
HAL Id: hal-01293781
https://hal.science/hal-01293781

Submitted on 25 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Image of the Derived Category in the Cluster
Category

Claire Amiot, Steffen Oppermann

To cite this version:
Claire Amiot, Steffen Oppermann. The Image of the Derived Category in the Cluster Category.
International Mathematics Research Notices, 2012, 2013 (4), pp.733-760. �10.1093/imrn/rns010�. �hal-
01293781�

https://hal.science/hal-01293781
https://hal.archives-ouvertes.fr


THE IMAGE OF THE DERIVED CATEGORY IN THE

CLUSTER CATEGORY

CLAIRE AMIOT AND STEFFEN OPPERMANN

Abstract. Cluster categories of hereditary algebras have been
introduced as orbit categories of their derived categories. Keller
has pointed out that for non-hereditary algebras orbit categories
need not be triangulated, and he introduced the notion of trian-
gulated hull to overcome this problem. In the more general setup
of algebras of global dimension at most 2, cluster categories are
defined to be these triangulated hulls of the orbit categories.

In this paper we study the image of the natural functor from
the bounded derived category to the cluster category, that is we
investigate how far the orbit category is from being the cluster
category.

We show that the cluster combinatorics can be worked with in
the orbit category, i.e. that it is not necessary to consider the entire
cluster category. On the other hand we show that for wide classes
of non-piecewise hereditary algebras the orbit category is never
equal to the cluster category.
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1. Introduction

In [Ami2] the first author introduced cluster categories CΛ for finite-
dimensional algebras Λ with gl.dimΛ 6 2. They are defined to be
triangulated orbit categories in the sense of Keller (that is they are tri-
angulated hulls of orbit categories – see [Kel]). For hereditary algebras
Λ, Keller showed that the cluster category CΛ and the orbit category
(see Subsection 2.1) coincide. However he pointed out that this need
not be the case in general. The aim of this paper is to investigate what
this difference is.

Our approach on this aim is as follows: By [Ami2], under a tech-
nical assumption which we will make throughout this paper (called
τ2-finiteness – see Definition 2.8), the image of the algebra Λ is cluster
tilting in the cluster category. We denote the endomorphism ring of
this cluster tilting object by Λ̃. It follows that there is a natural functor

CΛ mod Λ̃. We point out that Λ̃ carries a natural Z-grading. Then
we show the following:

Theorem 1.1 (see Theorem 3.2). The orbit category coincides with

the cluster category if and only if any Λ̃-module is gradable.
More precisely, the objects in the orbit category are precisely those

objects in the cluster category, for which the corresponding Λ̃-module
is gradable.

We then use this theorem to carry over results on gradability of
modules to the cluster category setup. In particular we show that
objects outside the orbit category come in 1-parameter families (see
Theorem 4.2). Applying this, we obtain the following result.

Theorem 1.2 (see Corollary 5.5). Any cluster tilting object in CΛ is
the image of some object in DΛ.

This means that to study cluster combinatorics inside the cluster
category, it is enough to work in the derived category or the orbit
category. These latter categories are more accessible to explicit com-
putations than cluster categories.

We then focus on the question of when the orbit category coincides
with the cluster category. The most ambitious hope one could have in
this direction is the following:

Conjecture 1.3. The orbit category coincides with the cluster category
for an algebra Λ if and only if Λ is piecewise hereditary.

Note that this conjecture, combined with Theorem 1.1, is of a similar
flavor to the following question.

Question 1.4 (Skowroński [Sko, Question 1]). Let Λ be a finite di-
mensional algebra, T(Λ) = Λ ⋉ DΛ the trivial extension of Λ by its
k-dual DΛ, which may be considered as a graded algebra by putting Λ
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in degree 0 and DΛ in degree 1. When is the push-down functor from
graded T(Λ)-modules to ungraded T(Λ)-modules dense?

It should be noted that the “if” part of Conjecture 1.3 holds (see
[Kel, Theorem in Section 4]) – similarly it is known that the push-
down functor of Question 1.4 is dense if Λ is piecewise hereditary. Here
we collect evidence for the “only if” part. To this end we show the
following two results:

Theorem 1.5 (see Theorem 6.1). Assume one object in the derived cat-
egory of Λ satisfies a fractional Calabi-Yau type condition with Calabi-
Yau dimension 6= 1. Then Conjecture 1.3 holds.

Theorem 1.6 (see Theorem 7.1). Assume the quiver of Λ contains
an oriented cycle. Then the orbit category is strictly smaller than the
cluster category. In particular Conjecture 1.3 holds.

2. Background and notation

We assume all our algebras to be finite-dimensional associative alge-
bras over an algebraically closed base field k. Moreover, all categories
are k-categories.

For an algebra Λ we denote by DΛ the bounded derived category of
the category of finitely generated right Λ-modules modΛ.

Definition 2.1. Let T be a triangulated category. A Serre functor of
T is an autoequivalence S, such that there is a functorial isomorphism

HomT (X, Y ) ∼= DHomT (Y, SX),

where D = Homk(−, k).
We denote by S2 = S ◦ [−2] the second desuspension of S.

Note that if Λ is an algebra of finite global dimension, then DΛ has
a Serre functor, which is given by S = −⊗L

Λ DΛ.

Definition 2.2. A triangulated category T is called d-Calabi-Yau if
the d-th suspension [d] is a Serre functor on T .

Definition 2.3. Let T be a triangulated category. A subcategory
S ⊆ T is called (2-)cluster tilting if it is functorially finite, and

S = {T ∈ T | HomT (S , T [1]) = 0}

= {T ∈ T | HomT (T,S [1]) = 0}.

Note that in case T is 2-Calabi-Yau the two subcategories on the right
automatically coincide.

An object S ∈ T is called cluster tilting if addS is a cluster tilting
subcategory.
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2.1. Orbit categories and generalized cluster categories.

Definition 2.4. Let Λ be an algebra of global dimension at most 2.
We denote by DΛ/(S2) the orbit category of DΛ modulo S2, that is the
category with the same objects as DΛ, but with morphisms sets

HomDΛ/S2(X, Y ) =
⊕

i∈Z

HomDΛ
(Si

2X, Y ).

Theorem 2.5 (Keller [Kel]). In the setup of Definition 2.4 there is a
triangulated category CΛ and triangle functor π : DΛ CΛ such that π
factors into

DΛ

nat.
proj.

DΛ/(S2)

fully
faithful

CΛ,

and CΛ is minimal with these properties.

This category CΛ is defined to be the cluster category of Λ in [Ami2].
There are more explicite descriptions of cluster categories in terms of
localizations in [Ami2], but we do not need them here.

In the case that Λ is hereditary the cluster category can more easily
be understood by the following fact.

Theorem 2.6 (Keller [Kel]). Assume Λ is hereditary. Then the functor
DΛ/(S2) CΛ of Theorem 2.5 is an equivalence.

We are now interested in the object πΛ in CΛ. We denote by Λ̃ its
endomorphism algebra.

Theorem 2.7 ([Ami2, Proposition 4.7]). Let Λ be an algebra with
gl.dimΛ ≤ 2. Then

Λ̃ = EndCΛ
(πΛ) = ⊕i≥0 HomD(Λ, S

−i
2 Λ) = TΛ Ext

2
Λ(DΛ,Λ),

where TΛ denotes the tensor algebra over Λ.

In particular Λ̃ has a natural positive Z-grading.

Note that it follows from the right hand side above that Λ̃ is gen-
erated in degrees 0 and 1, and that minimal generators in degree 1
correspond to a minimal set of relations in Λ (see [ABS, Lemma 2.4]).

Definition 2.8. An algebra Λ is called τ2-finite if gl.dimΛ ≤ 2, and

Λ̃ is finite-dimensional, that is if Λ̃ is non-zero in only finitely many
degrees.

In this paper we will focus on the case that Λ is τ2-finite. In this
case the object πΛ is cluster tilting in CΛ by the following result.

Theorem 2.9. Let Λ be τ2-finite.

• [Iya, Theorem 1.23] The subcategory add{Sn
2Λ | n ∈ Z} is clus-

ter tilting in DΛ.
• [Ami2, Theorem 4.10] The cluster category CΛ is a Hom-finite
2-Calabi-Yau category, and πΛ is a cluster tilting object.
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2.2. Graded algebras and coverings. Let A =
⊕

p∈ZAp be a finite
dimensional Z-graded algebra. We denote by modgrA the category
of finitely generated graded A-modules. For a graded A-module M =⊕

p∈ZMp and q ∈ Z, we denote byM〈q〉 the graded module
⊕

p∈ZMp+q

(that is the degree p part of M〈q〉 is Mp+q).
We denote by projgrA the category of graded projective A-modules

add{A〈p〉 | p ∈ Z}. A category with Z-action is called Z-covering of
A if it is equivalent to projgrA as category with Z-action. Then by a
classical result (see [GrM]) we have an equivalence between modules
over this category and modgrA.

Example 2.10. Let Λ be a τ2-finite algebra of global dimension 2.
Then the category add{Sn

2Λ | n ∈ Z} is a Z-covering of Λ̃.

3. Connection to gradable modules

Throughout this section we assume Λ to be τ2-finite. Then, by Theo-
rem 2.9 the cluster category is 2-Calabi-Yau. Hence, by the arguments
of [BMR, Theorem 2.2], for any cluster tilting object T the functor

MT : CΛ modEndC (T )

X HomC (T,X)

induces an equivalence CΛ/(T [1])
≈

modEndC (T ). In particular we
have

M := MπΛ : CΛ/(πΛ[1])
≈

mod Λ̃. (3.1)

Similarly, since add{Sn
2Λ | n ∈ Z} is a cluster tilting subcategory of

DΛ and a Z-covering of Λ̃, the functor

Mgr : DΛ mod{Sn
2Λ | n ∈ Z}

≈
modgr Λ̃

X HomD(−, X)
⊕

n∈Z

HomD(S
n
2Λ, X)

induces an equivalence

DΛ/(S
n
2Λ[1] | n ∈ Z)

≈
modgr Λ̃. (3.2)

It is immediate from the definitions of the functors that we have the
following commutative square.

DΛ

CΛ

modgr Λ̃

mod Λ̃

π

Mgr

forgetful
M

(3.3)
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Remark 3.1. Since add{Sn
2Λ | n ∈ Z} is cluster tilting, for any X ∈

DΛ, there is a triangle

T1 T0 X T1[1]

with T0, T1 ∈ add{Sn
2Λ | n ∈ Z}. Under the functor Mgr this triangle

corresponds to a graded projective presentation

MgrT1 MgrT0 MgrX 0.

Similarly, under M, triangles involving two terms from add πΛ in CΛ

correspond to projective presentations in mod Λ̃.
In this language, the vertical functors of Diagram (3.3) correspond

to applying π to triangles, and forgetting the grading on projective
presentations, respectively.

We denote the (full, isomorphism-closed) subcategory of mod Λ̃ con-

sisting of modules in the image of the forgetful functor modgr Λ̃ mod Λ̃

by modgr.able Λ̃, and call its objects gradable modules.

Theorem 3.2. Let Λ be a τ2-finite algebra. Then for X ∈ CΛ the
following are equivalent:

(1) X is in the image of π, that is there is Y ∈ DΛ with X ∼= πY ,
and

(2) MX ∈ modgr.able Λ̃.

Proof. By the observations above we know that (1) =⇒ (2).
For the implication (2) =⇒ (1) note that both conditions (1) and

(2) are satisfied for some X if and only if they are satisfied for all
indecomposable direct summands of X . Hence we may assume X to
be indecomposable.

If X ∈ add πΛ[1] then clearly X is in the image of π, so the impli-
cation holds. If X 6∈ add πΛ[1] it suffices to show that MX ∼= MπY for
some Y ∈ DΛ (since M preserves isomorphism classes of objects without
direct summands in add πΛ[1] by the equivalence in (3.1)). By Prop-
erty (2), the equivalence in (3.2), and the commutative diagram (3.3),
we know that there is an indecomposable Y ∈ DΛ such that MX is ob-
tained from MgrY by forgetting the grading. But this means precisely
that MX = MπY . �

Remark 3.3. For Theorem 3.2 (and throughout this paper) it is im-
portant that we work with 2-cluster categories. For n > 2 the functor
from an n-cluster category to the module category of an n-Calabi-Yau
tilted algebra does not preserve “almost all” indecomposables.

From Theorem 3.2 we deduce a new proof of the following result of
Keller.

Corollary 3.4. Let Λ be hereditary. Then π : DΛ CΛ is dense.
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Proof. If Λ is hereditary, then Ext2Λ = 0, so Λ̃ = Λ is concentrated in
degree 0 as graded algebra. Thus clearly any module is gradable. Now
the claim follows from Theorem 3.2 above. �

Corollary 3.5. Let Λ be as above, and f : P Q in C with P,Q ∈
add πΛ. Then ConeC f ∈ Im π if and only if f is isomorphic to a map
in the image of π.

Proof. The “if” follows from the fact that for f = πg we have ConeC f =
π(ConeD g).

Assume conversely that ConeC f ∈ Im π. Then, by Theorem 3.2,

M(ConeC f) ∈ modgr.able Λ̃. So M(ConeC f) comes from a graded Λ̃-
module MgrX . There is a triangle

P̂
f̂

Q̂ X P̂ [1]

in DΛ, with P̂ , Q̂ ∈ add{Sn
2Λ | n ∈ Z}, since this subcategory is cluster

tilting. We may moreover assume f̂ to be a radical map.

Applying π to this triangle we see that ConeC f = ConeC πf̂ , so f

is isomorphic to the direct sum of πf̂ and an isomorphism. �

Proposition 3.6. Let Λ be as above. Let P and Q be indecomposable
projective Λ-modules. Then the following are equivalent:

(1) {ConeC f | f : πP πQ} ⊆ Im π, and
(2) for any i < j and any g : Si

2P Q and g′ : Sj
2P Q with g 6= 0

there are r : Sj
2P Si

2P and s : Q S
i−j
2 Q such that

g′ = g ◦ r + S
j−i
2 (s ◦ g).

Proof. Assume first (1), and let g and g′ as in (2). Thus we have
ConeC (πg + πg′) ∈ Im π. (Note that πP is canonically isomorphic to
πSℓ

2P for all ℓ.) By Corollary 3.5 we have

πP πQ

πP πQ

πg + πg′

πh
r s

for some h : Sℓ
2P Q, and r ∈ Aut(πP ), s ∈ Aut(πQ). Passing to

Λ̃-modules and decomposing the maps into their homogeneous parts
we obtain

MπP MπQ

MπP MπQ

Mgrg + Mgrg
′

Mgrh

∑
Mgrri

∑
Mgrsi
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with ri : S
i
2P P and si : S

i
2Q Q. Since r and s are automorphisms

so are r0 and s0, and we may assume r0 = 1 = s0.
Since there are no morphisms in negative degree, taking the non zero

morphisms of the smallest degree of the maps (
∑

Mgrsi)(Mgrg + Mgrg
′)

and (Mgrh)(
∑

Mgrri), one gets that ℓ = i and h = g. Now looking at the

morphism of degree j one gets g′ = g ◦ Si
2(rj−i)− sj−i ◦ S

j−i
2 (g), which

is the factorization property of part (2) of the corollary.
Now assume (2) holds, and assume there is a map f : πP πQ such

that ConeC f 6∈ Im π. Then f is not isomorphic to a map in the image
of π. We will consider maps which are isomorphic to f , and their
decompositions into homogeneous parts.

Let f ′ ∼= f . We may write Mf ′ =
∑

i∈Z Mgrf
′
i , where f

′
i : S

i
2P Q.

By assumption at least two of these homogeneous parts do not vanish,
and thus we may define

d(f ′) =(d(f ′)1, d(f
′)2), with d(f ′)1 = min{i ∈ Z | f ′

i 6= 0}, and

d(f ′)2 = min{i > d(f ′)1 | f
′
i 6= 0}.

Note that since Λ is τ2-finite, nonzero maps πP πQ can only exist
in finitely many degrees. In particular the set

D = {d(f ′) | f ′ ∼= f}

is finite. Ordering pairs of integers lexicographically (that is by (a1, a2) ≤
(b1, b2) if a1 < b1 or (a1 = b1 and a2 ≤ b2)), we may assume that d(f)
is maximal in D.

By (2) we have r : S
d(f)2
2 P S

d(f)1
2 P and s : Q S

d(f)1−d(f)2
2 Q such

that Mgrfj = (Mgrr)(Mgrfi) + (Mgrfi)(Mgrs). Now Mf ∼= (1− Mgrs)(Mf)(1−
Mgrr). Looking at this degree wise we have

Mf ∼= (1− Mgrs)(Mgrfd(f)1 + Mgrfd(f)2 + [terms of degree > d(f)2])(1− Mgrr)

= Mgrfd(f)1 + Mgrfd(f)2 − (Mgrfd(f)1)(Mgrr)− (Mgrs)(Mgrfd(f)1)

+ [terms of degree > d(f)2]

= Mgrfd(f)1 + [terms of degree > d(f)2]

contradicting our assumption that d(f) is maximal in D. Hence (1)
must hold. �

Example 3.7. Let Λ be that algebra given by the quiver

1

2

3

α β

γ

subject to the relation r = βα.

Then the quiver of Λ̃ is

1

2

3

α β

r

γ
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where γ (and α and β) is of degree 0, and r is of degree 1. Since r
cannot be expressed as a sum up multiples of γ, the second assertion
of Proposition 3.6 is not fullfilled for P3 and P1. Thus Proposition 3.6
shows that π is not dense for this algebra, and more precisely that
there is an object of the form Cone f not in the image of π for some
f : πP3 πP1.

4. Gradable modules and parameter families

In this section we show that a module over a graded algebra is either
gradable, or belongs to a one-parameter family of modules which are
almost all non-isomorphic. In particular it will follow that modules
which represent an open orbit in the representation variety are always
gradable.

Definition 4.1. Let R be a Z-graded k-algebra. For α ∈ k× we denote
by σα the algebra-automorphism given on homogeneous elements by

r αdeg rr.

For a (non-graded) R-module M we denote by Mα the module twisted
by the automorphism σα. That is, Mα = M as k-vector spaces, but
with the new module multiplication given by

m ·α r = αdeg rmr

for homogeneous r ∈ R.

Theorem 4.2. Let R be a finitely generated Z-graded k-algebra, and
M a finite-dimensional R-module. Then exactly one of the following
happens:

(1) The modules Mα with α ∈ k× are all isomorphic, and M is
gradable.

(2) For any α ∈ k× there are only finitely many β ∈ k× such that
Mα

∼=Mβ, and M is not gradable.

Proof. By assumption R is generated (as k-algebra) by a finite set {ri}
of homogeneous elements. We set g = max{| deg ri|}.

AssumeMα
∼= Mβ, and (α

β
)i 6= 1 for i ≤ g ·dimM . Let ψ : Mα Mβ

be an isomorphism. Then ψ can be considered as automorphism of the
k-vector space M . Let

M =
⊕

λ∈k×

M(λ)
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be the generalized eigenspace decomposition of M with respect to ψ.
Let r ∈ R be homogeneous. For m ∈M we have

(
ψ −

(
β

α

)deg r

λ

)
(mr) = ψ(mr)−

(
β

α

)deg r

λm · r

=

(
1

α

)deg r

ψ(m ·α r)−

(
β

α

)deg r

λmr

=

(
1

α

)deg r

ψ(m) ·β r −

(
β

α

)deg r

λmr

=

(
β

α

)deg r

(ψ − λ) (m)r

A staightforward induction shows that this implies that for all n ∈ N

we have(
ψ −

(
β

α

)deg r

λ

)n

(mr) =

(
β

α

)n deg r

(ψ − λ)n (m)r.

It follows that for m ∈M(λ) we have mr ∈M(
(
β
α

)deg r
λ). If we denote

by
〈
β
α

〉
the cyclic subgroup of k× generated by β

α
we obtain a direct

sum decomposition of M into the summands
⊕

σ∈〈 β

α〉

M(σλ)

where λ runs over representatives of the cosets of
〈
β
α

〉
in k×. Moreover

these summands are
〈
β
α

〉
-gradable. Since the order of

〈
β
α

〉
is bigger

than g · dimM these
〈
β
α

〉
-gradings can be lifted to Z-gradings. Thus

M is gradable.
Conversely, if M is gradable then it is immediate that

M Mα

m αdegmm

gives an isomorphism of R-modules for any α ∈ k×. �

Definition 4.3. Let R be a finitely generated k-algebra andM a finite-
dimensional R-module. We say thatM has an open orbit if the orbit of
M (under the natural GL(dimM, k)-action) in the variety of (dimM)-
dimensional R-modules is open.

With this definition we have the following immediate consequence of
Theorem 4.2.

Corollary 4.4. Let R be a finitely generated Z-graded k-algebra, and
M a finite-dimensional R-module, which has an open orbit. Then M
is gradable.
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Proof. The Mα form a line in the representation variety. Since M has
an open orbit they are almost all isomorphic to M . Hence we are in
the first case of Theorem 4.2. �

Corollary 4.5. Let R be a finitely generated Z-graded k-algebra, and
M a finite-dimensional R-module, such that Ext1R(M,M) = 0. Then
M is gradable.

Proof. By [Voi, § 3.5], Ext1R(M,M) = 0 implies that M has an open
orbit. Hence the claim follows from Corollary 4.4. �

5. Application of results on gradable modules

In this section we use results on gradable modules by Gordon and
Green [GoG] and from the previous section to the situation of the

graded algebra Λ̃, for a τ2-finite algebra Λ (see Subsection 2.1). By
Theorem 3.2 this yields results on the image of the derived category in
the cluster category.

5.1. Auslander-Reiten components. We recall the following result
of Gordon and Green.

Theorem 5.1 ([GoG, Theorem 4.2]). Let R be graded finite-dimensional
k-algebra. A component of the Auslander-Reiten quiver of (ungraded)
R-modules either only contains gradable modules, or does not contain
any gradable modules.

Applying this to our setup we obtain the following:

Theorem 5.2. Let Λ be a τ2-finite algebra. Then the image of the
derived category in the cluster category is a union of Auslander-Reiten
components.

For the proof we need the following observation.

Observation 5.3. Let A be an Auslander-Reiten component of CΛ. If
A does not contain any summand of πΛ[1], then MA is an Auslander-

Reiten component of mod Λ̃. If A contains a summand of πΛ[1] then

MA is a union of Auslander-Reiten components of mod Λ̃, and all these

components contain a projective or an injective Λ̃-module.

Proof of Theorem 5.2. By Observation 5.3 we have to consider two
cases:

If A is an Auslander-Reiten component of CΛ not containing any
summand of πΛ[1] then MA is an Auslander-Reiten component of

mod Λ̃, and by Theorems 3.2 and 5.1 either all or no objects in A

lie in the image of π.
Now consider a component A of the Auslander-Reiten quiver of CΛ

which contains a summand of πΛ[1]. By Observation 5.3 each of the
Auslander-Reiten components of MA contains at least one projective
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or injective, hence gradable, module. So, by Theorem 5.1, all objects
in these components are gradable. Hence, by Theorem 3.2, all objects
in A lie in the image of π. �

5.2. Rigid objects. We call an object in a triangulated or exact cat-
egory rigid if Ext1(X,X) = 0.

Theorem 5.4. Let Λ be a τ2-finite algebra. Let X ∈ CΛ be rigid. Then
X is in the image of π : DΛ CΛ.

Proof. By [KöZ, Theorem 4.9], if X is rigid then so is MX . By Corol-

lary 4.5 any rigid module in mod Λ̃ is gradable, so in particular MX is
gradable. Hence, by Theorem 3.2, X lies in the image of π. �

Corollary 5.5. Any cluster tilting object in CΛ is the image of some
object in DΛ.

6. Fractional Calabi-Yau type situations

In this section, we study the situation that there is an object in DΛ

satisfying a fractional Calabi-Yau type condition, that is an X such
that X [a] ∼= SbX for certain a, b ∈ Z. We then show the following:

Theorem 6.1. Let Λ be a connected τ2-finite algebra. Assume that
there is some indecomposable object X ∈ DΛ such that X [a] ∼= SbX for
some a, b ∈ Z with a 6= b.

Then the functor π : DΛ CΛ is dense if and only if Λ is piecewise
hereditary.

Remark 6.2. • If there is a functorial isomorphism X [a] ∼= SbX
for all X ∈ Db(modΛ) then Λ is called fractionally Calabi-Yau
of dimension a

b
.

• We have b 6= 0 and a
b
≥ 0. Since Λ is τ2-finite we also have

a
b
< 2.

• The condition X [a] ∼= SbX means that in the cluster category
we have τaπX ∼= πX [a] ∼= SbπX ∼= τ 2bπX . Thus πX lies in a
tube in the cluster category.

• If Λ is piecewise hereditary, then there can only be indecompos-
able objects X with X [a] ∼= SbX for a ≤ b (and for a < b the
algebra Λ is of Dynkin type, while for a = b it is of Euclidean
or tubular type).

• For algebras which are not piecewise hereditary there may be
indecomposable objects X satisfying X [a] ∼= SbX for a > b or
a < b. For instance for the algebra given by the quiver

1

2

3

α β

γ
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subject to the relation βα. Then the projective module P2

corresponding to vertex 2 satisfies P2
∼= SP2, while the simple

module S1 corresponding to vertex 1 satisfies S1[3] ∼= S2S1.

Outline of proof of Theorem 6.1. If Λ is piecewise hereditary then the
functor π : DΛ CΛ is dense (see [Kel, Theorem in Section 4] for a
formal proof).

So it remains to show that if Λ is not piecewise hereditary then π is

not dense. By Theorem 3.2 it suffices to find a non-gradable Λ̃-module.
For this, by a result of Dowbor and Skowroński (see Theorem 6.13),

it suffices to construct a periodic Λ̃-module without finite dimensional
summands.

To construct such a module we proceed as follows: We first show
that the Auslander-Reiten component of X is of the form ZA∞ (see
Proposition 6.5 and Lemma 6.7). Then we apply the functor Mgr to the
objects in this component, and obtain the desired periodic module as
a certain limit in Subsection 6.2.

6.1. The shape of the Auslander-Reiten component. In this sub-
section we study the shape of the Auslander-Reiten component of X
in case the assumptions of Theorem 6.1 are satisfied. We denote this
component by AX .

We begin with two immediate observations.

Observation 6.3 ([Rie, Struktursatz 1.5]). The Auslander-Reiten com-
ponent AX is of the form ZQ/G for some quiver Q and a group G of
automorphisms of ZQ. (Actually this is true for any Auslander-Reiten
component.)

Observation 6.4. For any Y ∈ AX we have Y [a] ∼= SbY .

Proposition 6.5. The Auslander-Reiten component AX is of the form
ZQ, with Q Dynkin or of type A∞.

For the proof we need the following observation.

Lemma 6.6. Let Q be a connected quiver. In the mesh category of ZQ
we have

Hom(Y, τ−iY ) = 0 ∀Y ∀i ≫ 0

if and only if Q is either a Dynkin quiver or of type A∞.

Proof. Assume the mesh category satisfies Hom(Y, τ−iY ) = 0 for any
Y and i sufficiently large. Fix Y0 and let σ be the function assigning
to any vertex i of Q the sum of dimHom(Y0, Y ), where Y runs over
the τ orbit corresponding to i. Then σ is a subadditive function on
Q in the sense of [HPR], and, by [HPR, Theorem in Section 1], Q is
a Dynkin or Euclidean diagram, or of one of the types A∞, A∞

∞, or
D∞. Comparing to the preprojective component of the corresponding
path algebras, we see that Q cannot be an Euclidean diagram. A
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straight forward calculation shows that for Q = A∞
∞ or Q = D∞ we

have Hom(Y, τ−iY ) 6= 0 for arbitrarily large i. Thus Q is a Dynkin
diagram or of type A∞.

Conversely it is easy to see that for Q Dynkin or of type A∞ we have
the vanishing property of the lemma. �

Proof of Proposition 6.5. By Observation 6.4 we have that AX is of the
form ZQ/G for some quiver Q and some group G of automorphisms of
ZQ.

Note that the assumption Y [a] ∼= SbY can be reformulated as τ bY ∼=
Y [a− b]. Recall that we also assumed a− b 6= 0. Since gl.dimΛ <∞,
for any Y ∈ AX we have Hom(Y, Y [i]) = 0 for almost all i, and hence
HomDΛ

(Y, τ−iY ) = 0 for i≫ 0.
It follows that the same is true in the mesh category of ZQ, and

hence, by Lemma 6.6, that Q is Dynkin or of type A∞.
Finally note that HomDΛ

(Y, τ−iY ) = 0 for i ≫ 0 also implies that
G = 1. �

Lemma 6.7. If AX = ZQ with Q Dynkin, then Λ is piecewise heredi-
tary of type Q.

Proof. One can calculate the dimension of the morphisms between ob-
jects in AX , up to morphisms in the infinite radical, by using mesh
relations. Thus these dimensions coincide with the dimensions of mor-
phism spaces in DkQ.

It follows that, for any given object of AX , there are only finitely
many objects such that there are morphisms between the two outside
the infinite radical. It follows that some power of the radical, and
thus the infinite radical, vanishes. Hence one sees that there are no
morphisms from AX to any other component or vice versa. So, since
Λ is connected, AX is the entire Auslander-Reiten quiver of DΛ. It
follows that DΛ = DkQ (either note that any complete slice is a tilting
object, or use [Ami1, Theorem 7.1]). �

6.2. A limit of the Auslander-Reiten component. In this subsec-
tion we focus on the case that the Auslander-Reiten component AX is
of type A∞. We label the indecomposable objects in AX by iXj with
i ≤ j as indicated in the following picture.

−2X−2 −1X−1 0X0 1X1 2X2

−2X−1 −1X0 0X1 1X2

−3X−1 −2X0 −1X1 0X2 1X3

| | | |

| | |

| | | |

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...

In particular τ ℓiXj = i−ℓXj−ℓ, so Sℓ
iXj = i−ℓXj−ℓ[ℓ].
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Proposition 6.8. Let X ∈ DΛ such that X [a] = SbX for some a 6= b,
and such that the Auslander-Reiten component AX of X is of type
ZA∞. With the labels as above we have the following.

(1) For any T ∈ DΛ there are i0 and j0 such that

HomDΛ
(T, iXj) ∼= HomDΛ

(T, i0Xj0) ∀i ≤ i0, j ≥ j0.

(2) For any T ∈ DΛ there are i0 and j0 such that

HomDΛ
(iXj, T ) ∼= HomDΛ

(i0Xj0, T ) ∀i ≤ i0, j ≥ j0.

Proof. We only prove (1), (2) is dual.
By Observation 6.4 we have [a] = Sb on objects of the component

AX . Hence, for i and ℓ ∈ Z, we have

i+ℓbXi+ℓb = S
−ℓb

iXi[ℓb] = iXi[ℓ(b− a)].

In particular, for given i the space HomDΛ
(T, i+ℓbXi+ℓb) is non-zero for

only finitely many ℓ. It follows that HomDΛ
(T, iXi) 6= 0 for only finitely

many i.
Thus we can choose i0 and j0 such that

HomDΛ
(T [−1]⊕ T ⊕ T [1], ℓXℓ) = 0 ∀ℓ 6∈ {i0, . . . , j0}.

To complete the proof, it suffices to show that for i ≤ i0 and j ≥ j0
the maps i−1Xj iXj and iXj iXj+1 induce isomorphisms

HomDΛ
(T, i−1Xj) HomDΛ

(T, iXj) and

HomDΛ
(T, iXj) HomDΛ

(T, iXj+1), respectively.

This follows from our choice of i0 and j0, and the fact that the cones
of the two maps are i−1Xi−1[1] and j+1Xj+1, respectively. �

Construction 6.9. In the setup of Proposition 6.8, let MgrAX be the

graded Λ̃-module given by

(MgrAX)ℓ = HomDΛ
(Sℓ

2Λ, iXj) for i≪ 0, j ≫ 0.

(This is well-defined by Proposition 6.8.) Note that MgrAX does not
have finite-dimension, but its graded pieces do.

Lemma 6.10. The graded Λ̃-module MgrAX does not have any non-zero
finite-dimensional direct summands.

In the proof we will use the following observation:

Observation 6.11. Let Γ be a Z-graded algebra, which is generated
over Γ0 by Γ1. For a graded Γ-module M , and a finite interval I ⊂ Z,
we denote by MI the module coinciding with M in degrees in I, and
vanishing in degrees outside I. Then
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(1) If M ∈ modgr Γ is concentrated in degrees ℓmin, . . . , ℓmax, and
N ∈ modgr Γ, then

Hommodgr Γ(M,N) = {(fi)i∈Z ∈
∏

i∈Z

HomΓ0
(Mi, Ni) | ∀g ∈ Γ1

∀m ∈Mi : fi(m)g = fi+1(mg)}

= Hommodgr Γ(M,N[ℓmin,ℓmax+1]),

where the latter equality holds because the conditions are empty
unless Mi 6= 0.

(2) Similarly, for N ∈ modgr Γ concentrated in degrees ℓmin, . . . , ℓmax

and M ∈ modgr Γ arbitrary we have

Hommodgr Γ(M,N) = Hommodgr Γ(M[ℓmin−1,ℓmax], N).

Proof of Lemma 6.10. Assume H is a finite-dimensional direct sum-
mand of MgrAX . Then H is concentrated in finitely many degrees, say
ℓmin to ℓmax. By Proposition 6.8 and the construction of MgrAX there
are i0 and j0 such that

(Mgr(iXj))ℓ = (MgrAX)ℓ ∀i ≤ i0, j ≥ j0, ℓ ∈ {ℓmin − 1, . . . , ℓmax + 1}.

Since Λ̃ is generated in degrees 0 and 1 it follows from Observation 6.11
above that for all i ≤ i0 and j ≥ j0

Hommodgr Λ̃
(H, MgrAX) = Hommodgr Λ̃

(H, Mgr(iXj)), and

Hommodgr Λ̃
(MgrAX , H) = Hommodgr Λ̃

(Mgr(iXj), H).

It follows that H is a direct summand of Mgr(iXj) for any i ≤ i0 and

j ≥ j0. However the graded Λ̃-modules Mgr(iXj) are indecomposable
(or zero), and pairwise non-isomorphic. Hence H = 0. �

Lemma 6.12. We have (MgrAX) 〈a− b〉 ∼= MgrAX .

Proof. We have

(Mgr(iXj)) 〈a− b〉 =
⊕

ℓ∈Z

HomDΛ
(Sℓ+a−b

2 Λ, iXj)

=
⊕

ℓ∈Z

HomDΛ
(Sℓ

2Λ, S
b−a

iXj [2a− 2b])

=
⊕

ℓ∈Z

HomDΛ
(Sℓ

2Λ, S
2b−a

iXj [a− 2b])

=
⊕

ℓ∈Z

HomDΛ
(Sℓ

2Λ, i−2b+aXj−2b+a)

= Mgr(i−2b+aXj−2b+a).

Now the claim follows from the construction of MgrAX (Construction 6.9).
�
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We now only have to recall the following result of Dowbor and
Skowroński before we can give a proof for the main result of this section.

Theorem 6.13 ([DoS]). Let R be a finite-dimensional graded alge-
bra. Assume there is a periodic graded R-module which has finite-
dimensional graded pieces, and does not have any finite-dimensional
direct summands. Then there is a finite-dimensional R-module which
is not gradable.

Proof of Theorem 6.1. If Λ is piecewise hereditary then the functor
π : DΛ CΛ is dense (see [Kel, Theorem in Section 4]).

Assume conversely that Λ is not piecewise hereditary. By Proposi-
tion 6.5 and Lemma 6.7 we know that the Auslander-Reiten component
AX of X is of type ZA∞.

By Lemma 6.10 the graded Λ̃-module MgrAX has no finite-dimensional
summands. By Lemma 6.12 it is periodic. It follows from Theorem 6.13

above that the push-down functor modgr Λ̃ mod Λ̃ is not dense. Now
the claim follows from Theorem 3.2. �

Example 6.14. Let Λ be the algebra given by the quiver

1 2 · · · n

1̃ 2̃ · · · ñ

with relations making all small squares commutative. Then the follow-
ing are equivalent.

(1) Λ is piecewise hereditary,
(2) The functor DΛ CΛ is dense, and
(3) n ≤ 5.

Proof. (1)⇐⇒ (3): By [Lad] the algebra Λ is equivalent to kA2n/Rad
3 kA2n,

where A2n denotes a linearly oriented quiver of type A2n. By [HaS]
these algebras are piecewise hereditary if and only if 2n ≤ 11, that is
n ≤ 5.

(1) ⇐⇒ (2): Note that the algebra is isomorphic to the tensor prod-
uct kA2 ⊗ kAn. The Serre functor acts diagonally on modules which
are tensor products of modules for A2 and An. Thus

S
3n+3S1 = S

3n+3(SA2

1 ⊗ SAn

1 ) = S
3n+3SA2

1 ⊗ S
3n+3SAn

1 ,

where SA2

1 and SAn

1 denote the simple projective modules for kA2 and
kAn, respectively. Since S3SA2

1 = S1[1] and Sn+1SAn

1 = S1[n − 1] we
obtain

S
3n+3S1 = SA2

1 [n + 1]⊗ SAn

1 [3n− 3] = S1[4n− 2].

Now note that for n 6= 5 we have 4n−2 6= 3n+3. Thus, by Theorem 6.1,
for n 6= 5 we have the equivalence (2) ⇐⇒ (3).

Finally note that for n = 5 we know that (1) holds, so (2) also holds
by [Kel]. �
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Remark 6.15. Using the similar arguments as in the proof of The-
orem 6.1, one can show that, provided there is an indecomposable
object X ∈ DΛ satisfying X [a] ∼= SbX for some a 6= b, the answer to
Skowroński’s question (see 1.4) is that all T (Λ) modules are gradable
precisely if Λ is piecewise hereditary. (In that case one uses Happel’s
equivalence DΛ modgr T (Λ).)

7. Oriented cycles

In this section we show that for a τ2-finite algebra whose quiver con-
tains an oriented cycle the functor π : CΛ DΛ is never dense. Since
such algebras cannot be piecewise hereditary, this means we prove Con-
jecture 1.3 in this case.

We show the following theorem.

Theorem 7.1. Let Λ be a τ2-finite algebra such that the quiver of Λ
contains an oriented cycle. Then the functor π : DΛ CΛ is not dense.

As in the setup of Section 6, we use Dowbor’s and Skowroński’s result
(Theorem 6.13) to show that there exists a non-gradable Λ̃-module.
We start by preparing a technical result on the indecomposability of
certain zigzag-shaped complexes in Subsection 7.1. Then we complete
the proof of Theorem 7.1 in Subsection 7.2.

7.1. Indecomposability of zigzags.

Lemma 7.2. Let A be an additive k-category. Assume we are given
the following objects and morphisms

A−1 A0 A1 A2

B−2 B−1 B0 B1 B2

g−1 f−1 g0 f0 g1 f1 g2 f2· · · · · ·

such that for all i

• Ai and Bi have local endomorphism ring,
• fi 6∈ EndA (Bi) · gi+1 · HomA (Ai, Ai+1)

+ HomA (Bi−1, Bi) · gi · EndA (Ai), and
• gi 6∈ HomA (Bi+1, Bi) · fi · EndA (Ai)

+ EndA (Bi−1) · fi−1 · HomA (Ai, Ai−1).

(Note that the last two requirements essentially mean that no morphism
factors through its neighbors.) Assume moreover that the Ai are pair-
wise non-isomorphic, and the Bi are pairwise non-isomorphic.
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Then the complex

∐
Ai




...

... fi+1

gi+1 fi

...
...




∐
Bi

is indecomposable.

Proof. Since the Ai are pairwise non-isomorphic and have local endo-
morphism rings any idempotent endomorphism of

∐
Ai is of the form

πI + (rij) for some I ⊆ Z, πI the projection to the summands Ai with
i ∈ I, and radical morphisms rij : Ai Aj. Similarly an idempotent of∐
Bi is of the form πJ + (sij).
Thus an idempotent of the complex of the lemma is a commutative

diagram as below.

∐
Ai

∐
Bi

∐
Ai

∐
Bi

(
. . .)

(
. . .)

πI + (rij) πJ + (sij)

Assume for some i we have i ∈ I but i 6∈ J . Composing the above
diagram with the injection of Ai and the projection to Bi we obtain
the following diagram (omitting summands that do not contribute any-
thing).

Ai Bi−1 ⊕ Bi

Ai ⊕ Ai+1 Bi

( gi
fi

)

(fi, gi+1)

(
1+rii
ri,i+1

)
(si−1,i, sii)

Thus

(si−1,i, sii)

(
gi
fi

)
= (fi, gi+1)

(
1 + rii
ri,i+1

)

⇐⇒ si−1,igi + siifi = fi + firii + gi+1ri,i+1

⇐⇒ fi + firii − siifi = si−1,igi − gi+1ri,i+1

Note that 1 ⊗ rii − sii ⊗ 1 ∈ Rad(EndA (Bi) ⊗ EndA (Ai)), so 1 ⊗ 1 +
1⊗ rii − sii ⊗ 1 is invertible. Thus

fi ∈ EndA (Bi) · gi+1 ·HomA (Ai, Ai+1)+HomA (Bi−1, Bi) · gi ·EndA (Ai)

contradicting the second point of the assumption.
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Similarly the cases

• i ∈ I and i− 1 6∈ J ,
• i 6∈ I and i ∈ J , and
• i 6∈ I and i− 1 ∈ J

lead to contradictions.
It follows that I = J = ∅ or I = J = Z, so the idempotent is

trivial. �

For the rest of this section the following piece of notation will be
useful.

Definition 7.3. Let Λ be a finite-dimensional algebra. Let P0 and Pℓ

be indecomposable projective modules. A sequence of minimal rela-
tions of length ℓ from P0 to Pℓ is a sequence

topP0 = S0, S1, . . . , Sℓ = topPℓ

of simple modules, such that Ext2Λ(Si, Si−1) 6= 0 for all i ∈ {1, . . . , ℓ}.
(Note that a 2-extension between simples corresponds to a minimal
relation in the opposite direction in the quiver of the algebra; this
motivates the name.)

Remark 7.4. For a τ2-finite algebra Λ we have the following:

(1) A sequence of minimal relations of length ℓ corresponds to a

sequence of degree 1 arrows in the quiver of Λ̃, and thus to a
map of degree ℓ.

(2) By Theorem 2.7 there are no relations in Λ̃ having summands
which are products of degree 1-arrows. Thus the map corre-
sponding to a minimal sequence of relations is non-zero, and
not equal to any other linear combination of paths.

(3) In particular the length of sequences of minimal relations is

bounded above by the maximal degree of Λ̃.

Proposition 7.5. Let Λ be a τ2-finite algebra. Assume there are inde-
composable projective modules P1, . . . , Pℓ and Q1, . . . , Qℓ such that for
all i ∈ {1, . . . , ℓ} we have

• there is a non-zero non-isomorphism Pi Qi,
• there is a sequence of minimal relations from Qi−1 to Pi (here
Q0 = Qℓ).

Then the functor π : DΛ CΛ is not dense.

Proof. By Theorem 3.2 it suffices to show that there is a non-gradable

Λ̃-module. For this, by Theorem 6.13, it suffices to find an indecompos-
able periodic graded Λ̃-module with finite dimensional graded pieces.

Finally note that a graded Λ̃-module is indecomposable and periodic if
and only if its projective presentation is.

Now apply Lemma 7.2 for A = projgr Λ̃, Ai = Pı 〈ai〉 for ı− i ∈ ℓZ
and certain ai, and Bi = Qı 〈ai〉. Further we let fi : Ai Bi be a
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map from the first point of the proposition, and gi : Ai Bi−1 map
corresponding to the sequence of minimal relations in the second point
of the proposition.

Since the gi are all of positive degree, and the fi are of degree 0, it
follows that the ai are pairwise different. It follows that the Ai and the
Bi are pairwise non-isomorphic.

The three points of Lemma 7.2 are easily verified: The second one
holds since the fi are of degree 0 and the gi are of positive degree. The
final one follows from Remark 7.4(2).

Thus, by Lemma 7.2, the complex
∐

Ai

∐
Bi

is indecomposable. It is periodic by construction, and has finite dimen-
sional graded pieces. Thus the claim follows. �

7.2. Proof of Theorem 7.1.

Lemma 7.6. Let Λ be a finite-dimensional algebra. Assume there is a
sequence of arrows

i0
α1

i1
α2

· · ·
αn

in

in the quiver of Λ, such that the corresponding map Pi0 Pin vanishes.
Then there are a < b such that there is a minimal relation from ia to
ib. Equivalently Ext2Λ(topPib , topPia) 6= 0.

Proof. Since the map Pi0 Pin vanishes we have

αn · · ·α1 =
∑

i

xiriyi

for some xi and yi, and minimal relations ri. With respect to the basis
consisting of paths in the quiver we see that at least one ri has a non-
zero scalar multiple of a subpath αb · · ·αa+1 of αn · · ·α1 as a summand.
Thus we have a minimal relation from ia to ib. �

Proof of Theorem 7.1. We may assume that the oriented cycle in the
quiver of Λ is

0 1 · · · n 0.

Since Λ is finite-dimensional the map corresponding to some power
of this cycle vanishes, so, by Lemma 7.6, there is a minimal relation
between two vertices of the cycle. We choose a maximal sequence
of minimal relations between vertices of the cycle; note that such a
maximal sequence exists by Remark 7.4(3). We may assume the last
relation ends in 0, and the first one starts inm 6= 0 (ifm = 0 then there
is a cyclic sequence of minimal relations, hence there are arbitrarily long
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sequences of minimal relations, contradicting Remark 7.4(3)). Thus we
obtain a setup as indicated in the following picture

0

1

mn

◦
◦

◦

◦

◦

◦
◦

◦

such that no relation among the vertices 0, . . . , m starts in 0 or ends in
m.

If the map P0 Pm corresponding to the upper part of the cycle
is non-zero, then we are done by Proposition 7.5 (with ℓ = 1, the
map for the first point being the one assumed to be non-zero, and the
sequence of relations being the sequence from the lower part of the
picture above).

Assume now the map P0 Pm vanishes. Then there is at least
one minimal relation i j with 0 < i < j < m. Choose a maximal
sequence of such relations, such that every one begins where the one
before ends. We obtain a setup as indicated in the following picture:

0

1

a

b

mn

◦ ◦

◦

◦
◦

◦

Assume the maps P0 Pa and Pb Pm corresponding to the remain-
ing paths (those not covered by relations) are both non-zero. Then we
are done by Proposition 7.5 (with ℓ = 2, the maps for the first point
being those assumed to be non-zero, and the sequences of relations
being the two sequences of relations in the picture above).

If one of the maps P0 Pa and Pb Pm is non-zero iterate the
argument (i.e. find a sequence of relations on it), until all parts of the
cycle not covered by relations correspond to non-zero maps. �
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Example 7.7. Let n ∈ N, and 0 < r1 < s1 < r2 < s2 < · · · < rℓ <
sℓ ≤ n with ℓ ≥ 1. Let Λ be the algebra given by the cyclic quiver

0

1

2

n

αn

α0

α1

α2
α3

with relations {αsi · · ·αri | i ∈ {1, . . . , ℓ}}.
Then Λ is τ2-finite, and the functor DΛ CΛ is not dense.

Proof. We first check that Λ is τ2-finite. Since the relations do not
overlap one easily sees that the algebra has global dimension 2. In the

quiver of Λ̃ the arrows of degree 1 are of the form si ri − 1. The
only way to come back to higher labels is via the sequence of arrows

αsi · · ·αri. But this sequence is a relation. Thus Λ̃ is finite-dimensional,
and hence Λ is τ2-finite.

The fact that the functor DΛ CΛ is not dense now follows imme-
diately from Theorem 7.1. �
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