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CLUSTER EQUIVALENCE AND GRADED DERIVED EQUIVALENCE

CLAIRE AMIOT AND STEFFEN OPPERMANN

Abstract. In this paper we introduce a new approach for organizing algebras of global
dimension at most 2. We introduce the notion of cluster equivalence for these algebras,
based on whether their generalized cluster categories are equivalent. We are particularly
interested in the question how much information about an algebra is preserved in its
generalized cluster category, or, in other words, how closely two algebras are related if
they have equivalent generalized cluster categories.

Our approach makes use of the cluster-tilting objects in the generalized cluster cate-
gories: We first observe that cluster-tilting objects in generalized cluster categories are in
natural bijection with cluster-tilting subcategories of derived categories, and then prove
a recognition theorem for the latter.

Using this recognition theorem we give a precise criterion when two cluster equiv-
alent algebras are derived equivalent. For a given algebra we further describe all the
derived equivalent algebras which have the same canonical cluster tilting object in their
generalized cluster category.

Finally we show that in general, if two algebras are cluster equivalent, then (under
certain conditions) the algebras can be graded in such a way that the categories of graded
modules are derived equivalent. To this end we introduce mutation of graded quivers
with potential, and show that this notion reflects mutation in derived categories.
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1. Introduction

Tilting theory is an essential tool in representation theory of finite dimensional algebras.
It permits to link algebras called derived equivalent, i.e. whose bounded derived categories
are equivalent (see [Hap88] – also see [AHHK07] for a broader overview).

The introduction of cluster algebras goes back to Fomin and Zelevinsky [FZ02]. The
categorical interpretation of their combinatorics has been a crucial turn in tilting theory
and has brought new perspectives into the field: cluster-tilting theory. The first step was
the introduction of the cluster category CQ associated with a finite acyclic quiver Q in
[BMR+06] (using [MRZ03]). The cluster category CQ is defined as the orbit category
Db(kQ)/S2 of the bounded derived category of the path algebra kQ under the action
of the autoequivalence S2 := S[−2] where S is the Serre functor of Db(kQ). This cate-
gory is triangulated (cf. [Kel05]), Hom-finite (the Hom-spaces are finite dimensional) and
Calabi-Yau of dimension 2 (2-CY for short), that is there exists a functorial isomorphism
HomCQ(X, Y ) ≃ DHomCQ(Y,X [2]) for any objects X and Y , where D is the duality over
k. The category CQ has certain special objects called cluster-tilting objects. From one
cluster-tilting object it is possible to construct others using a procedure called mutation,
whose combinatorics is very close to the combinatorics developed by Fomin and Zelevinsky
for cluster algebras. The images of the tilting kQ-modules under the natural projection
πQ : Db(kQ) → CQ are cluster-tilting objects, and tilted algebras (= endomorphism al-
gebras of tilting modules over a path algebra kQ) can be seen as specific quotients of
cluster-tilted algebras (= endomorphism algebras of cluster-tilting objects in CQ).

The notion of cluster categories has been generalized in [Ami09] replacing the hereditary
algebra kQ by an algebra Λ of global dimension at most two. In this case the orbit category
Db(Λ)/S2 is in general neither triangulated nor Hom-finite. We restrict to the case where it
is Hom-finite (the algebra Λ is then said to be τ2-finite). The generalized cluster category
is now defined to be the triangulated hull (Db(Λ)/S2)∆ in the sense of [Kel05] of the orbit
category Db(Λ)/S2. The natural functor

πΛ : D
b(Λ) // Db(Λ)/S2

� � // (Db(Λ)/S2)∆ =: CΛ

is triangulated.
The aim of this paper is to study to what extent the derived categories are reflected by

the cluster categories. More precisely we ask: If two algebras of global dimension at most
two have the same cluster category, are they then automatically also derived equivalent?
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Since the answer to this question is negative in general, we further investigate how the
two derived categories are related in case they are not equivalent.

Our means towards this goal is to study cluster-tilting objects. It has been shown
in [Ami09] that for any tilting complex T in Db(Λ) such that the endomorphism algebra
EndDb(Λ)(T ) is of global dimension ≤ 2, the object πΛ(T ) in CΛ is cluster-tilting. Therefore
cluster-tilting objects in cluster categories can be seen as analogs of tilting complexes in
bounded derived categories.

It is an important result in tilting theory that tilting objects determine (in some sense)
the triangulated category ([Ric89], or, more generally, [Kel94]). Unfortunately, in cluster-
tilting theory an analog of this theorem only exists for cluster categories coming from
acyclic quivers (see [KR07]).

The first main result of this paper is to provide a ‘cluster-tilting’ analog of the above-
mentioned theorem from tilting theory. One key observation is that the endomorphism

algebra Λ̃ := EndCΛ(π(Λ)) has a natural grading given by Λ̃ =
⊕

p∈ZHomDb(Λ)(Λ, S
−p
2 Λ).

This graded algebra admits as Z-covering the locally finite subcategory

UΛ := π−1
Λ (πΛ(Λ)) = add{Sp

2Λ | p ∈ Z} ⊂ Db(Λ),

which is a cluster-tilting subcategory of the derived category Db(Λ).

Theorem 1.1 (Recognition theorem – Theorem 3.5). Let T be an algebraic triangu-
lated category with a Serre functor and with a cluster-tilting subcategory V. Let Λ be a
τ2-finite algebra with global dimension ≤ 2. Assume that there is an equivalence of ad-

ditive categories with S2-action f : UΛ
∼ // V . Then there exists a triangle equivalence

F : Db(Λ) → T .

In contrast to Keller’s and Reiten’s theorem, this result is a recognition theorem for the
derived category. That is, we use cluster-tilting theory for studying a classical problem
in representation theory.

Applying Theorem 1.1 helps us to study the notion of cluster-equivalent algebras, i.e.
algebras of global dimension ≤ 2 with the same cluster category, which is the main subject
of this paper.

Using it, we give the following criterion on when two cluster equivalent algebras Λ1 and
Λ2 with πΛ1Λ1 ≃ πΛ2Λ2 in the common cluster category are derived equivalent.

Theorem 1.2 (Theorem 5.6). In the above setup the cluster equivalent algebras Λ1 and Λ2

are derived equivalent if and only if the Z-graded algebras Λ̃1 and Λ̃2 are graded equivalent.

We give a characterization of the tilting complexes T of Db(Λ1) such that πΛ1(T ) ≃
πΛ1(Λ1) (Theorem 5.16), with which we can show that in case the equivalent conditions
of Theorem 1.2 hold, the algebras Λ1 and Λ2 are iterated 2-APR tilts of one another.

In case the equivalent conditions of Theorem 1.2 do not hold we then consider the case
where the two different Z-gradings on Λ̃1 ≃ Λ̃2 are compatible (that is when they induce

a Z2-grading on Λ̃1; an assumption that seems to be always satisfied in actual examples).

In this case, the natural Z-grading on Λ̃2 induces a Z-grading on Λ1 and vice versa. We
then obtain the following result.

Theorem 1.3 (Theorem 8.7). Let Λ1 and Λ2 be cluster equivalent, and assume we are in
the setup described above. Then there is a triangle equivalence

Db(grΛ1) ≃ Db(grΛ2)
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(where grΛi denotes the category of graded Λi-modules).

These results can be extended in the case where the cluster-tilting objects πΛ1(Λ1)
and πΛ2(Λ2) are not isomorphic but are linked by a sequence of mutations. In order to
extend them to this setup, we introduce a notion of left (and right) mutation. Indeed the
mutation in the generalized cluster category can be lifted to a mutation in the derived
category. Furthermore, by a result of Keller [Kel09], the cluster category CΛ is equivalent
to a cluster category associated to a quiver with potential. Hence, by a fundamental result
of [KY11], endomorphism algebras of cluster-tilting objects related to the canonical one by
mutations are Jacobian algebras, and are related to one another by mutations of quivers
with potential introduced in [DWZ08]. These two observations lead us to introduce the
notion of left (and right) mutation of graded quiver with potential in order to give a
combinatorial description of the left (and right) mutation in the derived category.

This graded mutation allows us to deduce a combinatorial way to prove that two al-
gebras of global dimension at most 2 are derived equivalent. In particular, as a direct
consequence of Theorem 1.2, we obtain the following result which is a generalization of a
result due to Happel [Hap87] stating that two path algebras are derived equivalent if and
only if they are iterated reflections from one another.

Theorem 1.4 (Corollary 6.14). Let Λ1 and Λ2 be two algebras of global dimension 2, which
are τ2-finite. Assume that one can pass from the graded quiver with potential associated

with Λ̃1 to the graded quiver with potential associated with Λ̃2 using a finite sequence of
left and right mutations. Then the algebras Λ1 and Λ2 are derived equivalent.

In [AO10] we obtain the converse of Theorem 1.4 in the case where these algebras
are cluster equivalent to hereditary algebras. There we also apply the results presented
here to understand and describe algebras which are cluster equivalent to tame hereditary
algebras.

The paper is organized as follows:
Section 2 is devoted to recalling background on generalized cluster categories, cluster-

tilting subcategories, and graded algebras.
In Section 3 we prove Theorem 1.1.
This result is applied to Iyama-Yoshino reduction of derived categories in Section 4.
In Section 5 we prove Theorem 1.2, giving a criterion which determines which alge-

bras are derived equivalent among cluster equivalent ones. We further classify derived
equivalent algebras having the same canonical cluster-tilting object.

We introduce mutation of graded quiver with potential in Section 6. Using a result of
Keller and Yang, we show that this notion gives a combinatorial description of mutation
in derived categories.

In Section 7 we recall and apply to our setup some results on triangulated orbit cate-
gories due to Keller.

Theorem 1.3, which exhibits gradings on cluster equivalent algebras making them
graded derived equivalent, is shown in Section 8.

Notation. Throughout k is an algebraically closed field and all algebras are finite dimen-
sional k-algebras. For a finite-dimensional k-algebra A, we denote by modA the category
of finite-dimensional right A-modules. For an additive k-linear category A we denote by
modA the category of finitely presented functors Aop → modk. By triangulated category
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we mean k-linear triangulated category satisfying the Krull-Schmidt property. For all
triangulated categories we denote the shift functor by [1].

2. Background

This section is devoted to recalling results that will be used in this paper. We first give
the definition of generalized cluster categories, and then state some results on cluster-
tilting subcategories, and graded algebras.

2.1. Generalized cluster categories. Let Λ be an algebra of global dimension ≤ 2.
We denote by Db(Λ) the bounded derived category of finitely generated Λ-modules. It
has a Serre functor that we denote by S. We denote by S2 the composition S[−2], and by
τ2 the composition H0S2.

The generalized cluster category CΛ of Λ has been defined in [Ami09] as the triangulated
hull of the orbit category Db(Λ)/S2. We denote by πΛ the triangle functor

πΛ : D
b(Λ) // // Db(Λ)/S2

� � // CΛ .

More details on triangulated hulls are given in Section 7 (Example 7.12).

Definition 2.1. An algebra Λ of global dimension ≤ 2 is said to be τ2-finite if τ2 is
nilpotent.

We set Λ̃ := EndCΛ(πΛ) ≃
⊕

p≥0HomDb(Λ)(Λ, S
−p
2 Λ). The algebra Λ is τ2-finite if and

only if the algebra Λ̃ is finite dimensional. In this case we have the following result:

Theorem 2.2 ([Ami09, Theorem 4.10]). Let Λ be an algebra of global dimension ≤ 2
which is τ2-finite. Then the generalized cluster category CΛ is a Hom-finite, 2-Calabi-Yau
category.

2.2. Cluster-tilting subcategories.

Definition 2.3 (Iyama). Let T be a triangulated category, which is Hom-finite. A func-
torially finite subcategory V of T is cluster-tilting (or 2-cluster-tilting) if

V = {X ∈ T | HomT (X,V[1]) = 0} = {X ∈ T | HomT (V, X [1]) = 0}.

We will call an object T of T cluster-tilting if the category add (T ) is cluster-tilting. If T
is 2-Calabi-Yau, and T is a cluster-tilting object, the endomorphism algebra EndT (T ) is
called 2-Calabi-Yau-tilted. If the category T has a Serre functor S, then we have S2V = V
for any cluster-tilting subcategory V where S2 := S[−2].

Example 2.4. The following examples of cluster-tilting objects will be used in the rest of
this paper:

(1) Let Q be an acyclic quiver. If T ∈ modkQ is a tilting module, then πQ(T ) ∈ CQ
is a cluster-tilting object in the cluster category CQ ([BMR+06]).

(2) Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let T ∈ Db(Λ) be a tilting
complex such that EndD(T ) has global dimension ≤ 2, then UT = add{Sp

2T | p ∈
Z} is cluster-tilting in Db(Λ) ([Iya11, Theorem 1.22] or [Ami08, Proposition 5.4.2]).

(3) Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let T ∈ Db(Λ) be a tilting
complex such that EndD(T ) has global dimension ≤ 2, then πΛ(T ) ∈ CΛ is a
cluster-tilting object in CΛ ([Ami09, Theorem 4.10]).
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Proposition 2.5 ([KR07]). Let T be a triangulated category with Serre functor S and
V ⊂ T be a cluster-tilting subcategory. Then for any X in T there exists a triangle called
approximation triangle

V1
// V0

v // X // V1[1]

where V0 and V1 are objects in V and where v : V0
// X is a minimal right V-approxima-

tion.

The following result explains how cluster-tilting subcategories can be mutated.

Theorem 2.6 ([IY08, Theorem 5.3]). Let T be a triangulated category with Serre functor
S and V ⊂ T be a cluster-tilting subcategory. Let X ∈ V be indecomposable, and set

V ′ := add (ind (V) \ {Sp
2X | p ∈ Z}),

where ind (V) denotes the indecomposable objects in V. Then there exists a unique cluster-
tilting subcategory V∗ with V ′ ⊆ V∗ 6= V. Moreover

V∗ = add (V ′ ∪ {Sp
2X

L | p ∈ Z}) = add (V ′ ∪ {Sp
2X

R | p ∈ Z}),

where XL and XR are obtained via triangles

X
f // B // XL // X [1] and XR // B′ g // X // XR[1]

where f (resp. g) is a minimal left (resp. right) V ′-approximation. These triangles are
called left and right exchange triangles.

2.3. Basic results on graded algebras. Let G be an abelian group. (In this paper, G
will always be Z or Z2.) Let Λ :=

⊕
p∈GΛp be a G-graded algebra. We denote by grΛ

the category of finitely generated graded modules over Λ with degree 0 morphisms. For a
graded module M =

⊕
p∈GMp, we denote by M〈q〉 the graded module

⊕
p∈Z M

p+q (that

is, the degree p part of M〈q〉 is Mp+q). The locally bounded subcategory

Cov(Λ, G) := add{Λ〈p〉 | p ∈ G} ⊆ grΛ

is called the G-covering of Λ.

Theorem 2.7 ([GM94]). Let Λ be a G-graded algebra. Then there is an equivalence

modCov(Λ, G)
∼ // grΛ .

Here is a consequence of [GG82, Theorem 5.3]:

Theorem 2.8 (Gordon-Green). Let Λ be an algebra with two different G-gradings. We
denote by Cov(Λ1, G) the G-covering corresponding to the first grading, and Cov(Λ2, G)
the G-covering corresponding to the second G-grading. Then the following are equivalent:

(1) There is an equivalence U : modCov(Λ1, G)
∼

−→ modCov(Λ2, G) such that the
following diagram commutes.

modCov(Λ1, G)
U //

''PP
PP

PP
PP

PP
P

modCov(Λ2, G)

wwnnn
nn
nn
nn
nn

modΛ
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(2) There exist ri ∈ G and an isomorphism of G-graded algebras

Λ2
∼

G
//
⊕

p∈GHomCov(Λ1,G)(
⊕n

i=1 Pi〈ri〉,
⊕n

i=1 Pi〈ri + p〉)

where Λ1 =
⊕n

i=1 Pi in grΛ1.

In this case we say that the gradings are equivalent.

3. Cluster-tilting subcategories determine the derived category

3.1. Bijection between cluster-tilting subcategories. In this subsection we show
that, for a τ2-finite algebra of global dimension ≤ 2, the projection functor induces a
bijection between cluster-tilting subcategories of its cluster category and cluster-tilting
subcategories of its derived category.

Proposition 3.1. Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let T ∈ CΛ be a
cluster-tilting object. Then π−1(T ) ⊂ Db(Λ) is a cluster-tilting subcategory of Db(Λ).

Proof. Since the functor πΛ : D
b(Λ) → CΛ is triangulated, we get the inclusions

π−1(T ) ⊂ {X ∈ Db(Λ) | HomDb(Λ)(X, π−1(T )[1]) = 0}, and

π−1(T ) ⊂ {X ∈ Db(Λ) | HomDb(Λ)(π
−1(T ), X [1]) = 0}

Let T ≃ T1 ⊕ · · · ⊕ Tn be the decomposition of T in indecomposable objects. For all
i = 1, . . . , n, the object Ti is rigid. Hence, by [AO12], there exists T ′

i ∈ Db(Λ) such that
π(T ′

i ) = Ti. Now let X be in {X ∈ Db(Λ) | HomDb(Λ)(π
−1(T ), X [1]) = 0}. Therefore

for all i = 1, . . . , n and all p ∈ Z the space HomDb(Λ)(S
p
2T

′
i , X [1]) vanishes. Then for all

i = 1, . . . , n we have

HomC(Ti, π(X)[1]) = HomC(π(T
′
i ), π(X)[1]) ≃

⊕

p∈Z

HomD(S
p
2T

′
i , X [1]) = 0.

Since T is cluster-tilting, we have π(X) ∈ add(T ), thus X ∈ π−1(T ). The last inclusion
is shown similarly. �

The following proposition shows that the converse is also true.

Proposition 3.2. Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let V be a cluster-
tilting subcategory of Db(Λ). Then πΛ(V) is a cluster-tilting subcategory of CΛ.

In the proof we will need the following piece of notation:

Definition 3.3. For U and V subcategories of a triangulated category T we denote by
U ∗ V the full subcategory of T consisting of objects M of T appearing in a triangle

U // M // V // U [1] with U ∈ U and V ∈ V.

One easily sees that U is a cluster-tilting subcategory of T if and only if T = U ∗ U [1]
and HomT (U ,U [1]) = 0.

Proof of Proposition 3.2. Let X and Y be objects in V. Then we have

HomCΛ(π(X), π(Y )[1]) = HomCΛ(π(X), π(Y [1])) =
⊕

p∈Z

HomDb(Λ)(X, Sp
2Y [1]) = 0

since S
p
2Y ∈ S

p
2V = V. Therefore we have HomCΛ(π(V), π(V)[1]) = 0.
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Denote by U := UΛ = π−1(πΛ) the canonical cluster-tilting subcategory of Db(Λ). Then
since V is cluster-tilting in Db(Λ) we have U ⊂ V[−1] ∗ V. Since π is a triangle functor,
we have the inclusions

π(U) ⊂ π(V[−1] ∗ V) ⊂ π(V)[−1] ∗ π(V).

Now since π(U) is a cluster-tilting subcategory of CΛ we have:

CΛ = π(U) ∗ π(U)[1] = (π(V)[−1] ∗ π(V)) ∗ (π(V) ∗ π(V)[1]).

Since HomCΛ(π(V), π(V)[1]) = 0, we have π(V) ∗π(V) = π(V). Therefore, by associativity
of ∗, we get

CΛ = π(V)[−1] ∗ (π(V) ∗ π(V)) ∗ π(V)[1] = π(V)[−1] ∗ π(V) ∗ π(V)[1].

Now let X ∈ CΛ such that HomCΛ(X, π(V)[1]) = 0. There exists triangles

π(V1)[−1] // π(V0)[−1] // Y // π(V1) and π(V2) // Y // X // π(V2)[1]

with V0, V1, V2 in V. Since HomCΛ(X, π(V)[1]) = 0 the second triangle splits and we have
X ⊕ π(V2) ≃ Y . Then HomCΛ(π(V)[−1], Y ) = 0 and the first triangle splits. Hence
we have π(V1) ≃ Y ⊕ π(V0) ≃ X ⊕ π(V2) ⊕ π(V0) and X ∈ π(V). Therefore π(V) is a
cluster-tilting subcategory of CΛ. �

3.2. Recognition theorem. The aim of this subsection is to prove Theorem 3.5. Since
its setup is that of algebraic triangulated categories we recall the definition.

Definition 3.4. A triangulated category T is called algebraic if there is a Frobenius exact
category E such that T = E .

Theorem 3.5. Let T be an algebraic triangulated category with a Serre functor and with
a cluster-tilting subcategory V. Let Λ be a τ2-finite algebra with global dimension ≤ 2. As-

sume that there is an equivalence of additive categories with S2-action f : UΛ
∼ // V (with

UΛ as in Example 2.4(2)). Then there exists a triangle equivalence F : Db(Λ) // T

such that the following diagram commutes

Db(Λ)
F // T

UΛ
f //

?�

OO

V.
?�

OO

Our strategy for the proof is as follows: We introduce the category of radical morphisms
morV (see Definition 3.6) for a cluster-tilting subcategory V. In the setup of Theorem 3.5
it follows that morV and morUΛ are equivalent. We would like to complete the proof by
saying that morV is equivalent to T (and similarly for UΛ), but unfortunately we do not
have such an equivalence but just a bijection on objects (see Lemma 3.8). We will see
that this bijection is nice enough to make the image of Λ a tilting object in T . Then the
theorem follows from the tilting theorem.

Definition 3.6. Let U be a locally finite k-category. That is, for any indecomposable
object X of U there are (up to isomorphism) only finitely many indecomposables Y such
that U(X, Y )⊕ U(Y,X) 6= 0.

We define the category morU . Objects are radical maps U1 → U0 in U and morphisms
are commutative squares.
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Let u : U1 → U0 be an object in U . Since U is locally finite, the kernel M of the map

0 // M // DU(U1,−)
u∗

// DU(U0,−)

is in modU the category of finitely presented functors Uop → modk. Hence there exists a
map h : H1 → H0 such that

U(−, H1)
h∗ // U(−, H0) // M // 0

is the minimal projective resolution of M . This map is uniquely defined up to isomor-
phism. Therefore we can define the map H : morU → morU as Hu = h. Similarly, we
define H− : morU → morU .

Lemma 3.7. If u ∈ morU is left minimal then we have H−Hu ≃ u. If u ∈ morU is right
minimal then we have HH−u ≃ u.

Proof. The morphism u : U1 → U0 is left minimal if and only if the injective resolution

0 // M // DU(U1,−)
u∗

// DU(U0,−)

is minimal, hence we get the result. �

Let V ⊂ T and Λ be as in Theorem 3.5. Since Λ̃ is finite-dimensional, the category
U = add{Sp

2Λ | p ∈ Z} is locally finite, hence so is the category V. The autoequivalence S2

of V induces an autoequivalence of morV that we denote also by S2. Each map v : V1 → V0

decomposes in the direct sum of a left minimal map and a map of the form [0 → V2].
Hence we can define a map Σ: morV → morV by

Σv =

{
HS

−
2 v if v is left minimal

[V0 → 0] if v = [0 → V0].

This is clearly a bijection whose inverse is

Σ−v =

{
S2H

−v if v is right minimal
[0 → V1] if v = [V1 → 0].

Lemma 3.8. Let V ⊂ T and Λ be as in Theorem 3.5. Then the map

Cone : morV // T

v � // Cone(v)

is a bijection on isomorphism classes of objects of the categories morV and T . Moreover
we have

(1) Cone(Σv) ≃ (Cone(v))[1];
(2) Cone(S2v) ≃ S2(Cone(v)).

Proof. If two objects u and v of morV are isomorphic, then their cones are isomorphic.
Hence this map is well-defined on isomorphism classes of objects. By Proposition 2.5, for
each T ∈ T there exists a triangle

V1
v // V0

w // T // V1[1] .

The map v is in the radical if and only if w is a minimal right V-approximation. Since
minimal right approximations exist and are unique up to isomorphism, the map Cone is
bijective.
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Let v : 0 → V0 be in morV. Then we have

Cone(Σv) = Cone([V0 → 0])

= V0[1]

= (Cone(v))[1].

Let v : V1 → V0 be left minimal in morV. Let h : H1 → H0 be HS
−
2 (v). Then we have

an exact sequence in modV:

HomT (V, H1)
h∗ // HomT (V, H0) // DHomT (S

−
2 V1,V)

(S−2 v)∗
// DHomT (S

−
2 V0,V)

By definition of S2 this sequence is isomorphic to

HomT (V, H1)
h∗ // HomT (V, H0) // HomT (V, V1[2])

v[2]∗
// DHomT (V, V0[2])

Since V is cluster-tilting, the space HomT (V, H1[1]) vanishes and the cokernel of h∗ is
isomorphic to HomT (V,Cone(h)). Since HomT (V, V0[1]) vanishes, the kernel of the map
v[2]∗ is HomT (V,Cone(v)[1]).

Note that, by definition of H , the map h is right minimal. Hence Cone(h) does not
have any non-zero direct summands in V[1]. Similarly, since v is left minimal, Cone(v)
does not have any non-zero direct summands in V, and thus Cone(v)[1] does not have any
non-zero summands in V[1]. By the equivalence HomT (V,−) : T /(V[1]) → modV (see
[KR07]) the isomorphism HomT (V,Cone(h)) ≃ HomT (V,Cone(v)[1]) implies that also
Cone(h) ≃ Cone(v)[1].

Hence we get

Cone(Σv) = Cone(HS
−
2 v)

= Cone(h)

≃ Cone(v)[1]

and we have (1).
Assertion (2) is immediate. �

Lemma 3.9. In the setup of Theorem 3.5, let u be in morU . Then for all p ∈ Z we have
isomorphisms

HomT (fΛ,Cone(fu)[p]) ≃ HomDb(Λ)(Λ,Cone(u)[p]).

Proof. Let U1
u // U0

// X // U0[1] be a triangle in Db(Λ) with u ∈ morU . Let

Up
1

up
// Up

0
// X [p] // Up

0 [1]

be a U-approximation triangle of X [p] in Db(Λ) with up ∈ morU . Then we have

Cone(f(up)) ≃ Cone(f(Σp
U(u))) by Lemma 3.8(1),

≃ Cone(Σp
V(fu)) since f is an equivalence of S2-categories

≃ Cone(fu)[p] by Lemma 3.8(1).

Thus we have a triangle in T

f(Up
1 )

fup

// f(Up
0 ) // Cone(fu)[p] // (fUp

1 )[1]
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which gives an exact sequence

HomT (fΛ, fU
p
1 )

// HomT (fΛ, fU
p
0 )

// HomT (fΛ,Cone(fu)[p]) // HomT (fΛ, fU
p
1 [1]) .

The space HomT (fΛ, fU
p
1 [1]) vanishes since fU = V is a cluster-tilting subcategory of T .

But since f is an equivalence we have

HomT (fΛ, fU
p
1 )

// HomT (fΛ, fU
p
0 )

// HomT (fΛ,Cone(fu)[p]) // 0

HomDb(Λ)(Λ, U
p
1 )

≀

OO

// HomDb(Λ)(Λ, U
p
1 ) //

≀

OO

HomDb(Λ)(Λ,Cone(u)[p]) // HomDb(Λ)(Λ, U
p
1 [1]) = 0

Hence we get
HomT (fΛ,Cone(fu)[p]) ≃ HomDb(Λ)(Λ,Cone(u)[p]). �

Proof of Theorem 3.5. Applying Lemma 3.9 to u = [0 → Λ] we get for each p ∈ Z

HomT (fΛ, fΛ[p]) ≃ HomDb(Λ)(Λ,Λ[p]) = 0.

Therefore the object fΛ is a tilting object in the category T .
We will use the following theorem which can be deduced from [Kel07, Theorem 8.5]:

Theorem 3.10 (Keller). Let T be a Hom-finite algebraic triangulated category. Let T ∈ T
be a tilting object of T , i.e. for any i 6= 0 the space ExtiT (T, T ) vanishes. Denote by Λ the
endomorphism algebra EndT (T ) and assume it is of finite global dimension. Then there
exists an algebraic equivalence F : Db(Λ) → thick T (T ) sending the object Λ on T where
thick T (T ) is the smallest triangulated subcategory of T containing T and stable under
direct summands.

Hence we have an equivalence

Db(Λ)
∼ // thick (fΛ) ⊂ T

where thick (fΛ) is the thick subcategory of T generated by f(Λ). It remains to show
that thick (fΛ) = T . Since Λ has finite global dimension it suffices to show that the only
object Y ∈ T such that HomT (fΛ, Y [p]) = 0 ∀p ∈ Z is 0. So let Y ∈ T be such that for
each p ∈ Z the space HomT (fΛ, Y [p]) vanishes. Form an approximation triangle in T

V1
v // V0

// Y // V1[1] .

Since f : U → V is an equivalence and since v is in morV, there exists u : U0 → U1 ∈ morU
such that f(u) = v. Denote by X the cone of u. Then by Lemma 3.9 we have an
isomorphism

HomDb(Λ)(Λ, X [p]) ≃ HomT (fΛ, Y [p]) = 0 for all p ∈ Z.

Hence we have X = 0 and U0 = U1 = 0. Therefore we have Y = 0. Hence we have an

equivalence Db(Λ)
∼ // T .

It remains to prove that the following diagram is commutative.

Db(Λ)
∼

F
// T

U
f

∼ //
?�

OO

V
?�

OO
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Since F (Λ) = f(Λ) and since U is the cluster-tilting subcategory add{ΛS
p
2Λ | p ∈ Z}, it

is enough to prove that the functor F commutes with S2. This is clear by the uniqueness
of the Serre functor in a triangulated category. �

4. Application to Iyama-Yoshino reduction

In this section, as an application of the recognition theorem (Theorem 3.5), we show
that certain Iyama-Yoshino reductions of derived categories are derived categories again.

For lightening the writing, in this section we denote by T (X, Y ) the space of morphisms
HomT (X, Y ) in the category T . If U is a subcategory of T , we denote by [U ](X, Y ) the
space of morphism in T between X and Y factorizing through an object in U . If T is a
triangulated category with Serre functor T S, we set T S2 = T S[−2], and simply write S2

for T S2 when there is no danger of confusion.

4.1. Iyama-Yoshino reduction. This subsection is devoted to recalling some results of
[IY08].

Let D be a triangulated k-category which is Hom-finite and with a Serre functor DS.
Let U be a full subcategory having the following properties:

• U is rigid, that is D(U ,U [1]) = 0;
• U is functorially finite, that is any object ofD has a right and a left U-approximation;
• U is stable under DS2 = DS[−2].

We define the full subcategory Z of D by

Z = {X ∈ D | D(U , X [1]) = 0}.

We denote by T the category Z/[U ]. Its objects are those of Z and for X and Y in Z we
have

T (X, Y ) := D(X, Y )/[U ](X, Y ).

For X in Z, let X → UX be a left U-approximation. We define X{1} to be the cone

X // UX
// X{1} // X [1] .

Remark 4.1. In [IY08], Iyama and Yoshino write X〈1〉 instead of X{1}. Here we deviate
from their notation because in this paper pointy brackets are used to denote degree shifts.

Theorem 4.2 ([IY08]). The category T is triangulated, with shift functor {1} and Serre
functor T S = DS2{2}. Moreover there is a 1-1 correspondence between cluster-tilting
subcategories of D containing U and cluster-tilting subcategories in T .

In this construction, for any triangle X // Y // Z // X [1] in D such that X ,

Y and Z are in Z, we have a morphism of triangles

X
u // Y

v //

��

Z //

w

��

X [1]

X // UX
// X{1} // X [1]

Then the image of X
u // Y

v // Z
w // X{1} in T is a triangle.

Here we need the following version of Iyama-Yoshino reduction for the setup of algebraic
triangulated categories.
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Proposition 4.3. In the setup of Theorem 4.2, if D is algebraic triangulated then so
is T .

Proof. Since D is algebraic triangulated we have D = E for some Frobenius exact category
E . We denote by F the preimage of Z in E . Since F is closed under extensions F is an
exact category (whose exact sequences are those exact sequences in E which lie entirely
in F).

Let V be the preimage of U in E . Then clearly V ⊆ F . We claim that the objects in V
are projective. Indeed if we have a short exact sequence

F1
// // F2

// // V

in F with V ∈ V then, since HomD(V, F1[1]) = 0 by definition of Z, the sequence splits.
Similarly the objects in V are also injective.

Since V contains all projective-injective objects in E one sees that for any F ∈ F the

right V-approximation V // F is an admissible epimorphism in E . One easily checks
that its kernel is again in F , so that the approximation is also an admissible epimorphism
in F . Hence F has enough projectives, and these are precisely the objects in V. Dually
F has enough injectives, which are again the objects in V.

Thus F is Frobenius exact, and

T = Z/[U ] = F/[V] = F

is algebraic triangulated. �

Remark 4.4. The proof of Proposition 4.3 is also a simpler proof for Theorem 4.2 in the
case when D is algebraic triangulated.

4.2. Reduction of the derived category. Let Λ = kQ/I be a τ2-finite algebra of global
dimension ≤ 2. Let i0 ∈ Q0 be a source of Q and e := ei0 be the associated primitive
idempotent of Λ. We apply Iyama-Yoshino’s construction for Ue = add{Sp

2(eΛ) | p ∈
Z} ⊂ Db(Λ). That is, we denote by Z the full subcategory of D := Db(Λ)

Z := {X ∈ D | D(Sp
2(eΛ), X [1]) = 0 ∀p ∈ Z}.

Then, by Proposition 4.3, the category T = Z/[Ue] is algebraic triangulated.
Denote by Λ′ the algebra Λ/ΛeΛ ≃ (1 − e)Λ(1 − e). Since i0 is a source of the quiver

Q, the algebra Λ is a one point extension of Λ′, namely

Λ =

[
Λ′ (1− e)Λe
0 k

]
.

Then the projective Λ-modules are

(1− e)Λ =
[
Λ′ (1− e)Λe

]
and eΛ =

[
0 k

]
,

and the injective Λ-modules are

(1− e)DΛ =
[
DΛ′ 0

]
and eDΛ =

[
eDΛ(1− e) k

]
.

Lemma 4.5. The algebra Λ′ is a k-algebra of global dimension ≤ 2.

Proof. Since i0 is a source of Q, for i ∈ Q0 with i 6= i0 the minimal injective resolution
of the simple Si in modΛ does not contain the injective module eDΛ. Therefore, using
the description of injectives above, this injective resolution can be seen as an injective
resolution in modΛ′. �
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The aim of this section is to prove the following theorem:

Theorem 4.6. There is a triangle equivalence D′ := Db(Λ′) ≃ T := Z/[Ue].

We first prove several lemmas.

Lemma 4.7. We have an isomorphism D′(S2Λ
′,Λ′) ≃ D(S2((1− e)Λ), (1− e)Λ)/[eΛ].

Proof. We choose a projective resolution of DΛ′ in modΛ′.

(∗) 0 // P2
// P1

// P0
// DΛ′ // 0 .

Since Λ is a one point extension of Λ′ there is a short exact sequence

(†) 0 // (1− e)Λe // (1− e)Λ // Λ′ // 0

in mod (Λ′op ⊗ Λ), where (1 − e)Λe is the Λ′-Λ-bimodule
[
0 (1− e)Λe

]
. Note that as

Λ-module this is just eΛdimk(1−e)Λe. Applying Pi⊗Λ′ − to (†) for i = 0, 1, 2 we obtain short
exact sequences

0 // Pi ⊗Λ′ (1− e)Λe // Pi ⊗Λ′ (1− e)Λ // Pi
// 0

PiΛe PiΛ

.

Inserting these in (∗) we obtain the following projective resolution of the Λ-module DΛ′:

0 // P2Λe //
P2Λ
⊕

P1Λe

//
P1Λ
⊕

P0Λe

// P0Λ // DΛ′ // 0

Since Λ is of global dimension ≤ 2, the map P2Λe // P1Λe is a split monomorphism,
hence we can write

0 //
P2Λ
⊕

eΛm

//
P1Λ
⊕

P0Λe

// P0Λ // DΛ′ // 0

for some m ∈ N. Since e is attached to a source of the quiver Q, the space [Ue]((1 −
e)Λ, (1− e)Λ) vanishes and we have

D(S2((1− e)Λ), (1− e)Λ)/[eΛ] = Coker(D(P1Λ, (1− e)Λ) → D(P2Λ, (1− e)Λ)).

Since i0 is a source of the quiver of Λ, if i, j 6= i0 we have D(eiΛ, ejΛ) = D′(eiΛ
′, ejΛ

′).
Hence we have

D(S2((1− e)Λ), (1− e)Λ)/[eΛ] ≃ Coker(D(P1Λ, (1− e)Λ) → D(P2Λ, (1− e)Λ))

≃ Coker(D(P1,Λ
′) → D(P2,Λ

′))

≃ D′(S2Λ
′,Λ′). �

Lemma 4.8. For any p ≥ 1 the composition map

T (S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ T (S−1
2 Λ, S−2

2 Λ)⊗Λ T (Λ, S−1
2 Λ) // T (Λ, S−p

2 Λ)

is an isomorphism.
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Proof. By definition of T for any X, Y ∈ T we have an exact sequence

[Ue](X, Y ) // D(X, Y ) // T (X, Y ) // 0.

Hence we obtain the following diagram

0 0

T (S−p+1
2 Λ, S−p

2 Λ)⊗Λ . . .⊗Λ T (Λ, S−1
2 Λ) //

OO

T (Λ, S−p
2 Λ)

OO

D(S−p+1
2 Λ, S−p

2 Λ)⊗Λ . . .⊗Λ D(Λ, S−1
2 Λ)

OO

// D(Λ, S−p
2 Λ)

OO

∗ //

OO

[Ue](Λ, S
−p
2 Λ)

OO

with exact columns, and with

∗ =

p⊕

j=1

D(S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ [Ue](S
−j+1
2 Λ, S−j

2 Λ)⊗Λ . . .⊗Λ D(Λ, S−1
2 Λ)

The surjectivity of the composition map

T (S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ T (Λ, S−1
2 Λ) // T (Λ, S−p

2 Λ)

is now consequence of the following result:

Lemma 4.9 ([Ami09]). The composition map

D(S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ D(Λ, S−1
2 Λ) // D(Λ, S−p

2 Λ)

is an isomorphism.

We now prove that the map
p⊕

j=1

D(S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ [Ue](S
−j+1
2 Λ, S−j

2 Λ)⊗Λ . . .⊗Λ D(Λ, S−1
2 Λ)

// [Ue](Λ, S
−p
2 Λ)

is surjective. Any morphism in [Ue](Λ, S
−p
2 Λ) is a sum of morphisms factoring through

various S−q
2 eΛ, with 0 ≤ q ≤ p. Since the right radical add{Si

2Λ | i ∈ Z}-approximation of
S
−q
2 eΛ lies in addS

−q+1
2 Λ, and the left radical add{Si

2Λ | i ∈ Z}-approximation of S−q
2 eΛ

lies in addS
−q
2 Λ, we have that any map Λ → S

−p
2 Λ factoring through S

−q
2 eΛ lies in the

image of

D(S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ [Ue](S
−q+1
2 Λ, S−q

2 Λ)⊗Λ . . .⊗Λ D(Λ, S−1
2 Λ) // [Ue](Λ, S

−p
2 Λ)

Therefore, using the above diagram, the composition map

T (S−p+1
2 Λ, S−p

2 Λ)⊗Λ · · · ⊗Λ T (Λ, S−1
2 Λ) // T (Λ, S−p

2 Λ)

is an isomorphism. �
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Lemma 4.10. For any p ∈ Z, we have D′(Λ′, Sp
2Λ

′) ≃ T (Λ, Sp
2Λ).

Proof. For p ≥ 0 both side vanishes since Λ and Λ′ are of global dimension at most 2.
The case p = −1 is Lemma 4.7 since we have

[Ue]((1− e)Λ, S−1
2 (1− e)Λ) = [S−1

2 eΛ]((1− e)Λ, S−1
2 (1− e)Λ).

Using Lemmas 4.7 and 4.8 we show the assertion for any p ≤ −1 by an easy induction
and using the fact that

T (S−1
2 Λ, S−2

2 Λ)⊗ΛT (Λ, S−1
2 Λ) ≃ T (S−1

2 (1−e)Λ, S−2
2 (1−e)Λ)⊗Λ′ T ((1−e)Λ, S−1

2 (1−e)Λ).

�

Remark 4.11. This lemma can also be proved using Theorem 6.2, but we think it is good
to also have a direct proof.

Proof of Theorem 4.6. The strategy of the proof is to use the recognition theorem (The-
orem 3.5). The category UΛ = add{ΛS

p
2Λ | p ∈ Z} is a cluster-tilting subcategory of

D which contains Ue. Therefore, by Theorem 4.2, its image under the natural func-
tor Z → Z/[Ue] = T is a cluster-tilting subcategory of T . By Lemma 4.10 the cate-
gory UΛ/[Ue] is equivalent to the category UΛ′ = add{Λ′S

p
2Λ

′ | p ∈ Z} ⊂ D′ = Db(Λ′)
as category with S2-action. Therefore, by Theorem 3.5, we get an triangle equivalence
D′ ≃ T . �

Remark 4.12. (1) Theorem 4.6 also holds if i0 is a sink of the quiver of Λ.
(2) This result is related to [Kel09, Theorem 7.4], where the author proves that the

Iyama-Yoshino reduction of the generalized cluster category associated with a
Jacobi-finite quiver with potential at a vertex is again a generalized cluster cate-
gory associated with a Jacobi-finite quiver with potential.

5. Cluster equivalent algebras: the derived equivalent case

In this section we give a criterion for two cluster equivalent algebras to be derived equiv-
alent. The main tool for proving this criterion is the recognition theorem (Theorem 3.5).
Further we study derived equivalent algebras satisfying the assumption that the canonical
cluster-tilting objects in the common cluster category are isomorphic. We show that these
algebras are all iterated 2-APR tilts of one another.

5.1. Derived equivalence is graded equivalence.

Definition 5.1. Two τ2-finite algebras Λ1 and Λ2 of global dimension ≤ 2 will be called
cluster equivalent if there exists a triangle equivalence between their generalized cluster
categories CΛ1 and CΛ2 .

Proposition 5.2. Let Λ1 and Λ2 be τ2-finite algebras of global dimension ≤ 2. If Λ1 and
Λ2 are derived equivalent, then there exists an equivalence FD : Db(Λ1) → Db(Λ2) which
induces an equivalence F : CΛ1 → CΛ2 as in the following diagram.

Db(Λ1)
FD

//

π1

��

Db(Λ2)

π2

��
CΛ1

F // CΛ2

In particular derived equivalent algebras are cluster equivalent.
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We refer to Section 7 for a formal proof of this proposition (Corollary 7.16).

Remark 5.3. As we will see in the examples later, algebras which are not derived equivalent
can still be cluster equivalent.

As a consequence of Theorem 3.5 we have a first version of a criterion for cluster
equivalent algebras to be derived equivalent.

Corollary 5.4. Let Λ1 and Λ2 be two τ2-finite algebras of global dimension ≤ 2 which
are cluster equivalent. Denote by π1 (resp. π2) the canonical functor Db(Λ1) → CΛ1 (resp.
Db(Λ2) → CΛ2). Then the following are equivalent

(1) Λ1 and Λ2 are derived equivalent;
(2) there exists an S2-equivalence between the categories π−1

2 (Fπ1Λ1) ⊂ Db(Λ2) and
π−1
1 (π1Λ1) ⊂ Db(Λ1) for some triangle equivalence F : CΛ1 → CΛ2.

Proof. (1) ⇒ (2): By Proposition 5.2 there exists a triangle equivalence FD which induces

a triangle equivalence F : CΛ1
// CΛ2 such that the diagram

Db(Λ1)
FD

//

π1

��

D(Λ2)

π2

��
CΛ1

F // CΛ2

commutes. Therefore we have S2-equivalences

π−1
2 (Fπ1Λ1) = π−1

2 (π2F
DΛ1)

= add{Sp
2F

DΛ1 | p ∈ Z}

≃ add{Sp
2Λ1 | p ∈ Z} (by uniqueness of the Serre functor)

≃ π−1
1 (π1Λ1).

(2) ⇒ (1) Since F is a triangle equivalence, and since π1Λ1 is cluster-tilting in CΛ1 ,
Fπ1Λ1 is cluster-tilting in CΛ2 . Then by Proposition 3.1 the subcategory π−1

2 (Fπ1Λ1) is
cluster-tilting in Db(Λ2). Hence, by Theorem 3.5, we get the result. �

Remark 5.5. It is not clear that the FD constructed in the proof of (2) ⇒ (1) commutes

with F , but it induces a (possibly different) triangle equivalence CΛ1
// CΛ2 .

Theorem 5.6. Let Λ1 and Λ2 be two τ2-finite algebras of global dimension ≤ 2. For
i = 1, 2 we denote by πi the canonical functor Di → Ci, where Di := Db(Λi) and Ci := CΛi

.

Denote by Cov(Λ̃i,Z) the Z-covering of the Z-graded algebra

Λ̃i :=
⊕

p≥0

HomDi
(Λi, S

−p
2 Λi).

Assume that we have an isomorphism of algebras Λ̃1
∼

f
// Λ̃2. Then the following are

equivalent

(1) there exists a derived equivalence FD : D1
∼ // D2 such that the induced triangle

equivalence F : C1 → C2 satisfies F (π1Λ1) = π2Λ2;

(2) there is a equivalence fZ : modCov(Λ̃1,Z)
∼ // modCov(Λ̃2,Z) extending f .
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In this case the algebras Λ1 and Λ2 are cluster equivalent, and we have a commutative
diagram:

D1

π1

��

∼

FD

// D2

π2

��
C1

∼

F
//

HomC1
(π1(Λ1),−)

��

C2

HomC2
(π2(Λ2),−)

��

mod Λ̃1
∼

f
// mod Λ̃2

modCov(Λ̃1,Z)

OO

∼

fZ

// modCov(Λ̃2,Z)

OO

Proof. (1) ⇒ (2): Assume Condition (1) is satisfied. Then there exists a tilting complex
T ∈ Db(Λ1) such that EndDb(Λ1)(T ) ≃ Λ2 and that the following diagram commutes

Db(Λ1)

π1

��

RHom
Db(Λ1)

(T,−)
// Db(Λ2)

π2

��
CΛ1

∼

F
// CΛ2

Since Fπ1(Λ1) is isomorphic to π2(Λ2) = π2(RHom(T, T )), we have π1(Λ1) = π1(T ). So T
can be written

⊕n
i=1 S

−di
2 eiΛ1 for certain di ∈ Z, where Λ1 =

⊕n
i=1 eiΛ1 is the decomposi-

tion into indecomposable projective modules. Then we have the following isomorphisms
of Z-graded algebras

Λ̃2 ≃
Z

⊕

p∈Z

HomD2(Λ2, S
−p
2 Λ2)

≃
Z

⊕

p∈Z

HomD1(T, S
−p
2 T )

≃
Z

⊕

p∈Z

HomD1(

n⊕

i=1

S
−di
2 eiΛ1,

n⊕

i=1

S
−di−p
2 eiΛ1)

≃
Z

⊕

p∈Z

HomCov(Λ̃1,Z)
(

n⊕

i=1

eiΛ̃1〈di〉,
n⊕

i=1

eiΛ̃1〈di + p〉),

where eiΛ̃1 is the projective Λ̃1-graded module
⊕

p∈Z HomD1(Λ1, S
−p
2 eiΛ1). Therefore, by

Theorem 2.8, we have a commutative diagram

mod Λ̃1
∼ // mod Λ̃2

modCov(Λ̃1,Z)
∼ //

OO

modCov(Λ̃2,Z)

OO

and we get (2).
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(2) ⇒ (1): By assumption we have a commutative diagram

mod Λ̃1
∼ // mod Λ̃2

modCov(Λ̃1,Z)
∼ //

OO

modCov(Λ̃2,Z)

OO

where the upper equivalence comes from the isomorphism of algebras Λ̃1 ≃ Λ̃2. Then, by

Theorem 2.8, there exists integers di such that Λ̃2 is isomorphic as graded algebra to

Λ̃2 ≃
Z

⊕

p∈Z

HomCov(Λ̃1,Z)
(

n⊕

i=1

eiΛ̃1〈di〉,

n⊕

i=1

eiΛ̃1〈di + p〉),

where Λ̃1 =
⊕n

i=1 eiΛ̃1 is the decomposition of Λ̃1 into indecomposables. Thus we have

eiΛ̃1 ≃
⊕

p∈Z HomD1(Λ1, S
−p
2 eiΛ1). Therefore we have

Λ̃2 ≃
Z

⊕

p∈Z

HomD1(

n⊕

i=1

S
−di
2 eiΛ1,

n⊕

i=1

S
−di−p
2 eiΛ1).

This isomorphism of graded algebras means that we have an equivalence of cluster-tilting
subcategories with S2-action

U1 = add{S−di−p
2 eiΛ1, i = 1, . . . , n, p ∈ Z} u

∼ // add{S−p
2 Λ2 | p ∈ Z} = U2

sending
⊕n

i=1 S
−di
2 eiΛ1 to Λ2.

Therefore, by Theorem 3.5, we get a triangle equivalence FD between Db(Λ1) and
Db(Λ2) making the following square commutative.

U1
u //

� _

��

U2� _

��

Db(Λ1)
FD

// Db(Λ2)

By Proposition 5.2, the functor FD induces a triangle equivalence F : CΛ1 → CΛ2 such
that the following diagram commutes,

Db(Λ1)
FD

//

π1

��

Db(Λ2)

π2

��
CΛ1

F // CΛ2

and we have

Fπ1Λ1 ≃ Fπ1(

n⊕

i=1

S
−di
2 eiΛ1) ≃ π2F

D(

n⊕

i=1

S
−di
2 eiΛ1) ≃ π2Λ2.

This completes the proof of the implication (2) ⇒ (1).
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Moreover the square

CΛ1

F //

HomC1
(π1Λ1,−)

��

CΛ2

HomC2
(π2Λ2,−)

��

mod Λ̃1
f // mod Λ̃2

is commutative, and we get the commutative diagram of the theorem. �

Example 5.7. Let Λ1 = kQ1/I1, Λ2 = kQ2/I2 and Λ3 = kQ3/I3 be the algebras given by
the following quivers:

Q1 = 2

1

a @@����
3

d
oo

coo

, Q2 = 2
b
��=

==
=

1 3
d

oo
coo

and Q3 = 2
b
��=

==
=

1

a @@����
3

d
oo

with relations I1 = 〈ac〉, I2 = 〈cb〉 and I3 = 〈ba〉. It is easy to check that the algebras

Λ̃i, for i = 1, 2, 3 are all isomorphic to the Jacobian algebra Jac(Q̃,W ) (see Section 6.2
for definition) where

Q̃ = 2
b
��=

==
=

1

a @@����
3

d
oo

coo

and W = cba.

The algebras Λ1 and Λ2 are derived equivalent since they are both derived equivalent
to the path algebra of a quiver of type Ã2. The quiver Q3 contains an oriented cycle,
therefore the algebra Λ3 is not derived equivalent to a hereditary algebra. We compute
the Z-coverings with respect to the different gradings:

2

1

a @@����
3

d
oo

coo

2
b

@@����

Cov(Λ̃1,Z) = 1

a
BB����

3
d

oo
coo

2
b

BB����

1

a @@����
3

d
oo

coo

2
b
��=

==
=

1

a ��=
==
= 3

d
oo

coo

2
b
��9

99
9

Cov(Λ̃2,Z) = 1

a ��9
99

9 3
d

oo
coo

2
b
��=

==
=

1 3
d

oo
coo

2

b ��=
==
=

1

a @@����
3

d
oo

2

b ��9
99

9

Cov(Λ̃3,Z) = 1

a
BB����

3

c

gg

d
oo

2

b ��=
==
=

1

a @@����
3

c

gg

d
oo

It is then clear that the first two locally finite categories are equivalent, but not to the
third one.

Theorem 5.6 can be generalized to the case that Λ̃2 is isomorphic not necessarily to Λ̃1,
but to the endomorphism algebra of some cluster-tilting object in C1.

Theorem 5.8. Let Λ1 and Λ2 be two τ2-finite algebras of global dimension ≤ 2. Assume
there is T ∈ D1 such that π1(T ) is basic cluster tilting in C1, and
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(1) there is an isomorphism EndC1(π1T )
∼ // EndC2(π2Λ2)

(2) this isomorphism can be chosen in such a way that the two Z-gradings defined on

Λ̃2, given respectively by
⊕

q∈Z

HomD2(Λ2, S
−q
2 Λ2) and

⊕

p∈Z

HomD1(T, S
−p
2 T ),

are equivalent.

Then the algebras Λ1 and Λ2 are derived equivalent, and hence cluster equivalent.

Proof. The object π1T is a cluster-tilting object in C1. Hence the subcategory π−1
1 (π1T )

is a cluster-tilting subcategory of D1. It is immediate to see that

π−1
1 (π1T ) = add{Sp

2T | p ∈ Z}.

With the same argument used in the proof (2) ⇒ (1) of Theorem 5.6, we show that
Condition (2) is equivalent to the fact that we have an equivalence of cluster-tilting
subcategories with S2-action:

U1 := add{Sp
2T | p ∈ Z} ≃ add{Sq

2Λ2, q ∈ Z} =: U2

Then we can apply Theorem 3.5 to get the result. �

Remark 5.9. In Section 6 we will introduce the notion of mutation of graded quivers with
potential, which makes it possible to check the assumptions of Theorem 5.8 more easily.
Therefore we give an example there (Example 6.15).

5.2. Classification of tilting complexes. In this subsection we classify tilting com-
plexes giving rise to derived equivalent algebras with the same canonical cluster tilting
object.

Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let Λ = P1 ⊕ · · · ⊕ Pn the
decomposition of the free module Λ into indecomposable projectives. Let T =

⊕n
i=1 S

−di
2 Pi

be a lift of the canonical cluster-tilting object π(Λ) (cf. Example 2.4(3)). Our aim is to
determine when T is a tilting complex with gl.dim(EndD(T )) ≤ 2.

First recall a result from [IO09a].

Proposition 5.10 ([IO09a, Theorem 4.5 and Proposition 4.7]). Let Λ be an algebra of
global dimension ≤ 2. Let Λ = P0 ⊕ PR be a decomposition such that

(1) HomD(PR, P0) = 0, and
(2) Ext1Λ(SPR, P0) = 0 (recall that S is the Serre functor, so SPR is the injective module

corresponding to the projective module PR).

Then the complex T = S
−1
2 P0 ⊕ PR is a tilting complex with gl.dimEndD(T ) ≤ 2.

In this case the complex T is called a 2-APR-tilt of Λ.
We denote by U the cluster-tilting subcategory add{Sp

2Λ | p ∈ Z} of Db(Λ).

Definition 5.11. An object Σ in U is called a slice if the following holds:

(1) Σ intersects the S2-orbit of all Pi in exactly one point.
(2) HomD(Σ, S

p
2Σ) = 0 for all p > 0.

(3) HomD(Σ, S
p
2Σ[−1]) = 0 for all p ≥ 0.
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Note that, if Σ is a slice, then S2Σ and S
−1
2 Σ are also slices.

We define a partial order on slices. Let Σ =
⊕n

i=1 S
−si
2 Pi and Σ′ =

⊕n
i=1 S

−ti
2 Pi be two

slices. Then we write Σ ≤ Σ′ if for all i = 1, . . . , n we have si ≤ ti.
For two complexes Σ =

⊕n
i=1 S

−si
2 Pi and Σ′ =

⊕n
i=1 S

−ti
2 Pi, we will denote by max(Σ,Σ′)

the complex
⊕n

i=1 S
−ui
2 Pi where ui = max(si, ti), and by min(Σ,Σ′) the complex

⊕n
i=1 S

−vi
2 Pi

where vi = min(si, ti).

Lemma 5.12. If Σ and Σ′ are slices, then max(Σ,Σ′) and min(Σ,Σ′) are slices.

Proof. By definition max(Σ,Σ′) intersects every S2-orbit in exactly one point. Let S and
S ′ be indecomposable summands of max(Σ,Σ′). We can assume that S is a summand
of Σ and S ′ a summand of Σ′. Then there exists d ≥ 0 such that Sd

2S is a summand of

Σ′. For p ≥ 0, the space HomD(S, S
p
2S

′) ≃ Hom(Sd
2S, S

p+d
2 S ′) vanishes since Sd

2S and S ′

are summand of Σ′ and p+ d ≥ 0. For the same reasons, the space HomD(S, S
p
2S

′[−1]) ≃

Hom(Sd
2S, S

p+d
2 S ′[−1]) vanishes. Hence max(Σ,Σ′) is a slice.

The proof is similar for min(Σ,Σ′). �

Lemma 5.13. The object Λ is a slice.

Proof. Since the global dimension of Λ is≤ 2, it is not hard to see (cf. [Ami09, Lemma 4.6]),
that the cohomology of Sp

2Λ is in degree ≥ 2 for p ≥ 1. Therefore we immediately get (2)
and (3). �

Lemma 5.14. Let Σ and Σ′ be two slices such that S2Σ
′ ≤ Σ ≤ Σ′. Assume that Σ

is a tilting complex with endomorphism algebra of global dimension ≤ 2. Then Σ′ is a
2-APR-tilt of Σ.

Proof. The slices Σ′ and S2Σ
′ have no common summands, and since S2Σ

′ ≤ Σ ≤ Σ′, the
slice Σ is a direct summand of S2Σ

′ ⊕ Σ′.
Let P0 be the intersection Σ ∩ S2Σ

′ and PR be the intersection Σ ∩ Σ′. Then we have
S
−1
2 P0 ⊕ PR = Σ′.
We shall prove that the decomposition Σ = P0 ⊕PR satisfies the properties (1) and (2)

of Theorem 5.10. The space HomD(PR, P0) vanishes since PR is in Σ′ and P0 is in S2Σ
′.

The space Ext−1
Λ (PR, S

−1
2 P0) vanishes since PR and S

−1
2 P0 are both in Σ′. Therefore Σ′ is

a 2-APR-tilt of Σ. �

Proposition 5.15. All slices are iterated 2-APR-tilts of Λ.

Proof. Let Σ be a slice. Let N be minimal with SN
2 Λ ≤ Σ, andM maximal with Σ ≤ SM

2 Λ.
We prove the claim by induction on N − M . For N = M we have Σ = SN

2 Λ, thus Σ
is an iterated 2-APR-tilt of Λ. So assume N > M . Let Σ′ = max(SN−1

2 Λ,Σ). Then
S2Σ

′ ≤ Σ ≤ Σ′, and by Lemma 5.14 Σ is a 2-APR-tilt of Σ′. Since SN−1
2 Λ ≤ Σ′ ≤ S

M
2 Λ we

know inductively that Σ′ is an iterated 2-APR-tilt of Λ, so Σ is also an iterated 2-APR-tilt
of Λ. �

Theorem 5.16. For T =
⊕n

i=1 S
−di
2 Pi, the following are equivalent:

(1) T is a tilting complex with gl.dimEnd(T ) ≤ 2;
(2) T is a slice;
(3) T is an iterated 2-APR-tilt of Λ;
(4) (a) Ext1Λ(Sj , Si) 6= 0 or Ext2Λ(Si, Sj) 6= 0 implies that dj − di ∈ {0, 1} and

(b) for any r we have HomD(Pi, S
−r
2 Pj[−1]) 6= 0 implies that dj − di < r.
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Proof. We have (2) ⇒ (3) ⇒ (1) by Proposition 5.15 and by Theorem 5.10.
Assume now that T is a tilting complex whose endomorphism algebra Γ = EndDb(Λ)(T )

is of global dimension ≤ 2. Then by Lemma 5.13, Γ is a slice in Db(Γ). Since T is a tilting
complex, there is a triangle equivalence

RHomDb(Λ)(T,−) : Db(Λ)
∼ // Db(Γ) .

By uniqueness of the Serre functor, the functors ΛS2 and ΓS2 are isomorphic. Since T is
of the form

⊕n
i=1 S

−di
2 Pi, we have the following commutative square

Db(Λ)
∼ // D(Γ)

UΛ
∼ //

?�

OO

UΓ

?�

OO

where UΛ is the additive subcategory add{Sp
2Λ | p ∈ Z} of Db(Λ). Therefore Σ is a slice

in Db(Λ) if and only if RHomDb(Λ)(T,Σ) is a slice in Db(Γ). Hence T is a slice in Db(Λ)
and we have (1) ⇒ (2).

For the last equivalence, first note that Condition (4b) is clearly equivalent to Condi-
tion (3) of the definition of a slice.

Let Λ̃ be the endomorphism algebra EndC(πΛ) =
⊕

p∈Z HomDb(Λ)(Λ, S
−p
2 Λ). This alge-

bra is a graded algebra with positive grading generated in degrees 0 and 1. The arrows
of its quiver QΛ̃ have degree 0 or 1. Moreover we have

♯{i → j ∈ QΛ̃} = dimExt1Λ(Sj , Si) + dimExt2Λ(Si, Sj),

where Si (resp. Sj) is the simple module top of Pi (resp. Pj).

Let T be a tilting complex of the form
⊕n

i=1 S
−di
2 Pi =

⊕n
i=1 Ti and such that its endo-

morphism algebra Γ = EndDb(Λ)(T ) is of global dimension ≤ 2. The algebra

Γ̃ = EndC(π(T )) =
⊕

p∈Z

HomDb(Λ)(T, S
−p
2 T )

is isomorphic to Λ̃. By the above remark, every arrow of the graded quiver QΓ̃ has

degree 0 or 1. Assume that Ext1Λ(Sj, Si) does not vanish. This means that there exists an

irreducible map Pi → Pj , therefore there exists an irreducible map Ti → S
−di+dj
2 Tj . But

since every arrow of the graded quiver QΓ̃ has degree 0 or 1, we have di − dj ∈ {0, 1}.
Assume now that Ext2Λ(Si, Sj) does not vanish. This means that there exists an irreducible

map Pi → S
−1
2 Pj , therefore there exists an irreducible map Ti → S

−di+dj−1
2 Tj . Since every

arrow of the graded quiver QΓ̃ has degree 0 or 1, we have di − dj − 1 ∈ {0, 1}. Hence we
have dj − di ∈ {0, 1}. Therefore we have (1) ⇒ (4).

Now assume that we have Condition (4) for the object T =
⊕n

i=1 S
−di
2 Pi. We will prove

that it is a slice. We obviously have Condition (1) and we have Condition (3) since we
have (4b). The algebra

Γ̃ = EndC(π(T )) =
⊕

p∈Z

HomDb(Λ)(T, S
−p
2 T )

is isomorphic to Λ̃. Condition (4a) exactly means, as we just saw above, that the graded
quiver QΓ̃ only has arrows of degree 0 and 1. A non-zero morphism in HomDb(Λ)(T, S

p
2T )
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implies that there exists a path of degree −p in the graded quiver QΓ̃. Hence p must be
non-positive, and we have Condition (2) of the definition of a slice. Therefore we have
(4) ⇒ (2). �

6. Left (and right) mutation in the derived category and graded quivers
with potential

The aim of this section is to provide a combinatorial description of the mutation in the
derived category. We first give a link between right and left mutation. Then we recall
some results about quivers with potential (QP for short) and generalized cluster categories
attached to them. Finally, we define the notion of mutation of a graded QP and state the
main result which permits to compute explicitly the grading of the endomorphism ring of
a cluster-tilting object in the cluster category.

6.1. Relation between left mutation and right mutation. Let T be a triangulated
category with Serre functor S and V ⊂ T be a cluster-tilting subcategory. Let X ∈ V be
indecomposable, and set

V ′ := add (ind (V) \ {Sp
2X | p ∈ Z}),

where ind (V) denotes the indecomposable objects in V. Then by Theorem 2.6 there exists
a unique cluster-tilting subcategory V∗ with V ′ ⊆ V∗ 6= V.

Proposition 6.1. In the setup of Theorem 2.6 (left and right exchange triangles), if for
any p 6= 0 any map X → S

p
2X factors through V ′, then we have

XR ≃ S2X
L.

Proof. Let XL[−1]
f // X

u // B // XL be the left exchange triangle. Let g : XL[−1] →

U be a non-zero morphism with U an indecomposable object in V. Then U is not in V ′

since Hom(XL[−1],V ′) = 0 (Theorem 2.6). Hence there exists a p such that U = S
p
2X .

Since f is a left V-approximation g factors through f . Since for p 6= 0 all maps X → S
p
2X

factor through V ′, hence through u, we have p = 0. Therefore we have

HomT (X
L[−1],V) = HomT (X

L[−1], X).

But now we have isomorphisms in modV

DHomT (V, S2X
L[1]) ≃ HomT (X

L[−1],V) = HomT (X
L[−1], X) ≃ DHomT (X, S2X

L[1]).

Hence the only indecomposable object in V admitting non-zero maps to S2X
L[1] is X .

Now let

S2X
L // B′ // X ′ // S2X

L[1]

be the triangle obtained from a left V ′-approximation of S2X
L. By Theorem 2.6 we have

X ′ = S
q
2X for some q ∈ Z. By the above observation we have q = 0, so X ′ = X .

Now, since the above map B′ // X ′ = X is a right V ′-approximation, this triangle is
precisely the triangle defining XR. So we see XR = S2X

L. �
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6.2. Jacobian algebras and cluster-tilting objects. Quivers with potentials and the
associated Jacobian algebras have been studied in [DWZ08]. Let Q be a finite quiver. For
each arrow a in Q, the cyclic derivative ∂a with respect to a is the unique linear map

∂a : kQ → kQ

which sends a path p to the sum
∑

p=uav vu taken over all decompositions of the path p

(where u and v are possibly idempotent elements ei associated to a vertex i). A potential
on Q is any (possibly infinite) linear combination W of cycles in Q. The associated
Jacobian algebra is

Jac(Q,W ) := kQ̂/〈∂aW ; a ∈ Q1〉,

where kQ̂ is the completed path algebra, that is the completion of kQ with respect to the
ideal generated by the arrows, and 〈∂aW ; a ∈ Q1〉 is the closure of the ideal generated by
∂aW for a ∈ Q1.

Associated with any quiver with potential (Q,W ), a cluster category C(Q,W ) is con-
structed in [Ami09]. It uses the notion of Ginzburg dg algebra. We refer the reader to
[Ami09] for an explicit construction. When the associated Jacobian algebra is finite dimen-
sional, the category C(Q,W ) is 2-Calabi-Yau and endowed with a canonical cluster-tilting
object T(Q,W ) (that is an object such that add (T(Q,W )) is a cluster-tilting subcategory)
whose endomorphism algebra is isomorphic to Jac(Q,W ). The next result gives a link
between cluster categories associated with algebras of global dimension ≤ 2 and cluster
categories associated with QP.

Theorem 6.2 ([Kel09, Theorem 6.11 a)]). Let Λ = kQ/I be a τ2-finite algebra of global
dimension ≤ 2, such that I is generated by a finite minimal set of relations {ri}. (By
this we mean that the set {ri} is the disjoint union of sets representing a basis of the
Ext2Λ-space between any two simple Λ-modules.) The relation ri starts at the vertex s(ri)
and ends at the vertex t(ri). Then there is a triangle equivalence:

CΛ ≃ C(Q̃,W ),

where the quiver Q̃ is the quiver Q with additional arrows ai : t(ri) → s(ri), and the po-
tential W is

∑
i airi. This equivalence sends the cluster-tilting object π(Λ) on the cluster-

tilting object T(Q̃,W ).

As a consequence we have an isomorphism of algebras:

EndC(πΛ) ≃ Jac(Q̃,W ).

Here is an immediate observation which introduces the natural grading of EndC(πΛ) to
Theorem 6.2. It gives a motivation for introducing the left graded-mutation of a quiver.

Proposition 6.3. Let Λ = kQ/I be a τ2-finite algebra of global dimension ≤ 2. Denote

by (Q̃,W ) the quiver with potential defined in Theorem 6.2. Then there exists a unique

Z-grading on Q̃ such that

(1) the potential W is homogeneous of degree 1;

(2) there is an isomorphism of quivers Q̃{0} ∼ // Q , where Q̃{0} is the subquiver of

Q̃ of arrows of degree 0.
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This grading on Q̃ yields a grading on Jac(Q̃,W ) and we have an isomorphism of Z-graded
algebras

Jac(Q̃,W )
∼

Z

//
⊕

p∈Z HomDZ(Λ, S−p
2 Λ) .

Proof. This is achieved by giving the arrows in Q1 degree zero, and the arrows in Q̃1 \Q1

(that is the arrows corresponding to minimal relations) degree one. �

6.3. Left (and right) mutation of a graded quiver with potential. Extending
Fomin and Zelevinsky mutations of quivers [FZ02], Derksen, Weyman, and Zelevinsky
have introduced the notion of mutation of quivers with potential in [DWZ08]. We adapt
this notion to G-graded quivers with potential homogeneous of degree r ∈ G. In the
following subsections of this section we will use this definition for G = Z and r = 1, and
in Section 8 for G = Z2 and r = (1, 1).

Definition 6.4. Let (Q,W, d) be a G-graded quiver with potential homogeneous of degree
r (G-graded QP for short). Let i ∈ Q0 be a vertex, such that there are neither loops nor
2-cycles incident to i. We define µ̃L

i (Q,W, d) = (Q′,W ′, d′). The quiver Q′ is defined as
in [DWZ08] as follows

• for any subquiver u
a // i

b // v with i, u and v pairwise different vertices, we
add an arrow [ba] : u → v;

• we replace all arrows a incident with i by an arrow a∗ in the opposite direction.

The potential W ′ is also defined as in [DWZ08] by the sum [W ] + W ∗ where [W ] is
formed from the potential W replacing all compositions ba through the vertex i by the
new arrows [ba], and where W ∗ is the sum

∑
b∗a∗[ba].

The new degree d′ is defined as follows:

• d′(a) = d(a) if a is an arrow of Q and Q′;
• d′([ba]) = d(b) + d(a) if ba is a composition passing through i;
• d′(a∗) = −d(a) + r if the target of a is i;
• d′(b∗) = −d(b) if the source of b is i.

Similarly, we can define µ̃R
i (Q,W, d) = (Q′,W ′, d′) by setting d′(a∗) = −d(a) for arrows

a such that t(a) = i, and d′(b∗) = −d(b) + r for arrows b with s(b) = i.
As in [DWZ08], it is possible to define trivial and reduced graded quivers with potential.

A G-graded QP (Q,W, d) is trivial if the potential W is in the space kQ2 spanned by
paths of length 2, and if the Jacobian algebra Jac(Q,W, d) is isomorphic to the semisimple
algebra kQ0. A G-graded QP (Q,W, d) is reduced if W ∩ kQ2 is zero.

Definition 6.5. Two G-graded QP (Q,W, d) and (Q′,W ′, d′) are graded right equivalent

if there exists an isomorphism of G-graded algebras ϕ : (kQ, d)
∼

G
// (kQ′, d′) such that

ϕ|kQ0 = id and such that ϕ(W ) is cyclically equivalent to W ′ in the sense of [DWZ08].

The Splitting Theorem of [DWZ08] still holds in the graded case. Indeed the right
equivalence constructed in the proof of [DWZ08, Lemma 4.8], is graded.

Theorem 6.6 (Graded Splitting Theorem – compare [DWZ08, Theorem 4.6]). Let (Q,W, d)
be a G-graded QP. Then there exists a (unique up to graded right equivalence) reduced
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graded QP (Qred,W red, dred) and a (unique up to graded right equivalence) trivial QP
(Qtriv,W triv, dtriv) such that (Q,W, d) is graded right equivalent to the direct sum

(Qred,W red, dred)⊕ (Qtriv,W triv, dtriv).

(The direct sum means that the vertices of both summands and the sum coincide, and the
arrows of the sum are the disjoint union if the arrows of the summands.)

Therefore, we can deduce the following.

Proposition 6.7. Let (Q,W, d) be a G-graded quiver with potential homogeneous of de-
gree r and let i be vertex of Q without incident loops or 2-cycles. Then the reduction
(Q′red,W ′red, d′) in the sense of [DWZ08] of µ̃L

i (Q,W, d) = (Q′,W ′, d′) has potential ho-
mogeneous of degree r with respect to the grading d′.

Proof. It is an easy computation to check that the potential W ′ is homogeneous of degree
r with respect to d′. Then the graded splitting theorem implies that the reduction process
does not change the homogeneity of the potential. �

Definition 6.8. The Graded Splitting Theorem and the above proposition allow us to
defined the left mutation at vertex i µL

i (Q,W, d) of a G-graded quiver with potential
(Q,W, d) as the reduction of the graded quiver with potential µ̃L

i (Q,W, d). Similarly we
define the right mutation at vertex i µR

i (Q,W, d) of a graded QP (Q,W, d) as the reduction
of the graded quiver with potential µ̃R

i (Q,W, d).

One immediately checks the following.

Lemma 6.9. Let (Q,W, d) be a G-graded QP with potential homogeneous of degree r,
and let i be a vertex without incident loops or 2-cycles. Then the G-graded QP (Q,W, d),
µL
i µ

R
i (Q,W, d) and µR

i µ
L
i (Q,W, d) are graded right equivalent.

The following lemma gives a direct link between left mutation and right mutation of a
graded quiver.

Lemma 6.10. Let (Q,W, d) be a G-graded quiver with potential homogeneous of degree
r and let i be a vertex of Q without incident loops or 2-cycles. Then there is a graded
equivalence

modJac(µL
i (Q,W, d)) → modJac(µR

i (Q,W, d)).

Proof. The algebras Jac(µL
i (Q,W, d)) and Jac(µR

i (Q,W, d)) are isomorphic. Let us de-
compose the Jacobian algebra Jac(µL

i (Q,W, d)) as a direct sum of graded projective
Jac(µL

i (Q,W, d))-modules.

Jac(µL
i (Q,W, d)) =

⊕

j∈Q0

Pj.

One can check that the graded endomorphism algebra of

(
⊕

j∈Q0,j 6=i

Pj)⊕ Pi〈−r〉

is then isomorphic as graded algebra to Jac(µR
i (Q,W, d)). �
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6.4. Mutation and generalized cluster categories associated with QP. Let (Q,W )
be a quiver with potential, such that the Jacobian algebra Jac(Q,W ) is finite dimensional,
and T(Q,W ) ∈ C(Q,W ) be the canonical cluster-tilting object of the generalized cluster
category C(Q,W ). There is a canonical bijection between the vertices of Q and the in-
decomposable objects of T(Q,W ). Let i be in Q0, Ti be the corresponding summand of
T(Q,W ) ≃ Ti ⊕ T ′, and

Ti
// B // TL

i
// Ti[1] and TR

i
// B′ // Ti

// TR
i [1]

be the approximation triangles as defined in Theorem 2.6. Then, we have TR
i ≃ TL

i since
the category C(Q,W ) is 2-Calabi-Yau. We denote by µi(T(Q,W )) the new cluster-tilting
object T ′⊕TL

i . The following fundamental result links the [DWZ08]-mutation of QP and
the [IY08]-mutation of the cluster-tilting object T(Q,W ).

Theorem 6.11 (Keller-Yang [KY11]). Let (Q,W ) be a quiver with potential whose Jaco-
bian algebra is finite dimensional, and i ∈ Q0 a vertex such that there is no 2-cycles nor
loops at vertex i in Q. Then there exists a triangle equivalence

Cµi(Q,W ) ≃ C(Q,W )

sending the cluster-tilting object Tµi(Q,W ) ∈ Cµi(Q,W ) on the cluster-tilting object µi(T(Q,W )) ∈
C(Q,W ), where Ti is the indecomposable summand of T(Q,W ) associated with the vertex i of
Q, and where µi(Q,W ) is the mutation of the quiver with potential (Q,W ) at vertex i.

This triangle equivalence is compatible with vertices in the following sense: the bi-
jection between the vertices of Q and the indecomposable direct summands of T(Q,W )

together with this equivalence induce a bijection between the vertices of µ̃i(Q,W ) and
the indecomposable summands of Tµi(Q,W ), which is the canonical one.

The compatibility between [DWZ08]-mutation of quivers with potential and [IY08]-
mutation of cluster tilting objects, given by Theorem 6.11, can be understood more pre-
cisely in the following way:

Let T(Q,W ) ≃ Ti ⊕ T ′ as above. If the map Ti → B is a minimal left (addT ′)-
approximation, then B is isomorphic to

⊕
j,a : i→j Tj . So for any arrow a : i → j in

Q, there is a non-zero map T j → TL
i . This map corresponds to the new arrow a∗ : j → i

in µ̃i(Q,W ). In the same way, for any arrow b : j → i in Q, there is a non-zero map
TR
i ≃ TL

i → Tj which corresponds to the new arrow b∗ in µ̃i(Q,W ). Furthermore, arrows
[ba] : j → ℓ in µi(Q), where a : j → i and b : i → ℓ are in Q, correspond to the composition
of the maps associated to b and a.

6.5. Relation between mutation of graded QP and mutation in the derived
category. Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let T ≃ T1⊕. . .⊕Tn be an
object in Db(Λ) such that π(T ) is a (basic) cluster-tilting object in CΛ. By Proposition 3.1,
the category UT = add{Sp

2T | p ∈ Z} = π−1(π(T )) is a cluster-tilting subcategory of
Db(Λ).

Let i ∈ {1, . . . , n}, and T ′ = ⊕j 6=iTj. We denote by Ui the additive subcategory
add{Sp

2T
′ | p ∈ Z} of Db(Λ). Consider the left exchange triangle associated to Ti (defined

in Theorem 2.6) in Db(Λ)

Ti
u // B

v // TL
i

w // Ti[1]
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where u : Ti → B is a minimal left Ui-approximation of Ti. We denote by µL
i (T ) the

object T ′ ⊕ TL
i ∈ Db(Λ). Then, by Theorem 2.6, the category add{Sp

2(µ
L
i (T )) | p ∈ Z}

is a cluster-tilting subcategory of Db(Λ), and by Proposition 3.2 the object π(µL
i (T )) is

cluster-tilting in CΛ.
The endomorphism algebras of π(T ) and π(µL

i (T )) are naturally Z-graded since we
have

EndC(π(T )) ≃
⊕

p∈Z

HomD(T, S
p
2T ) and EndC(π(µ

L
i (T ))) ≃

⊕

p∈Z

HomD(µ
L
i (T ), S

−p
2 (µL

i (T ))).

The following theorem links the gradings of EndC(π(Λ)) and EndC(π(T )), when T is
obtained from Λ by iterated mutations and is mainly a consequence of Theorem 6.11.

Theorem 6.12. Let Λ = kQ/I be a τ2-finite algebra of global dimension ≤ 2, and denote

by (Q̃,W, d) the graded QP defined in Proposition 6.3. Assume that there exists a sequence

i1, i2, . . . , il of vertices of Q̃ such that for any j = 0, . . . , l there is no 2-cycle on the vertex

ij+1 in the quiver Qj where (Qj ,W j) := µij ◦ · · · ◦ µi1(Q̃,W ). Denote by T the object in

Db(Λ) defined by T := µL
il
◦ · · · ◦ µL

i1
(Λ).

Then there is an isomorphism of Z-graded algebras

⊕
p∈Z HomD(T, S

−p
2 (T ))

∼

Z

// Jac(µL
il
◦ · · · ◦ µL

i1
(Q̃,W, d)).

Proof. For j = 1, . . . , l denote by T j the object µL
ij
◦ · · · ◦ µL

i1
(Λ), and by (Qj ,W j, dj) the

graded QP µL
ij
◦ · · · ◦ µL

i1(Q̃,W, d). We put T 0 := Λ and (Q0,W 0, d0) := (Q̃,W, d). The

object π(T j) is a cluster-tilting object of the cluster category CΛ. By Theorem 6.2, there is
a triangle equivalence CΛ ≃ C(Q0,W 0) sending the cluster-tilting π(Λ) on the cluster-tilting
object T(Q0,W 0) ∈ C(Q0,W 0).

Now note that the quiver Q0 does not have loops. Indeed, since Λ is of finite global
dimension, its Gabriel quiver does not contain any loop [Len69, Igu90]. Moreover since Λ̃
is finite dimensional, it is easy to see that there is no loop of degree 1 in the quiver Q0.
Furthermore, if a QP does not contain any loops, after one mutation at a vertex not on
a 2-cycle, it still does not contain any loops. Therefore by an immediate induction, one
checks that (Qj,W j, dj) does not have loops for any j = 0, . . . , l.

Hence we can apply iteratively Theorem 6.11 and we obtain an equivalence of triangu-
lated categories

C(Q0,W 0) ≃ C(Qj ,W j)

sending µij ◦ · · ·◦µi1(T(Q0,W 0)) onto T(Qj ,W j). Hence we obtain an isomorphism of algebras

⊕
p∈Z HomD(T

j, S−p
2 (T j))

∼ // Jac(Qj,W j).

The only thing to check is that this isomorphism preserves the grading. We proceed by
induction on the number of mutations j. For j = 0, we have

⊕

p∈Z

HomD(T
0, S−p

2 (T 0)) ≃
Z

⊕

p∈Z

HomD(Λ, S
−p
2 (Λ)) ≃

Z

Jac(Q0,W 0, d0)

by Proposition 6.3. So assume the result for j ≥ 0, we have by induction hypothesis
⊕

p∈ZHomD(T
j, S−p

2 (T j))
∼

Z

// Jac(Qj ,W j, dj).
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Let (T j)′ be the direct sum of the summands of T j not corresponding to the vertex
ij+1. Then the left exchange triangle is of the form

T j
ij+1

→
⊕

a : ij+1→s

S
−d(a)
2 T j

s → (T j
ij+1

)L → T j
ij+1

[1],

where the sum in the second term runs over all arrows of Qj starting in ij+1. An arrow

a∗ : s → ij+1 of the mutated quiver corresponds to the component map S
−d(a)
2 T j

s →

(T j
ij+1

)L, and therefore has degree −d(a).
Similarly we see that, for an arrow b : s → ij+1, the new arrow b∗ corresponds to the

map (T j
ij+1

)R → S
d(b)
2 T j

s , and thus, by Proposition 6.1, to a map S2(T
j
ij+1

)L → S
d(b)
2 T j

s .

Therefore the degree of b∗ is 1− d(b).
Finally, any arrow of type [ab] in the quiver of Jac(µL

ij+1
(Qj,W j, dj)) corresponds to a

non-zero composition S
d(b)
2 T j

r
// T j

ij+1
// S

−d(a)
2 T j

s , therefore its degree in EndC(π(µ
L
ij+1

(T j))

is d(a) + d(b).
Thus using T j+1 = µL

ij+1
(T j) we obtain an isomorphism of graded algebras

⊕

p∈Z

HomD(T
j+1, S−p

2 T j+1) ≃
Z

Jac(µL
ij+1

(Qj,W j, dj)) = Jac(Qj+1,W j+1, dj+1). �

Remark 6.13. There exists a similar ‘right version’ of this theorem.

Graded quivers with potential and Theorem 6.12 permit to see the existence of a T as
in Theorem 5.8 without explicitly constructing it, and thus to show that certain algebras
are derived equivalent. More precisely we have the following consequence.

Corollary 6.14. Let Λ1 and Λ2 be two algebras of global dimension 2 , which are τ2-

finite. Assume that one can pass from the graded QP associated with Λ̃1 to the graded QP
associated with Λ̃2 using a finite sequence of left and right mutations at vertices not on
2-cycles. Then the algebras Λ1 and Λ2 are derived equivalent.

Example 6.15. Let Λ1 and Λ2 be the following algebras:

Λ1 = 1

2

3

4

5

6

Λ2 = 1

2

3

4

5

6

One can easily compute the quiver with potential associated with the algebras Λ̃1 and Λ̃2.
Their graded quivers are

(Q̃1, d1) = 1

2

3

4

5

6

(Q̃2, d2) = 1

2

3

4

5

6

0
0 0

0

00

1 1
1

0

0
0

0

00

1

1
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Now applying the left graded mutations µL
6 ◦ µL

3 to the graded quiver with potential

(Q̃1,W1, d1) one can check that we obtain

µL
6 ◦ µL

3 (Q̃1, d1) = 1

2

3

4

5

6

0

0
0

-1

10

1

2

By Theorem 6.12, we have an isomorphism of Z-graded algebras

Jac(µL
6 ◦ µL

3 (Q̃1,W1, d1)) ≃
Z

EndC1(π1(µ
L
P6

◦ µL
P3
(Λ1))).

It is immediate to see that the Z-graded algebras Jac(µL
6 ◦µ

L
3 (Q̃1,W1, d1)) and Jac(Q̃2,W2, d2)

are graded equivalent. Therefore, by Corollary 6.14, the algebras Λ1 and Λ2 are derived
equivalent.

Now if we apply the left graded mutations µL
6 ◦ µL

2 ◦ µL
4 to the graded quiver with

potential (Q̃1,W1, d1) one can check that we obtain the acyclic graded quiver

(Q′, d′) := µL
6 ◦ µL

2 ◦ µL
4 (Q̃1, d1) = 1

2

3

4

5

6

0
1 0

1

10

It is easy to see that (Q′, d′) is not graded equivalent to (Q′, 0). Therefore Theorem 5.8
does not yield a derived equivalence between Λ1 and kQ′. In fact, since there is an oriented
cycle in the quiver of Λ2, we know that Λ2, and hence also Λ1, is not piecewise hereditary.

7. Triangulated orbit categories

This section is devoted to recalling some results of Keller [Kel91, Kel05, Kel06] (see
also the appendix of [IO09b]), and to applying them to our setup.

7.1. Pretriangulated DG categories.

Definition 7.1. A DG category is a Z-graded category (i.e. morphism spaces are Z-
graded, and composition of morphisms respects this grading) with a differential d of
degree 1 satisfying the Leibniz rule.
For a DG category X we denote by H0X the category with the same objects as X and
with

HomH0X (X, Y ) := H0(Hom•
X (X, Y )).

Example 7.2. Let A be an additive category. Then the class C(A)dg of complexes over A
becomes a DG category if we set:

Homn
A(X, Y ) :=

∐

i∈Z

HomA(X
i, Y i+n), and

d((fi)i∈Z) = (fidY − (−1)ndXfi+1), for (fi)i∈Z ∈ Homn
A(X, Y ).
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Then it is not hard to check that Z0(C(A)dg) ≃ C(A) (where Z0 is the kernel of the dif-
ferential d0), the category of complexes, and H0(C(A)dg) ≃ H(A) the homotopy category
of complexes over A.

The opposite category of a DG category and the tensor product of two DG categories
are DG categories again (see [Kel91] – one has to be careful with the signs).

Definition 7.3. Let X be a DG category. A DG X -module is a DG functor X op →
C(Modk)dg. The DG X -modules form a DG category again, that we also denote by
C(X )dg by abuse of notation. Whenever we say two DG X -modules are isomorphic, we
mean they are isomorphic in Z0(C(X )dg). We denote by DX the category obtained from
H0(C(X )dg) by inverting quasi-isomorphisms.

A DG X -module is representable, if it is isomorphic to a DG X -module of the form
Hom•

X (−, X) for some object X in X .
We denote by pretrX the pretriangulated hull of X , i.e. the smallest subcategory of

C(X )dg which contains the representable DG X -modules, and which is closed under map-
ping cones (of morphisms in Z0(C(X )dg)) and translations.

Note that by the Yoneda lemma, the natural DG functor Hom•
X (−, ?) : X → pretrX is

fully faithful. We call a DG category X pretriangulated if the Yoneda functor is dense.

Remark 7.4. If F : X → Y is a DG functor between DG categories, it induces an induction
functor F ∗ : C(X )dg → C(Y)dg. It sends representable functors to representable functors,
and hence it induces a DG functor F ∗ : pretrX → pretrY .

Proposition 7.5 (Keller [Kel06]). Let X be a pretriangulated DG category. Then H0(X )
is an algebraic triangulated category. Moreover any algebraic triangulated category comes
up in this construction.

Example 7.6. Let Λ be an algebra of finite global dimension.

• Let X := Cb(projΛ)dg be the DG category of bounded complexes of finitely gen-
erated projective Λ-modules. Then X is pretriangulated and the triangulated
category H0(X ) is equivalent to Db(Λ).

• Similarly, assume that Λ is G-graded, where G is an abelian group. Let Y :=
Cb(projCov(Λ, G))dg be the DG category of bounded complexes of finitely gener-
ated projective Cov(Λ, G)-modules. Then Y is pretriangulated and the triangu-
lated category H0(Y) is equivalent to Db(Cov(Λ, G)) ≃ Db(grΛ).
Note that the G grading on Λ and the homological grading of complexes are

completely independent. In particular we emphasize that we only consider degree-
preserving morphisms with respect to G, while we consider morphisms of arbitrary
homological degree.

Definition 7.7. Let X and Y be DG categories. We denote by rep (X ,Y) the full sub-
category of D(X op ⊗ Y) formed by the objects R, such that for all X ∈ X , the object
R(X ⊗−) is isomorphic to a representable DG Y-module in D(Y).

Example 7.8. Let F : X → Y be a DG functor. Then F induces an object RF in D(X op⊗
Y) given by RF (X ⊗ Y ) := Hom•

Y(Y, FX). Since RF (X ⊗−) is represented by FX , RF

is in rep (X ,Y).
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7.2. Universal property.

Definition 7.9. Let X be a DG category, and S : X → X a DG functor inducing an
equivalence on H0(X ). Then the DG orbit category X /S has the same objects as X , and

Hom•
X/S(X, Y ) := colim

p≫0

⊕

i≥0

Hom•
X (S

pX,Sp+iY ) ≃
⊕

i∈Z

colim
p≫0

Hom•
X (S

pX,Sp+iY ).

Definition 7.10. Let T := H0(X ) be an algebraic triangulated category, and S : X → X
be a DG functor inducing an equivalence on T . Then the triangulated orbit category of
T modulo S is defined to be

(T /S)∆ := H0(pretr (X /S)).

There is a natural DG functor πX : X → X /S which induces a triangle functor

πT := H0(πX ) : T // (T /S)∆ .

Remark 7.11. The notation (T /S)∆ is not strictly justified. Indeed the triangulated
category H0(pretr (X /S)) depends on X and S : X → X and not only on T and H0S.
But in this paper the triangulated categories that we use have canonical enhancement in
DG categories, and the auto-equivalences have canonical lifts.

Example 7.12. We can now give a more precise definition of the generalized cluster cate-
gory given in Section 2.

Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let X := Cb(projΛ)dg be the
DG category of bounded complexes of finitely generated projective Λ-modules, and let
S : X → X be the DG functor S := −⊗Λ pΛop⊗ΛDΛ[−2] where pΛop⊗ΛDΛ is a projective
resolution of DΛ as a Λ-Λ-bimodule. Then we have

H0(X /S) ≃ Db(Λ)/S2 and H0(pretr (X /S)) ≃ (Db(Λ)/S2)∆ =: CΛ.

We are now ready to state a consequence of the universal property of the triangulated
orbit category.

Proposition 7.13 ([Kel05]). Let T := H0(Y) and T ′ := H0(X ) be two algebraic trian-
gulated categories, and S : Y → Y be a DG functor inducing an equivalence on T . Let
F : Y → X be a DG functor, and assume that there is an isomorphism in rep (Y ,X )

F ◦ S ≃ F.

Then F induces a triangulated functor (T /S)∆ → T ′ such that the following diagram
commutes

T
H0F //

πT

��

T ′

(T /S)∆

;;vvvvvvvvv

.

Corollary 7.14. Let Λ be a Z-graded algebra of finite global dimension. Then we have a
triangle equivalence:

(Db(Cov(Λ,Z))/〈1〉)∆ ≃ Db(Λ).
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Proof. Let X := Cb(projΛ)dg and Y := Cb(projCov(Λ,Z))dg be the DG categories defined
in Example 7.6.

The autoequivalence 〈1〉 ofDb(Cov(Λ,Z)) is induced by tensoring with the Y-Y-bimodule

idCov(Λ,Z)〈1〉 (that is, the right Y-action is twisted by 〈1〉).

The forgetful functorDb(Cov(Λ,Z)) → Db(Λ) is induced by the Y-X -bimodule Cov(Λ,Z)
(obtained from the Y-Y-bimodule Cov(Λ,Z) by applying the forgetful functor on the right
side).

It is clear that we have an isomorphism of Cov(Λ,Z)-Λ-bimodules

idCov(Λ,Z)〈1〉 ≃ Cov(Λ,Z)

Therefore, by Proposition 7.13, there exists a triangle functor G

Db(Cov(Λ,Z)) //

))TTT
TTT

TTT
TTT

TTT
Db(Λ)

(Db(Cov(Λ,Z))/〈1〉)∆

G

66mmmmmmm

The functor Db(Cov(Λ,Z))/〈1〉 // Db(Λ) is fully faithful, hence so is G. Moreover

Db(Λ) is generated as triangulated category by the simples, which are in the image of G.
Therefore the functor G is an equivalence of triangulated categories. �

Proposition 7.15. Let T := H0(X ) and T ′ := H0(Y) be two algebraic triangulated
categories, and S : X → X (resp. S ′ : Y → Y) be a DG functor inducing an equivalence
on T (resp. on T ′). Let F : X → Y be a DG functor, and assume that there is an
isomorphism in rep (X ,Y)

F ◦ S ≃ S ′ ◦ F.

Then F induces a triangulated functor (T /S)∆ → (T ′/S ′)∆ such that the following dia-
gram commutes.

T
H0(F )

//

πT

��

T ′

πT ′

��
(T /S)∆ // (T ′/S ′)∆

Proof. Let πY be the DG functor Y → pretr (Y/S ′). Then we have πY ◦ S ′ ≃ πY in
rep (Y , pretr (Y/S ′)) by definition. Therefore we have isomorphism in rep (X , pretr (Y/T )):

(πY ◦ F ) ◦ S ≃ πY ◦ S ′ ◦ F ≃ πY ◦ F.

Hence by Proposition 7.13, we get a commutative diagram:

T = H0(X )
H0(F )

//

H0(πX )
��

T ′ = H0(Y)

H0(πY )
��

H0(pretr (X /S))
f // H0(pretr (Y/S ′))

.

where f is a triangle functor. �

Corollary 7.16. Let Λ1 and Λ2 be derived equivalent algebras of global dimension ≤ 2
which are τ2-finite. Then they are cluster equivalent.
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Proof. Since Λ1 and Λ2 are derived equivalent, there exists T ∈ Db(Λop
1 ⊗ Λ2) such that

Db(Λ1)
−

L

⊗Λ1
T

// Db(Λ2)

is an equivalence. By the previous proposition it is enough to check that there exists an

isomorphism in Db(Λop
1 ⊗ Λ2) between DΛ1

L

⊗Λ1 T and T
L

⊗Λ2 DΛ2.
Using the isomorphisms in Db(Λop

1 ⊗ Λ2)

DΛ1

L

⊗Λ1 T ≃ DHomΛ2(T, T )
L

⊗Λ1 T

≃ HomΛ2(T, T
L

⊗Λ2 DΛ2)
L

⊗Λ1 T,

we get a natural morphism DΛ1

L

⊗Λ1 T → T
L

⊗Λ2 DΛ2 in Db(Λop
1 ⊗ Λ2) induced by the

evaluation morphism. This morphism is clearly an isomorphism in Db(Λ2) by uniqueness
of the Serre functor. Hence it is an isomorphism in Db(Λop

1 ⊗ Λ2). �

7.3. Iterated triangulated orbit categories.

Proposition 7.17. Let T := H0(X ) be an algebraic triangulated category, and S, T : X →
X be DG functors inducing equivalences on T , such that there is a natural isomorphism
S ◦ T ≃ T ◦ S. Then there is an equivalence of DG categories

pretr (pretr (X /S)/T ) ≃ pretr (pretr (X /T )/S).

Therefore, there is a triangle equivalence:

((T /S)∆/T )∆ ≃ ((T /T )∆)/S)∆.

Proof. We divide the proof into two lemmas.

Lemma 7.18. Under the hypothesis of Proposition 7.17 there is an equivalence of DG
categories

(X /S)/T ≃ (X /T )/S.

Proof. The functor colim is a left adjoint, hence it commutes with colimits. Therefore,
since S and T commute, we have

Hom•
(X/S)/T (X, Y ) = colim

q

⊕

j≥0

colim
p

⊕

i≥0

Hom•
X (T

qSpX, T q+jSp+iY )

≃ colim
p

⊕

i≥0

colim
q

⊕

j≥0

Hom•
X (T

qSpX, T q+jSp+iY )

≃ colim
p

⊕

i≥0

colim
q

⊕

j≥0

Hom•
X (S

pT qX,Sp+iT q+jY )

≃ Hom•
(X/T )/S(X, Y ) �

We denote by X /{S, T} the DG category (X /S)/T ≃ (X /T )/S.

Lemma 7.19. Under the hypothesis of Proposition 7.17 there is an equivalence of DG
categories

pretr (X /{S, T})
∼ // pretr (pretr (X /S)/T ) .
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Proof. We have a fully faithful DG functor

X /S � � // pretr (X /S) .

It induces a fully faithful DG functor

X /{S, T} �
� // pretr (X /S)/T � � // pretr (pretr (X /S)/T ) .

Since the category pretr (pretr (X /S)/T ) is a pretriangulated DG category, we get a fully
faithful DG functor

pretr (X /{S, T}) �
� // pretr (pretr (X /S)/T ) .

Now the objects of pretr (pretr (X /S)/T ) are iterated cones of objects in X , hence this DG
functor is also dense. Thus we get an equivalence of DG categories

pretr (X /{S, T})
∼ // pretr (pretr (X /S)/T ) . �

We can now prove Proposition 7.17. Using Lemma 7.19 and its symmetric version
(interchanging S and T ), we immediately get a DG equivalence

pretr (pretr (X /S)/T ) ≃ pretr (pretr (X /T )/S).

By taking the H0 of each side we get the triangle equivalence

((T /S)∆)/T )∆ ≃ ((T /T )∆)/S)∆. �

Corollary 7.20. Let Λ be a Z-graded algebra of global dimension ≤ 2 which is τ2-finite.

Let Cov(Λ,Z) be the Z-covering of Λ, and S2 := −
L

⊗Cov(Λ,Z) DCov(Λ,Z)[−2]. Then there
is a triangle equivalence

(
(Db(Cov(Λ,Z))/S2)∆/〈1〉

)
∆
≃ CΛ.

Proof. We apply Proposition 7.17 for X := Cb(projCov(Λ,Z))dg, S := −⊗Cov(Λ,Z) P , and
T := 〈1〉, where P is a bimodule projective resolution of DCov(Λ,Z)[−2].

Then we clearly have S ◦ T ≃ T ◦ S. Thus we get
(
(Db(Cov(Λ,Z))/S2)∆/〈1〉

)
∆
≃ H0(pretr (pretr (X /S)/T )) ≃ H0(pretr (pretr (X /T )/S)) ≃ CΛ.

�

8. Graded derived equivalence for cluster equivalent algebras

8.1. Graded version of results of Section 6. In this section we generalize the previous
results to the case of a graded algebra Λ.

Let Λ be a Z-graded algebra of global dimension ≤ 2 which is τ2-finite. We denote by

Cov(Λ,Z) its Z-covering. The functor −
L

⊗Cov(Λ,Z) DCov(Λ,Z)[−2] is an autoequivalence
of Db(Cov(Λ,Z)) that we will denote by S2 by abuse of notation. We denote by πZ

Λ the
composition

πZ

Λ : D
b(Cov(Λ,Z)) // Db(Λ)

πΛ // CΛ .

This graded version of Proposition 3.1 is not hard to check:



CLUSTER EQUIVALENCE AND GRADED DERIVED EQUIVALENCE 37

Proposition 8.1. Let Λ be a Z-graded algebra which is τ2-finite and of global dimension ≤
2. Let T be a cluster-tilting object in CΛ. The subcategory (πZ

Λ)
−1(T ) is a cluster-tilting

subcategory of Db(Cov(Λ,Z)).
In particular add{Sp

2Λ〈q〉 | p, q ∈ Z} = (πZ

Λ)
−1(πΛ(Λ)) is a cluster-tilting subcategory of

Db(Cov(Λ,Z)).

Here is the graded version of Proposition 6.3.

Proposition 8.2. Let Q be a Z-graded quiver, and I ⊂ kQ be an admissible ideal which
is generated by homogeneous elements and such that the algebra Λ = kQ/I is of global

dimension ≤ 2 and τ2-finite. Denote by (Q̃,W ) the quiver with potential defined in The-

orem 6.2. Then there exists a unique Z2-grading on Q̃ such that

(1) the potential W is homogeneous of degree (1, 1);

(2) there is an isomorphism of Z-graded quivers Q̃{0}×Z ∼

Z

// Q .

This grading on Q̃ yields a grading on Jac(Q̃,W ) and we have an isomorphism of Z2-
graded algebras

Jac(Q̃,W )
∼

Z2
//
⊕

p,q∈ZHomDZ(Λ〈0〉, S−p
2 Λ〈−p+ q〉) .

Proof. There are two kinds of arrows in the quiver Q̃: arrows of Q and arrows coming
from minimal relations. By (2) any arrow a coming from an arrow of Q has to be of
degree (0, deg(a)). Let r be a minimal relation in I. By definition deg(r) is well defined.
Then by Condition (1) since rar is a term of W , the degree of ar has to be (1, 1−deg(r)).
Hence we have existence and uniqueness of such a grading.

We have the following isomorphisms:

Λ̃ := EndCΛ(π(Λ)) ≃ EndCΛ(π
Z(Λ〈0〉)) ≃

⊕

p,q∈Z

HomDZ(Λ〈0〉, S−p
2 Λ〈−p+ q〉).

Since Jac(Q̃,W ) ≃ Λ̃ by Theorem 6.2, we just have to check that it respects the gradings
previously defined. Let a be an arrow of the quiver Q. It can be seen as an element

of HomDZ(Λ〈0〉,Λ〈deg(a)〉) so as an element of degree (0, deg(a)) of the algebra Λ̃ =⊕
p,q∈ZHomDZ(Λ〈0〉, S−p

2 Λ〈−p + q〉). Now let r be a minimal relation in I, and ar be

the corresponding arrow in Q̃. The minimal relation r corresponds to an element of
Ext2Λ(Si, Sj〈−deg(r)〉) where s(r) = j and t(r) = i. Hence it is an element in

HomDZ(Λ〈0〉, S−1
2 Λ〈−deg(r)〉) = HomDZ(Λ〈0〉, S−1

2 Λ〈−1 + (−deg(r) + 1)〉)

so an element of degree (1,−deg(r) + 1) in Λ̃. Hence the isomorphism Jac(Q̃,W, d) ≃ Λ̃
given by Theorem 6.2 is an isomorphism of Z2-graded algebras. �

Let Λ be a Z-graded algebra of global dimension ≤ 2 which is τ2-finite. Let T be an
object in Db(Cov(Λ,Z)) such that πZ(T ) is a (basic) cluster-tilting object in CΛ. The
endomorphism algebra

EndC(π
Z(T )) =

⊕

p,q∈Z

HomDZ(T, S−p
2 T 〈−p+ q〉)

is naturally Z2-graded.
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Let Ti be an indecomposable summand of T ≃ Ti ⊕ T ′. We denote by Ui the ad-
ditive subcategory add{Sp

2T
′〈q〉 | p, q ∈ Z} of Db(Cov(Λ,Z)). Consider a triangle in

Db(Cov(Λ,Z))

Ti
u // B

v // TL
i

w // Ti[1]

where u : Ti → B is a minimal left Ui-approximation of Ti. We call this triangle the graded
left exchange triangle associated with Ti. We write µL

i (T ) := T ′ ⊕ TL
i . Since the image

of the graded left exchange triangle in Db(Cov(Λ,Z)) is an exchange triangle in CΛ, the
object πZ(T ′ ⊕ TL

i ) is cluster-tilting in CΛ.
It is also possible to consider the graded right exchange triangle associated with Ti:

TR
i

u′
// B′ v′ // Ti

// TR
i [1] .

Theorem 8.3. Let Λ = kQ/I be a Z-graded τ2-finite algebra of global dimension ≤ 2,

and denote by (Q̃,W, d) the Z2-graded QP defined in Proposition 8.2. Assume that there

exists a sequence i1, i2, . . . , il of vertices of Q̃ such that for any j = 0, . . . , l there is no
2-cycle on the vertex ij+1 in the quiver Qj where (Qj ,W j) := µij ◦ · · ·◦µi1(Q̃,W ). Denote

by T the object in DZ := Db(Cov(Λ,Z)) defined by T := µL
il
◦ · · · ◦ µL

i1(Λ〈0〉). Then there
is an isomorphism of Z2-graded algebras

⊕
(p,q)∈Z2 HomDZ(T, S−p

2 T 〈−p+ q〉)
∼

Z2
// Jac(µL

il
◦ · · · ◦ µL

i1(Q̃,W, d)).

Proof. The proof is very similar to the proof of Theorem 6.12. We briefly outline the last
step, which is a bit more technical.

Let b : r → ij+1 be an arrow in Qj and denote by (x, y) the degree of b. We consider
the graded right exchange triangle in Db(Cov(Λ,Z))

(T j
ij+1

)R
u′

// B′ v′ // T j
ij+1

// (T j
ij+1

)R[1] ,

where T j
ij+1

denotes the summand of T j := µL
ij
◦ . . . ◦ µL

i1
(Λ〈0〉) ∈ Db(Cov(Λ,Z)) corre-

sponding to the vertex ij+1. Then Sx
2T

j
r 〈x−y〉 is a direct summand of B′, and the reverse

arrow b∗ corresponds to the component (T j
ij+1

)R → Sx
2T

j
r 〈x−y〉. Since, by Proposition 6.1,

we have (T j
ij+1

)R ≃ S2(T
j
ij+1

)L we obtain that b∗ corresponds to a map

(T j
ij+1

)L // Sx−1
2 T j

r 〈x− 1− (y − 1)〉 ,

thus to a map of degree (1− x, 1− y). �

8.2. Graded derived equivalence. In this section we generalize Theorem 5.6 to the
setup where the algebras are not graded equivalent. In this setup, we will not get a
derived equivalence between the algebras Λ1 and Λ2, but a derived equivalence between
their coverings Cov(Λ1,Z) and Cov(Λ2,Z), for suitable gradings on them.

In order to do that, we will use a graded version of the recognition theorem (Theo-
rem 3.5). The proof of this theorem is very similar to the proof of Theorem 3.5.

Theorem 8.4. Let T be an algebraic triangulated category with a Serre functor and with
a cluster-tilting subcategory V. Let Λ be a τ2-finite algebra with global dimension ≤ 2, and
with a Z-grading. Denote by U the cluster-tilting subcategory add{S−p

2 Λ〈−p+q〉 | p, q ∈ Z}
of Db(Cov(Λ,Z)). Assume that there is an equivalence of additive categories with S2-action
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f : U
∼ // V . Then there exists a triangle equivalence F : Db(Cov(Λ,Z)) → T such that

the following diagram commutes

Db(Cov(Λ,Z))
F // T

U
f //

?�

OO

V
?�

OO

For the statement of the main theorem of this section, we will need this technical
definition.

Definition 8.5. Let Λ1 and Λ2 be two algebras of global dimension ≤ 2 which are τ2-finite.
For j = 1, 2, we denote by πj the canonical functor πj : Dj → Cj where Dj := Db(Λj) and
Cj = CΛj

. We will say that Λ1 and Λ2 satisfy the compatibility condition if there exists a

sequence i1, i2, . . . , il (called compatible sequence) and a Z-graded QP (Q̃1,W 1, d1) with
W 1 homogeneous of degree 1 such that:

(1) we have an isomorphism of Z-graded algebras

Jac(Q̃1,W 1, d1) ≃
Z

⊕

p∈Z

HomD1(Λ1, S
−p
2 Λ1)

(2) for any 0 ≤ j ≤ l, the quiver of EndC1(Tj) has neither loops nor 2-cycles at the
vertex ij+1, where Tj := µij ◦ · · · ◦ µi2 ◦ µi1(π1Λ1);

(3) there exists an isomorphism EndC1(Tl) ≃ EndC2(π2Λ2);
(4) the isomorphisms in (1) and (3) can be chosen in such a way that there exists

a Z-grading d2 on (Q̃2,W 2) := µil ◦ · · · ◦ µi2 ◦ µi1(Q̃
1,W 1) such that we have an

isomorphism of Z-graded algebras

Jac(Q̃2,W 2, d2) ≃
Z

⊕

q∈Z

HomD2(Λ2, S
−q
2 Λ2).

Remark 8.6. (1) The grading d2 will typically not be the grading obtained by mutation
on graded quivers with potential.

(2) In this definition, (1), (2), (3) mean that the quivers with potential of Λ̃1 and Λ̃2

(see Theorem 6.2) are linked by a sequence of mutations, and that neither loops
nor 2-cycles occur at any intermediate step of this sequence of mutations. (The
condition of not having loops or 2-cycles is automatic if the QP is rigid.)

(3) If Λ̃1 ≃ Λ̃2, then conditions (1), (2) and (3) hold. We then have two (possibly)

different Z-gradings on Λ̃1 = Λ̃2. Condition (4) means that these two gradings

yield a Z
2-grading on Λ̃1 = Λ̃2.

(4) When conditions (1), (2) and (3) are satisfied, we do not know of any counterex-
amples to condition (4) being satisfied.

Theorem 8.7. Let Λ1 and Λ2 be two algebras of global dimension ≤ 2 which are τ2-finite
and which satisfy the compatibility condition. Then

(1) there are Z-gradings on Λ1 and on Λ2, such that there exists a derived equivalence

F Z : DZ

1
∼ // DZ

2 ,

where DZ

j := Db(Cov(Λj ,Z)).
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(2) the equivalence F Z induces a triangle equivalence F : C1
∼ // C2 such that the

following diagram commutes:

DZ
1

��
πZ

1

��

∼

F Z

// DZ
2

��
πZ

2

��

D1

π1

��

D2

π2

��
C1

∼

F
// C2

Proof of (1). Take (Q̃1,W 1, d1) and the isomorphism (1) of the compatibility condition

Jac(Q̃1,W 1, d1)
∼

Z

//
⊕

p∈Z HomD1(Λ1, S
−p
2 Λ1) .

Let s := i1, . . . , il be a compatible sequence and define T 1 as the object

T 1 := µL
il
◦ · · · ◦ µL

i2 ◦ µ
L
i1(Λ1) ∈ Db(Λ1).

By Condition (2) of the compatible sequence we can apply Theorem 6.12 and we get an
isomorphism:

Jac(µL
s (Q̃

1,W 1, d1))
∼

Z

//
⊕

p∈ZHomD1(T
1, S−p

2 T 1) ,

where µL
s is the composition µL

il
. . . µL

i1 .

By Condition (4) of the compatibility condition, there exists a Z-grading d2 on (Q̃2,W 2) :=

µil . . . µi1(Q̃
1,W 1) such that W 2 is homogeneous of degree 1 and such that we have an

isomorphism

Jac(Q̃2,W 2, d2)
∼

Z

//
⊕

q∈Z HomD2(Λ2, S
−p
2 Λ2) .

Therefore the Z2-grading (µL
s (d

1), d2) on Q̃2 makes W 2 homogeneous of degree (1, 1).
Moreover we have an isomorphism

Jac(Q̃2,W 2, (µL
s (d

1), d2))Z×{0} ≃ Λ2,

hence we get a Z-grading on Λ2. By the uniqueness of the Z2-grading of Proposition 8.2
we have an isomorphism of Z2-graded algebras:

Jac(Q̃2,W
2, (µL

s (d
1), d2))

∼

Z2
//
⊕

p,q∈ZHomDZ

2
(Λ2〈0〉, S

−q
2 Λ2〈−q + p〉) .

We define T 2 ∈ Db(Cov(Λ2,Z)) as T 2 := µR
i1
· · ·µR

il
(Λ2〈0〉). By Condition (2) of the

compatible sequence we can apply Theorem 8.3 and we get an isomorphism:

Jac(µR
s (Q̃

2,W 2, µL
s (d

1), d2))
∼

Z2
//
⊕

p,q∈ZHomDZ

2
(T 2, S−q

2 T 2〈−q + p〉) ,

where µR
s is the composition µR

i1
. . . µR

il
. By Lemma 6.9 the graded QP µR

s (Q̃
2,W 2, µL

s (d
1)) =

µR
s (µ

L
s (Q̃

1,W 1, d1)) is graded right equivalent to (Q̃1,W 1, d1). Therefore we have an iso-
morphism

(∗) Jac(Q̃1,W 1, (d1, µR
s (d

2)))
∼

Z2
//
⊕

p,q∈ZHomDZ

2
(T 2, S−q

2 T 2〈−q + p〉)
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By definition of d1 there is an isomorphism

Λ1 ≃ Jac((Q̃1,W 1, d1, µR
s (d

2))){0}×Z.

Therefore we get a Z-grading on Q1. The ideal I1 is generated by {∂aW
1, d1(a) = 1},

hence is generated by elements which are homogeneous with respect to the grading µR
s (d

2).
By the uniqueness of the Z2-grading of Proposition 8.2 we have

(†) Jac(Q̃1,W
1, (d1, µR

s (d
2)))

∼

Z2
//
⊕

p,q∈ZHomDZ

1
(Λ1〈0〉, S

−p
2 Λ1〈−p+ q〉) .

Finally, combining (∗) and (†) we get

(‡)
⊕

p,q∈ZHomDZ

2
(T 2, S−q

2 T 2〈−q + p〉)
∼

Z2
//
⊕

p,q∈ZHomDZ

1
(Λ1〈0〉, S

−p
2 Λ1〈−p + q〉) .

The category add{Sp
2T

2〈q〉 | p, q ∈ Z} = (πZ

2 )
−1(µSπ2Λ2) is cluster-tilting inDb(Cov(Λ2,Z))

by Proposition 8.1. The isomorphism (‡) implies that we have an equivalence of Z2-
categories

add{S−p
2 Λ1〈−p + q〉 | p, q ∈ Z}

∼

f
// add{S−q

2 T 2〈−q + p〉 | p, q ∈ Z} .

In order to apply Theorem 8.4, we have to check that f commutes with S2:

f(S2(S
−p
2 Λ1〈−p+ q〉)) = f(S−p+1

2 Λ1〈−p+ 1 + (q − 1)〉)

= S
−q+1
2 T 2〈−q + 1 + (p− 1)〉

= S2(S
−q
2 T 2〈−q + p〉)

= S2f(S
−p
2 Λ1〈−p + q〉)

Therefore, by Theorem 8.4, we get a triangle equivalence F : Db(Cov(Λ1,Z)) → Db(Cov(Λ2,Z))
which extends f .

Proof of (2). Now for i = 1, 2 let Xi := Cb(projCov(Λi,Z))dg be the DG category of
bounded complexes of projective Cov(Λi,Z)-modules. The functor

F : Db(Cov(Λ1,Z)) = H0(X1) // Db(Cov(Λ2,Z)) = H0(X2)

can be seen as H0(Fdg) where Fdg := − ⊗Cov(Λ1,Z) P and P is a projective resolution of⊕
p∈Z S

−p
2 T 2〈−p〉 as Cov(Λ1,Z)-Cov(Λ2,Z)-bimodule.

For i = 1, 2 we set Si := − ⊗Cov(Λi,Z) Xi where Xi is a projective resolution of
DCov(Λi,Z)[−2] as Cov(Λi,Z)-bimodule.

In order to prove that we have an isomorphism

Fdg ◦ S1 ≃ S2 ◦ Fdg in rep (X1,X2),

it is enough to prove that we have an isomorphism

X1 ⊗Cov(Λ1,Z) P ≃ P ⊗Cov(Λ2,Z) X2 in Db((Cov(Λ1,Z))
op ⊗ Cov(Λ2,Z)),

and the proof is similar to the proof of Corollary 7.16.
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Now, by Proposition 7.15, we get a DG functor FS : pretr (X1/S1) → pretr (X2/S2) such
that H0(FS) is an equivalence and such that the following diagram commutes

Db(Cov(Λ1,Z))
= H0(X1)

H0(πX1
)

��

F=H0(Fdg) // D
b(Cov(Λ2,Z))
= H0(X2)

H0(πX2
)

��

(Db(Cov(Λ1,Z))/S2)∆
= H0(pretr (X1/S1)) H0(FS)

// (D
b(Cov(Λ2,Z))/S2)∆

= H0(pretr (X2/S2))

For i = 1, 2 we set Ti := 〈1〉 : Xi → Xi. It is immediate to check that we have

Si ◦ Ti ≃ Ti ◦ Si in rep (Xi,Xi).

Moreover, the functor Ti, as DG equivalence of Xi induces a DG functor Ti on pretr (Xi/Si)
such that πXi

◦ Ti ≃ Ti ◦ πXi
.

We have the following isomorphisms in D((Cov(Λ1,Z))
op ⊗ Cov(Λ2,Z)),

idCov(Λ1,Z)〈−1〉 ⊗Cov(Λ1,Z) P ≃ idCov(Λ1,Z)〈−1〉

L

⊗Cov(Λ1,Z)

⊕

q∈Z

S
−q
2 T 2〈−q〉

≃
⊕

q∈Z

S
−q+1
2 T 2〈−q + 1〉

≃ S2(
⊕

q∈Z

S
−q
2 T 2〈−q〉)〈1〉

≃ P 〈1〉 ⊗Cov(Λ2,Z) X2

and hence an isomorphism

Fdg ◦ T
−1
1 ≃ S2 ◦ T2 ◦ Fdg, in rep (X1,X2).

Therefore we have isomorphisms in rep (X1, pretr (X2/S2))

FS ◦ T−1
1 ◦ πX1 ≃ FS ◦ πX1 ◦ T

−1
1

≃ πX2 ◦ Fdg ◦ T
−1
1

≃ πX2 ◦ S2 ◦ T2 ◦ Fdg

≃ πX2 ◦ T2 ◦ Fdg

≃ T2 ◦ Fs ◦ πX1 ,

and we deduce an isomorphism

FS ◦ T−1
1 ≃ T2 ◦ FS in rep (pretr (X1/S1), pretr (X2, S2)).

Applying again Proposition 7.15 we get a DG functor FS,T : pretr (pretr (X1/S1)/T1) →
pretr (pretr (X2/S2)/T2) such that H0(FS,T ) is a triangle equivalence and such that the
following diagram commutes

pretr (X1/S1)
FS //

πX1/S1

��

pretr (X2/S2)

πX2/S2

��
pretr (pretr (X1/S1)/T1))

FS,T // pretr (pretr (X2/S2)/T2)

.
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Applying H0 and using Corollary 7.20 we obtain a commutative diagram

Db(Cov(Λ1,Z))

H0(πX1
)

��

F=H0(Fdg) // Db(Cov(Λ2,Z))

H0(πX2
)

��

(Db(Cov(Λ1,Z))/S2)∆
H0(FS)

//

H0(πX1/S1
)

��

(Db(Cov(Λ2,Z))/S2)∆

H0(πX2/S2
)

��

CΛ1 ≃
(
(Db(Cov(Λ1,Z))/S2)∆/〈1〉

)
∆

H0(FS,T )
//
(
(Db(Cov(Λ2,Z))/S2)∆/〈1〉

)
∆
≃ CΛ2

�

Example 8.8. Let H = kQ and Λ3 = kQ3/I3 be the algebras given by the following quivers
(we keep the notation of Example 5.7):

Q = 2
α
����
��

1 3γ
oo

β^^====

, and Q3 = 2
b
��=

==
=

1

a @@����
3

d
oo

with relations I3 = 〈ba〉. The graded QP associated with these algebras of global dimen-

sion ≤ 2 are (Q, 0, d) and (Q̃3,W3, d3) given by

Q = 2

0
��
�α

����
�

1 30
γ

oo

0===
β

^^===
and Q̃3 = 2

0
==

=
b

��=
==

1

0���

a
@@���

30
d

oo 1
coo

with W3 = cba. It is immediate to see that there is an isomorphism µ2(Q, 0) ≃ (Q̃3,W3)
which sends α∗ on a, β∗ on b, [αβ] on c and γ on d. If we compute µL

2 (Q, 0, d) we get the
following grading on µ2(Q):

µ2(Q) = 2

1
==

=
β∗

��=
==

1

0���

α∗
@@���

30
γ

oo 0
[αβ]

oo

Then we get a Z2-grading on Q̃3 given by (µL
2 (d), d3):

Q̃3 = 2

(1,0)
==

=
b

��=
==

1

(0,0)
���

a
@@���

3(0,0)
d

oo (0,1)
coo

which makes the potential W3 homogeneous of degree (1, 1) and which induces a grading
on Λ3

Q3 = 2
1
?? b

��??

1

0��

a @@��

3.0
d

oo
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Now µR
2 (Q̃3,W3, d3) yields a Z-grading on Q

Q = 2
1
��a∗

����
1 3.0

d
oo

0??b
∗

__??

Here are the Z-coverings of the Z-graded algebras H and Λ3

2

1 3
γoo

β^^====

2
α

^^====

Cov(H,Z) = 1 3

β
]];;;;;

γ
oo

2
α

]];;;;;

1 3

β^^====
γoo

2

1

a @@����
3

doo

2
b

@@����

and Cov(Λ3,Z) = 1

a
AA�����

3
doo

2
b

AA�����

1

a @@����
3

doo

By Theorem 8.7 we have a derived equivalence Db(Cov(H,Z)) ≃ Db(Cov(Λ3,Z)).

Remark 8.9. (1) The algebras given by the quivers

1

2
α

^^====

1 3

β^^====

γ
oo

and 1 3
doo

2
b

@@����

1

a @@����

and the relation ba = 0 are derived equivalent. One can pass from one to the
other by doing the left mutation in the derived category at vertex 2. Using
this repeatedly one can also directly check that we have a derived equivalence
Db(Cov(H,Z)) ≃ Db(Cov(Λ3,Z)).

(2) In the paper [AO10], we use Theorem 8.7 to deduce the shape of the AR-quiver
of the derived category Db(Λ3), and of any algebra which is cluster equivalent to

the path algebra of a quiver of type Ãn.
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[AHHK07] L. Angeleri-Hügel, D. Happel, and H. Krause (eds.), Handbook of Tilting Theory, London
Mathematical society, vol. 332, Cambridge University press, 2007.

[Ami08] C. Amiot, Sur les petites catégories triangulées, Ph.D. thesis (2008),
http://www-irma.u-strasbg.fr/~amiot/these.pdf.

[Ami09] , Cluster categories for algebras of global dimension 2 and quivers with potential, Ann.
Inst. Fourier 59 (2009), 2525–2590.

[AO10] C. Amiot and S. Oppermann, Algebras of acyclic cluster type: Tree type and type Ã, preprint,
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