(\omega t)] \phi(x), \tag{6}$$

где $\omega=2\pi/T,$ $|arepsilon|\leq 1$ и $\phi\geq 0,$ Мы определяем

$$\xi = \infigg\{s \in \mathbb{R}, \quad \int_0^\infty \phi(x) \, e^{-sx} \, dx < +\inftyigg\}.$$

Мы предполагаем $\xi < 0$, Мы определяем

$$\phi_n(s) = \int_0^\infty \phi(x) \, e^{-sx - n\mathrm{i}\omega x} \, dx \,, \quad n \in \mathbb{Z}, \quad s > \xi. \tag{7}$$

Коул (1972, глава 6) показал с различными обозначениями, что $r \simeq r_0 + r_2 \, \varepsilon^2$ для ε маленький где r_0 неявно определяется и r_2 явно

$$1 = \phi_0(r_0)$$
 , $r_2 = -\frac{1}{2 \phi_0'(r_0)} \operatorname{Re} \left(\frac{1}{1/\phi_1(r_0) - 1} \right)$ (8)

Символ $\operatorname{Re}(z)$ обозначает действительную часть комплексного числа z. В (Васаёг, 2007) мы также показали, что $R_0 \simeq R_{0,0} + R_{0,2} \, \varepsilon^2$ для ε маленький где

$$R_{0,0} = \phi_0(0) \quad , \quad R_{0,2} = \frac{\phi_0(0)}{2} \operatorname{Re}\left(\frac{\phi_1(0)}{\phi_0(0) - \phi_1(0)}\right). \tag{9}$$

В этой статье мы адаптируем метод, используемый (Just, 2000). В частном случае (6) показано, что скорость роста и воспроизводимость являются самыми большими действительными корнями уравнений с непрерывными дробями.

$$\frac{1}{\phi_0(r)} - 1 = 2 \operatorname{Re} \frac{\varepsilon^2/4}{\frac{1}{\phi_1(r)} - 1 - \frac{\varepsilon^2/4}{\frac{1}{\frac{1}{\sqrt{1 - 1}} - 1 - \frac{\varepsilon^2/4}{\frac{\varepsilon^2}{\sqrt{1 - 1}}}},$$
(10)

$$\frac{R_0}{\phi_0(0)} - 1 = 2 \operatorname{Re} \frac{\frac{\phi_2(r)}{\varepsilon^2/4}}{\frac{R_0}{\phi_1(0)} - 1 - \frac{\varepsilon^2/4}{\frac{R_0}{\phi_2(0)} - 1 - \frac{\varepsilon^2/4}{\cdots}}}$$
(11)

для всего $|\varepsilon| \leq 1$, Снова обратите внимание на правую сторону, что вы должны взять действительную часть непрерывной дроби. Эти относительно простые уравнения могут быть использованы для численного расчета скорости роста и воспроизводимости. Если мы напишем, например, $r(\varepsilon)$ настаивать на зависимости скорости роста от параметра, тогда мы увидим, что у нас вообще есть неравенство $r(\varepsilon) \neq r(0)$ для $\varepsilon \neq 0$, Другими словами, порог для роста населения (r > 0) не может быть получено простым усреднением периодического коэффициента, так как это было бы эквивалентно $\varepsilon = 0$, Этот момент иллюстрируется моделью эпидемии SEIS / SEIR (Williams and Dye, 1997), которая включает фиксированный период ожидания и экспоненциально распределенный инфекционный период.

Мы получаем уравнения (10) и (11) в разделе 2. Из них мы находим приблизительные формулы (8) и (9) в разделе 3. Эпидемическая модель SEIS / SEIR (Уильямс и Дай), 1997) взят в качестве примера в разделе 4. В заключении упоминаются другие примеры.

2. Доказательство (10) и (11)

Согласно (Thieme, 1984; Jagers, 1985), спектральный радиус положительного линейного оператора (5) является убывающей функцией *r*, а скорость роста модели (4) - единственное действительное число, такое что спектральный радиус равен 1. Следовательно, скорость роста *r* также является наибольшим действительным числом, так что существует нетривиальная периодическая функция u(t) с

$$\int_0^\infty \Phi(t,x) e^{-rx} u(t-x) dx = u(t), \quad \forall t.$$
(12)

Давайте сначала рассмотрим случай, когда $\Phi(t,x) = p(t) \phi(x)$ с *T* -периодической функцией p(t), Рассмотрим разложения в ряд Фурье

$$p(t) = \sum_{n \in \mathbb{Z}} p_n \, e^{n \mathrm{i} \omega t} \,, \quad u(t) = \sum_{n \in \mathbb{Z}} u_n \, e^{n \mathrm{i} \omega t}$$

где $\omega = 2\pi/T$, Как отмечалось (Коул, 1972; Уильямс и Дай, 1997), уравнение (12) эквивалентно бесконечной системе линейных уравнений

$$\sum_{n\in\mathbb{Z}}p_{k-n}\,\phi_n(r)\,u_n=u_k\quad(k\in\mathbb{Z}),$$
(13)

где ϕ_n определяется формулой (7).

Теперь рассмотрим особый случай, когда $p(t) = 1 + \varepsilon \cos(\omega t)$, потому что $p(t) = 1 + \frac{\varepsilon}{2} e^{i\omega t} + \frac{\varepsilon}{2} e^{-i\omega t}$, система (13) записана

$$\frac{\varepsilon}{2} \phi_{k-1}(r) u_{k-1} + \phi_k(r) u_k + \frac{\varepsilon}{2} \phi_{k+1}(r) u_{k+1} = u_k \quad (k \in \mathbb{Z}) \,. \tag{14}$$

Мы можем адаптировать метод, используемый (Just, 2000) для аналогичной трехдиагональной системы. Давайте перепишем систему (14)

$$\frac{1}{\phi_k(r)} - 1 = \frac{\varepsilon}{2} \frac{\phi_{k-1}(r)}{\phi_k(r)} \frac{u_{k-1}}{u_k} + \frac{\varepsilon}{2} \frac{\phi_{k+1}(r)}{\phi_k(r)} \frac{u_{k+1}}{u_k} \,. \tag{15}$$

если k = 0 это уравнение написано

$$\frac{1}{\phi_0(r)} - 1 = \frac{\varepsilon^2/4}{\frac{\varepsilon}{2} \frac{\phi_0(r)}{\phi_{-1}(r)} \frac{u_0}{u_{-1}}} + \frac{\varepsilon^2/4}{\frac{\varepsilon}{2} \frac{\phi_0(r)}{\phi_1(r)} \frac{u_0}{u_1}}.$$
(16)

Но (15), где k-l или k + l заменяют k, также показывает

$$\frac{\varepsilon}{2} \frac{\phi_k(r)}{\phi_{k-1}(r)} \frac{u_k}{u_{k-1}} = \frac{1}{\phi_{k-1}(r)} - 1 - \frac{\varepsilon^2/4}{\frac{\varepsilon}{2} \frac{\phi_{k-1}(r)}{\phi_{k-2}(r)} \frac{u_{k-1}}{u_{k-2}}},$$
(17)

$$\frac{\varepsilon}{2} \frac{\phi_k(r)}{\phi_{k+1}(r)} \frac{u_k}{u_{k+1}} = \frac{1}{\phi_{k+1}(r)} - 1 - \frac{\varepsilon^2/4}{\frac{\varepsilon}{2} \frac{\phi_{k+1}(r)}{\phi_{k+2}(r)} \frac{u_{k+1}}{u_{k+2}}}.$$
(18)

Совместим (16) и (17) - (18) итеративно. Мы получаем непрерывные дроби

$$\frac{1}{\phi_0(r)} - 1 = \frac{\varepsilon^2/4}{\frac{1}{\phi_{-1}(r)} - 1 - \frac{\varepsilon^2/4}{\frac{1}{\phi_{-2}(r)} - 1 - \frac{\varepsilon^2/4}{\cdots}} + \frac{\varepsilon^2/4}{\frac{1}{\phi_1(r)} - 1 - \frac{\varepsilon^2/4}{\frac{1}{\phi_2(r)} - 1 - \frac{\varepsilon^2/4}{\cdots}}$$

потому что $\phi_k(r)$ и $\phi_{-k}(r)$ являются комплексными сопряженными числами, мы приходим к «характеристическому уравнению» (10). Скорость роста r является наибольшим решением.

Доказательство (11) аналогично, начиная с задачи

$$\int_{0}^{\infty} \Phi(t,x) \, u(t-x) \, dx = R_0 \, u(t) \,. \tag{19}$$

 R_0 наибольшее действительное число, для которого это уравнение имеет ненулевое T-периодическое решение . Для конкретного случая $\Phi(t,x) = (1 + \varepsilon \cos(\omega t)) \phi(x)$ уравнение (19) приводит к

$$rac{arepsilon}{2}\,\phi_{k-1}(0)\,u_{k-1}+\phi_k(0)\,u_k+rac{arepsilon}{2}\,\phi_{k+1}(0)\,u_{k+1}=R_0\,u_k\quad (k\in\mathbb{Z})\,,$$

и к уравнению (11).

3. Примерные формулы (8) - (9)

Начиная с (10) - (11), можно легко найти аппроксимации (8) - (9), которые более сложным образом продемонстрированы в (Coale, 1972; Bacaër, 2007).

Давайте начнем с темп роста p. Давайте посмотрим на начало серийной разработки для ε маленький по форме $r \simeq r_0 + r_1 \varepsilon + r_2 \varepsilon^2$, если $\varepsilon = 0$, правая часть (10) отменяется, и мы получаем r_0 как (единственное) решение уравнения $\phi_0(r_0) = 1$ что, конечно, идентично уравнению Эйлера-Лотки (2). Кстати, изменение $\varepsilon \mapsto -\varepsilon$ соответствует замене $p(t) = 1 + \varepsilon \cos(\omega t) c p(t - T/2)$, Теперь линейный оператор

$$u(t)\mapsto \int_0^\infty \Phi(t-T/2,x)\,e^{-rx}\,u(t-x)\,dx$$

в пространстве *T*-периодических функций имеет те же собственные значения, что и линейный оператор (5), причем собственные функции просто сдвинуты на T/2. Чтобы выделить зависимость *r* от ε , напишем $r(\varepsilon)$, таким образом $r(-\varepsilon) = r(\varepsilon)$ и $r_1 = 0$, (Bacaër, 2007) использовал аналогичный аргумент для аппроксимации воспроизводимости.

Поэтому мы имеем $r \simeq r_0 + r_2 \varepsilon^2$ и это еще предстоит определить r_2 , Скорость роста r является решением неявного уравнения (10). потому что $\phi_0(r_0) = 1$ у нас есть

$$\phi_0(r_0) - \phi_k(r_0) = \int_0^\infty \phi(x) \, e^{-r_0 x} (1 - e^{-k \mathrm{i} \omega x}) \, dx
eq 0$$

для всех $k \ge 1$ (предполагая, например, что функция $\phi(x)$ строго положительно, по крайней мере, в течение небольшого интервала). поэтому $\phi_k(r_0) \ne 1$ и $1/\phi_k(r_0) - 1 \ne 0$ для всех $k \ge 1$, Чтобы оставить только квадратичное выражение в ε в правой части уравнения (10), мы заменим знаменатель его приближением самого низкого порядка. Мы заменяем $\phi_1(r)$ с $\phi_1(r_0)$, Мы пренебрегаем квадратичным остатком в ε непрерывной дроби. Мы получаем

$$rac{1}{\phi_0(r)} - 1 \simeq 2 \, {
m Re} \Big(rac{arepsilon^2/4}{1/\phi_1(r_0) - 1} \Big) \,.$$

но

$$\phi_0(r) \simeq \phi_0(r_0 + r_2 \, arepsilon^2) \simeq \phi_0(r_0) + r_2 \, arepsilon^2 \phi_0'(r_0) = 1 + r_2 \, arepsilon^2 \phi_0'(r_0) \, .$$

Мы используем приближение к $\phi_0(r)$, Отождествим квадратные выражения в ϵ в (20). Что дает

$$r_2 = -rac{1}{2\,\phi_0'(r_0)}\,{
m Re}\Bigl(rac{1}{1/\phi_1(r_0)-1}\Bigr)\,.$$

что эквивалентно (8). Эта формула может быть написана в несколько иной форме. Действительно, с

$$c_1 = \int_0^\infty \phi(x) \, e^{-r_0 x} \cos(\omega x) \, dx \,, \quad s_1 = \int_0^\infty \phi(x) \, e^{-r_0 x} \sin(\omega x) \, dx \,,$$

у нас есть $\phi_1(r_0) = c_1 - {
m i} s_1$, поэтому

$$r_2 = -rac{1}{2\,\phi_0'(r_0)}\,{
m Re}\Bigl(rac{c_1-{
m i} s_1}{1-c_1+{
m i} s_1}\Bigr) = -rac{1}{2\,\phi_0'(r_0)}\,rac{(1-c_1)\,c_1-s_1^2}{(1-c_1)^2+s_1^2}\,,$$

которая по существу идентична формуле (6.27) (Coale, 1972).

Точно так же, $R_0 \simeq R_{0,0} + R_{0,2} \varepsilon^2$ для ε маленький. Из уравнения (3) или уравнения (11) с $\varepsilon = 0$ у нас есть $R_{0,0} = \phi_0(0)$, Чтобы оставить в правой части уравнения (11) только квадратичное выражение в ε , мы заменим знаменатель на его приближение низшего порядка, используя $R_{0,0} = \phi_0(0)$, Мы пренебрегаем остатком непрерывной дроби, потому что она квадратична по ε . У нас есть

$$rac{R_0}{\phi_0(0)} - 1 \simeq 2 \, {
m Re} \Big(rac{arepsilon^2/4}{\phi_0(0)/\phi_1(0)-1} \Big) \, .$$

Это приводит к формуле (9).

4. Модель SEIS с фиксированным периодом задержки

4.1 История вопроса

Эпидемические модели, называемые SEIR или SEIS, имеют латентный период и инфекционный компартмент. Они были предметом многочисленных математических или численных исследований, когда, кроме того, скорость контакта является периодической (Williams and Dye, 1997; Schwartz and Smith, 1983; Aron и Schwartz, 1984; Kuznetsov and Piccardi, 1994; Moneim и Greenhalgh, 2005; Ma и Ma, 2006). (Earn et al., 2000) особенно интересует корь, (Deguen et al., 2000) ветряная оспа, в то время как (Altizer et al., 2006; Grassly and Fraser, 2006) представлены общие обзоры. Несмотря на его важность для вопросов ликвидации, только (Williams and Dye, 1997) и (Ma and Ma, 2006) изучали эпидемических ситуациях, поиске хаоса или попытке оценить параметры, и только упоминают проблему, прежде чем сразу же перейти к более простым моделям без периода задержки. Все эти ссылки принимают инфекционный период, распределенный в геометрической прогрессии.

(Williams and Dye, 1997) использует ряды Фурье для аналитического исследования случая, когда латентный период является постоянной величиной, а скорость контакта - произвольной периодической функцией. Авторы утверждают, что скорость роста линеаризованных уравнений зависит от скорости периодического контакта только от ее среднего значения. Ниже для частного случая синусоидальной скорости контакта показано, что это может быть справедливо только для исключительных значений параметров. Можно было бы понять это, используя приближенную формулу (9) из (Коул, 1972).

(Ма и Ма, 2006) численно исследует модель SEIR, которая представляет собой систему обыкновенных дифференциальных уравнений, которая соответствует периоду задержки, распределенному экспоненциально, со скоростью контакта, которая изменяется как 1 + ε соs ωt, Авторы обнаружили, что средняя величина частоты контакта была недостаточной для определения эпидемического порога. (Васаёг, 2007) аналитически подтвердил это наблюдение, используя приблизительную формулу (9), которая показывает в этом примере, что воспроизводимость, а, следовательно, и эпидемический порог, зависит от ε.

(Just, 2000) использует ряд Фурье для изучения дифференциального линейного уравнения с задержкой, которое формально совпадает с линеаризацией модели SEIS или SEIR с фиксированным периодом задержки. Однако автор выбрал функцию $c(t) = \varepsilon \cos(\omega t)$ для параметра, соответствующего скорости контакта, что не подходит в контексте динамики населения, поскольку скорость контакта должна быть положительной (мотивация (Just, 2000) - проблема инженера). Для скорости роста своей модели автор пришел к характеристическому уравнению с участием непрерывных дробей, аналогичному (11).

4.2 Модель

Давайте вернемся к случаю фиксированного периода ожидания, рассмотренному Williams и Dye (1997), и напомним различные возможные формулировки одной и той же модели SEIS. Обратите внимание, что модель SEIR приводит к тем же линеаризованным уравнениям, близким к равновесному, без болезней. Так что у него такой же эпидемический порог.

Формулировка с уравнением в частных производных имеет три отсека:

- S(t) это здоровое население в момент времени m
- E(t, x) является ли популяция инфицированной, но еще не заразной, которая в момент времени t была инфицирована в течение x единиц времени
- I(t) является инфекционным населением в момент времени t.

Параметры модели:

- N : общая численность населения, которая остается постоянной;
- *L* : фиксированный период ожидания;
- а : показатель излечения инфекционных людей, так что инфекционный период распределяется по экспоненте;
- c(t): Обратная скорость в момент времени T, которая является функцией T-périodique.

Модель

$$egin{aligned} & rac{dS}{dt}(t) = -c(t)\,S(t)\,I(t)/N + a\,I(t)\,, \quad E(t,0) = c(t)\,S(t)\,I(t)/N \ & rac{\partial E}{\partial t}(t,x) + rac{\partial E}{\partial x}(t,x) = 0 \quad (0 < x < L)\,, \quad rac{dI}{dt}(t) = E(t,L) - a\,I(t)\,, \end{aligned}$$

с E(t, x) = 0 для x > L, Интегрируя уравнение в частных производных вдоль характеристических линий, получим E(t, L) = E(t - L, 0), Поэтому система может быть записана в более компактной форме с использованием дифференциальных уравнений задержки:

$$rac{dS}{dt}(t) = - c(t) \, S(t) \, I(t)/N + a \, I(t) \, , \ rac{dI}{dt}(t) = c(t-L) \, S(t-L) \, I(t-L)/N - a \, I(t)$$

Мы линеаризуем эти уравнения вблизи равновесия без болезни (S = N, I = 0), Мы получаем

$$rac{dI^*}{dt} \left(t
ight) = c(t-L) \, I^*(t-L) - a \, I^*(t) \, .$$

если $i^*(t) = c(t) I^*(t)$ число новых инфекций за единицу времени в момент времени t в этой линеаризованной модели, то

$$rac{d}{dt} \Big[e^{a\,t}\,I^*(t) \Big] = e^{a\,t}\,i^*(t-L)\,.$$

Мы интегрируем между $-\infty u$ *m*, и мы меняем переменную. Получим следующее интегральное уравнение для $i^*(t)$:

$$i^{*}(t) = c(t) \int_{0}^{\infty} f(x) \, i^{*}(t-x) \, dx \,, \tag{21}$$

где

$$f(x) = \begin{cases} 0 & \forall x < L, \\ e^{-a(x-L)} & \forall x > L. \end{cases}$$
(22)

Уравнение (21) имеет вид (4) с $\Phi(t, x) = c(t) f(x)$,

4.3 Числовой пример

Теперь предположим, что в уравнении (6) $c(t) = c_0[1 + \varepsilon \cos(\omega t)]$ так $\Phi(t, x) = (1 + \varepsilon \cos(\omega t))\phi(x)$ с $\phi(x) = c_0 f(x)$, Согласно определению (7) имеем

$$\phi_n(s) = c_0 \int_L^\infty e^{-a(x-L)} e^{-sx-ni\omega x} \, dx = c_0 \, \frac{e^{-sL-ni\omega L}}{s+a+ni\omega} \,. \tag{23}$$

Затем мы можем решить неявные уравнения (10) и (11) для скорости роста и воспроизводимости с различными значениями параметров, используя простую дихотомию. Обратите внимание, например, что знаменатель в правой части уравнения (10) может быть аппроксимирован комплексным числом z_1 с итерационным алгоритмом

$$z_n = rac{1}{\phi_n(r)} - 1\,, \quad z_{k-1} = rac{1}{\phi_{k-1}(r)} - 1 - rac{arepsilon^2/4}{z_k} \quad (k=n,n-1,\dots,2)$$

Вносимая ошибка очень мала, если *n* достаточно велико. Мы использовали n = 20, но результат с n = 2 уже очень близок. Кроме того, необходимо соблюдать осторожность с дихотомией, поскольку уравнения (10) и (11) могут иметь несколько реальных корней: *r* и R_0 являются крупнейшими. На рисунке 1 показана воспроизводимость в зависимости от периода задержки *L* для различных значений ε , Для *T* и *a* мы взяли те же значения, что и в

(Williams and Dye, 1997). Для c_0 мы взяли $c_0/a = 1,2$ вместо $c_0/a = 1,5$ как в (Уильямс и Дай, 1997). Обратите внимание, однако, с уравнением (11), что если c_0 умножается на константу, то R_0 умножается на одну и ту же константу; поэтому внешний вид фиг.1 остается тем же, но с другим масштабом на вертикальной оси.

Рисунок 1. Воспроизводимость R_0 в зависимости от латентного периода L для $\varepsilon \in \{0; 0,25; 0,5; 0,75; 1\}$, Другие параметры: T = 1, $\log 2/a = 1/12$ и $c_0/a = 1,2$,

Для данного значения периода задержки воспроизводимость может значительно варьироваться в зависимости от ε . для $\varepsilon = 1$ большая часть кривой для R_0 ниже 1, то есть ниже эпидемического порога, тогда как $R_{0,0} = c_0/a$ (значение, соответствующее $\varepsilon = 0$) выше этого порога: усреднение скорости контакта может привести к ложному результату. Вот некоторые другие заметки:

- R_0 не зависит от L если $\varepsilon = 0$
- *R*₀ является функцией *L*, которая является периодической с периодом *T*
- R_0 не зависит от ε , если L = 0 и, следовательно, также, если L является целым кратным T;
- для определенного периода задержки L воспроизводимость может быть возрастающей или убывающей функцией ε,

Первый пункт хорошо известен: используя (3) или (11), мы имеем $R_0 = \phi_0(0) = c_0/a$ если $\varepsilon = 0$, Без периодичности латентный период не влияет на количество вторичных случаев, потому что все индивидуумы переживают латентный период и становятся заразными, а частота контактов остается неизменной.

Вторая точка вытекает из уравнения (11) и того факта, что

$$\phi_n(0) = c_0 \, e^{-n \mathrm{i} \omega L} / (a + n \mathrm{i} \omega)$$

остается неизменным, когда L заменяется на L + T. Интуитивно понятно, что инфицированный человек испытывает ту же среду после латентного периода L или после латентного периода L + T; он производит такое же количество вторичных случаев.

Третий пункт также хорошо известен. если L = 0 модель сводится к модели SIS с инфекционным периодом, распределенным по экспоненте. В этом конкретном случае воспроизводимость достигается путем усреднения скорости контакта (Bacaër and Guernaoui, 2006, §5; Bacaër, 2007, §5.1.1 и включенные ссылки). В самом деле, $R_0 = c_0/a$ является решением (11), когда L = 0 автомобиль $R_0/\phi_n(0) - 1 = R_0(a + ni\omega)/c_0 - 1 = ni\omega/a$ является чисто мнимым для любого целого числа $n \ge 1$: левая и правая части (11) равны 0.

Чтобы понять четвертый пункт, мы используем приближенную формулу (9). У нас есть $R_0 \simeq R_{0,0} + R_{0,2} \, arepsilon^2$ с

$$R_{0,0} = rac{c_0}{a} ~~,~~ R_{0,2} = rac{c_0}{2\,a}\,{
m Re}\Bigl(rac{1}{e^{{
m i}\omega L}(1+{
m i}\omega/a)-1}\Bigr)\,.$$

для ε маленький R_0 является возрастающей (или убывающей) функцией ε если $R_{0,2} > 0$ (или $R_{0,2} < 0$). $R_{0,2} = 0$ если и только если $e^{\mathrm{i}\omega L}(1 + \mathrm{i}\omega/a) - 1$ это чисто мнимое число. Это условие написано

$$\cos(\omega L) - rac{\omega}{a}\,\sin(\omega L) - 1 = 0.$$

Мы определяем $\psi \in (0, \pi/2)$ единственный реальный номер с

$$\cos\psi=rac{1}{\sqrt{1+(\omega/a)^2}} \quad,\quad \sin\psi=rac{\omega/a}{\sqrt{1+(\omega/a)^2}}\,,$$

то есть $\psi = \arctan(\omega/a)$, Это зависит только от продукта aT, поэтому $R_{0,2} = 0$ если и только если

$$\cos(\omega L + \psi) = \cos(\omega L)\cos\psi - \sin(\omega L)\sin\psi = \frac{1}{\sqrt{1 + (\omega/a)^2}} = \cos\psi$$

то есть $\omega L + \psi = \pm \psi + 2k\pi$ для $k \in \mathbb{Z}$, потому что $\omega = 2\pi/T$ у нас есть $R_{0,2} = 0$ если L = kT или $L = (k - \psi/\pi)T$ для $k \in \mathbb{Z}$, В частности, с числовыми значениями на рисунке 1, $R_{0,2} = 0$ если $L/T = 1 - \psi/\pi \simeq 0,794$. Но в отличие от того, что показано на рисунке 1, четыре кривые не пересекают горизонтальную линию $R_0 = c_0/a$ именно в $L/T = 1 - \psi/\pi$ но очень близко.

Аналогично, на рисунке 2 показана скорость роста в зависимости от периода ожидания для различных значений ε но с T, c_0 и a дано как раньше. Скорость роста не является периодической функцией L. Эта скорость уменьшается с латентным периодом, но не монотонно. Есть резонансы между L и T

Рисунок 2. Темпы роста r в зависимости от латентного периода L для $\varepsilon \in \{0; 0,25; 0,5; 0,75; 1\}$, Остальные параметры такие же, как на рисунке 1.

Тем не менее, r все еще не зависит от ε если L кратно T, т.е. L = k T для $k = 0, 1, 2 \dots$ Действительно, помните, что r_0 является единственным решением уравнения

$$\phi_0(r_0)=1 \Leftrightarrow c_0\,e^{-r_0kT}/(r_0+a)=1$$

поэтому $r = r_0$ также является решением уравнения (10), потому что

$$1/\phi_n(r) - 1 = (r_0 + a + n \mathrm{i} \omega) \, e^{r_0 k T} / c_0 - 1 = n \mathrm{i} \omega \, e^{r_0 k T} / c_0$$

чисто мнимый для $n \ge 1$: левая и правая части (10) равны нулю.

Для общего периода ожидания L, используя (8) и (23), имеем $r\simeq r_0+r_2\,\varepsilon^2$ для ε маленький, с r_0 неявно определяется

$$\phi_0(r_0)=1 \Leftrightarrow c_0\,e^{-r_0L}/(r_0+a)=1\,.$$

 r_2 определяется формулами (8) и (23). с

$$egin{aligned} \phi_1(r_0) &= c_0 \, rac{e^{-r_0L - \mathrm{i}\omega L}}{r_0 + a + \mathrm{i}\omega} &= c_0 \, rac{e^{-r_0L}}{r_0 + a} imes rac{e^{-\mathrm{i}\omega L}}{1 + \mathrm{i}\omega/(r_0 + a)} &= rac{e^{-\mathrm{i}\omega L}}{1 + \mathrm{i}\omega/(r_0 + a)} \,, \ \phi_0'(r_0) &= -c_0 \, rac{e^{-r_0L}}{r_0 + a} \left(L + rac{1}{r_0 + a}
ight) &= -\left(L + rac{1}{r_0 + a}
ight), \end{aligned}$$

мы получаем

$$egin{aligned} r_2 &= & -rac{1}{2\,\phi_0'(r_0)}\,\mathrm{Re}\Big(rac{1}{1/\phi_1(r_0)-1}\Big) \ &= & rac{1}{2[L+1/(r_0+a)]}\,\mathrm{Re}\Big(rac{1}{e^{\mathrm{i}\omega L}[1+\mathrm{i}\omega/(r_0+a)]-1}\Big)\,. \end{aligned}$$

5. Заключение

Помимо моделей SEIS / SEIR, упомянутых в предыдущем разделе, линейная устойчивость тривиального равновесия некоторых других моделей популяции сводится к уравнению (4), где $\Phi(t, x)$ определяется формулой (6). Это особенно относится к эпидемическим моделям с *n* зараженными компартментами, где инфекция следует за циклом ($I_1 \rightarrow I_2 \rightarrow \cdots I_n \rightarrow I_1$) и только с синусоидальной контактной функцией. См. (Bacaër, 2007) и ссылки на малярию и холеру. Эпидемическая модель SIS / SIR с фиксированным инфекционным периодом *L* и синусоидальной контактой контактов соответствует

$$\phi(x)=c_0 \quad orall x < L, \quad \phi(x)=0 \quad orall x > L.$$

В этом случае

$$\phi_n(s)=c_0(1-e^{-sL-\mathrm{ni}\omega L})/(s+\mathrm{ni}\omega)$$

Как и в предыдущем разделе, воспроизводимость и скорость роста не зависит от е, если L является кратным T. Это вырожденный случай, поскольку у инфекционного периода нет никаких причин для арифметической связи с периодом контакта, который обычно составляет неделю (меньше контактов в выходные дни) или год. (меньше контактов во время летних каникул от детских болезней, более высокая вероятность передачи заболеваний, передающихся воздушно-капельным путем в зимний период). Если L = T, тем не менее получил большое внимание в математической литературе (Cooke & Kaplan, 1976; Smith, 1977; Nussbaum, 1977 и 1978).

Более общее значение наших результатов состоит в том, что усреднение воспроизводимости и скорости роста следует считать исключительным. Помимо вырожденных случаев, подобных тем, что уже упоминались, единственная известная нам ситуация, при которой усреднение является правильным, - это то, что при инфекционном компартменте инфекционный период распределяется экспоненциально и без латентного периода (Bacaër and Guernaoui, 2006, § 5; Bacaër, 2007, §5.1.1, и его ссылки). Усреднение не является правильным для любого отклонения, например, двух инфекционных компартментов, как для переносчиков болезней (Bacaër, 2007, §4.1), или инфекционного периода, который не распределен экспоненциально (Bacaër, 2007, §5.1.1) или ненулевой латентный период (Bacaër, 2007, §5.1.2).

спасибо

Эта работа была предпринята, когда NB посещал SACEMA в Стелленбосе.

ссылки

• S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani (2006) Seasonality and the dynamics of infectious diseases, Ecol. Lett. 9, 467–484.

- J.L. Aron, I.B. Schwartz (1984) Seasonality and period-doubling bifurcations in an epidemic model, J. Theor. Biol. 110, 665-679.
- N. Bacaër, S. Guernaoui (2006) The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol. 53, 421-436.
- N. Bacaër (2007) Approximation of the basic reproduction number R0 for vector–borne diseases with a periodic vector population, Bull. Math. Biol. 69, 1067–1091.
- A. J. Coale (1972) The Growth and Structure of Human Populations : A Mathematical Investigation. Princeton University Press.
- K.L. Cooke, J.L. Kaplan (1976) A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31, 87–104.
- S. Deguen, G. Thomas, N.P. Chau (2000) Estimation of the contact rate in a seasonal SEIR model :
- application to chickenpox incidence in France, Statist. Med. 19, 1207–1216.
 O. Diekmann, J. A. P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases : Model Building, Analysis and Interpretation. John Wiley & Sons, New York.
- D. J. D. Earn, P. Rohani, B.M. Bolker, B.T. Grenfell (2000) A simple model for complex dynamical transitions in epidemics, Science 287, 667–670.
- L. Euler (1760/1767) Recherches générales sur la mortalité et la multiplication du genre humain.
- Histoire de l'Académie royale des sciences et belles-lettres de Berlin, 144-164. <u>http://bibliothek.bbaw.de</u>
- N.C. Grassly, C. Fraser (2006) Seasonal infectious disease epidemiology, Proc. R. Soc. B 273, 2541–2550.
- P. Jagers, O. Nerman (1985) Branching processes in periodically varying environment, Ann. Prob. 13, 254–268.
- W. Just (2000) On the eigenvalue spectrum for time–delayed Floquet problems, Physica D 142, 153–165.
- Yu. A. Kuznetsov, C. Piccardi (1994) Bifurcation analysis of periodic SEIR and SIR epidemic models, J. Math. Biol. 32, 109–121.
- P. H. Leslie (1945) On the use of matrices in certain population mathematics, Biometrika 33, 213-245.
- A.J. Lotka (1939) Théorie analytique des associations biologiques : analyse démographique avec application particulière à l'espèce humaine. Hermann, Paris.
- J. Ma, Z. Ma (2006) Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng. 3, 161–172.
- I.A. Moneim, D. Greenhalgh (2005)
- Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng. 2, 591–611. • R. D. Nussbaum (1977) Periodic solutions of some integral equations from the theory of epidemics.
- In : V. Lakshmikantham, ed., Nonlinear Systems and Applications, Academic Press, New York. 235–257.
- R. D. Nussbaum (1978) A periodicity threshold theorem for some nonlinear integral equations, SIAM J. Math. Anal. 9, 356-376.
- I.B. Schwartz, H.L. Smith (1983) Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol. 18, 233-253.
- H.L. Smith (1977) On periodic solutions of a delay integral equation modelling epidemics, J. Math. Biol. 4, 69-80.
- H.R. Thieme (1984) Renewal theorems for linear periodic Volterra integral equations, J. Integr. Equ. 7, 253-277.
- B.G. Williams, C. Dye (1997) Infectious disease persistence when transmission varies seasonally, Math. Biosci. 145, 77-88.