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Abstract

In this paper, we show that the minimal solution of a backward stochastic differ-
ential equation gives a probabilistic representation of the minimal viscosity solution
of an integro-partial differential equation both with a singular terminal condition.
Singularity means that at the final time, the value of the solution can be equal
to infinity. Different types of regularity of this viscosity solution are investigated:
Sobolev, Hölder or strong regularity.
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Introduction

The notion of backward stochastic differential equations (BSDEs) was first introduced
by Bismut in [10] in the linear setting and by Pardoux & Peng in [33] for non linear
equation. One particular interest for the study of BSDE is the application to partial
differential equations (PDEs). Indeed as proved by Pardoux & Peng in [32], BSDEs
can be seen as generalization of the Feynman-Kac formula for non linear PDEs. Roughly
speaking, if we can solve a system of two SDEs with one forward in time and one backward
in time, then the solution is a deterministic function and is a (weak) solution of the
related PDE. This is a method of characteristics to solve the parabolic PDE. The converse
assertion can be proved provided we can apply Itô’s formula, that is if the solution of the
PDE is regular enough. Since then a large literature has been developed on this topic
(see in particular the books [15], [17], [34] and the references therein). The extension to
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quasi-linear PDEs or to fully non linear PDEs has been already developed (see among
other [29] and [42]).

Here we are interesting in another development of the theory: the case of integro-
partial differential equation (IPDE) and of (backward) SDEs with Poisson random noise.
In [5], Barles, Buckdahn & Pardoux show that we can add in the system of forward
backward SDE a Poisson random measure and if we can find a solution to this system,
again the solution is a weak solution of an IPDE:

(1)
∂

∂t
u(t, x) + Lu(t, x) + I(t, x, u) + f(t, x, u, (∇u)σ,B(t, x, u)) = 0

with terminal condition u(T, .) = g. Here L is a local second-order differential operator
corresponding to the infinitesimal generator of the continuous part of the forward SDE
and I and B are two integro-differential operators. I is the discontinuous part of the
infinitesimal generator of the forward SDE, and B is related to the generator of the
BSDE. In [5], weak solution means viscosity solution. Since this paper, several authors
have weaken the assumptions of [5]. The book [15] (Chapter 4) gives a nice review of
these results (and several references on this topic).

Among all semi-linear PDEs, a particular form has been widely studied:

(2)
∂u

∂t
(t, x) + Lu(t, x) − u(t, x)|u(t, x)|q = 0.

Baras & Pierre [3], Marcus & Veron [30] (and many other papers) have given existence
and uniqueness results for this PDE. In [30] it is shown that every positive solution of (2)
possesses a uniquely determined final trace g which can be represented by a couple (S, µ)
where S is a closed subset of Rd and µ a non negative Radon measure on R = Rd \ S.
The final trace can also be represented by a positive, outer regular Borel measure ν, and
ν is not necessary locally bounded. The two representations are related by:

∀A ⊂ R
m, A Borel,

{
ν(A) = ∞ if A ∩ S 6= ∅
ν(A) = µ(A) if A ⊂ R.

The set S is the set of singular final points of u and it corresponds to a “blow-up” set
of u. From the probabilistic point of view Dynkin & Kuznetsov [16] and Le Gall [28]
have proved similar results for the PDE (2) in the case 0 < q ≤ 1 using the theory
of superprocesses. Now if we want to represent the solution u of (2) using a FBSDE,
we have to deal with a singular terminal condition ξ in the BSDE, which means that
P(ξ = +∞) > 0. This singular case and the link between the solution of the BSDE with
singular terminal condition and the viscosity solution of the PDE (2) have been studied
first in [37]. Recently it was used to solve a stochastic control problem for portfolio
liquidation (see [2] or [22]). In [26] we enlarge the known results on this subject for more
general generator f (than f(y) = −y|y|q).

In this paper our goal is to generalize the results of [37] and using our recent papers [26]
and [38] we want to study the related IPDE (1) when the terminal condition u(T, .) = g
is singular in the sense that g takes values in R+ ∪ {+∞} and the set

S = {x ∈ R
d, g(x) = +∞}
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is a non empty closed subset of Rd. Again in the non singular case, if the terminal function
g is of linear growth, the relation between the FBSDE and the IPDE is obtained in [5].
Moreover several papers have studied the existence and the uniqueness of the solution of
such IPDE (see among others [1], [8], [9] or [23]).

• To our best knowledges the study of (1) with a singularity at time T is
completely new. There is no probabilistic representation of such IPDE using super-
processes and no deterministic or analytic works on this topic. In the PhD thesis of
Piozin [36] (as in [37]), we have studied the case when f(t, y, z, u) = f(y) = −y|y|q.
Hence the aim of the paper is to prove that this minimal solution Y of the singular
BSDE is the probabilistic representation of the minimal positive viscosity solution
u of the IPDE for general function f with a singular terminal condition.

• One applied motivation for this study (optimal liquidation of a portfolio) is developed
in [2], [22] and [26]. The optimal solution of a stochastic control problem with
terminal constraint is the minimal solution Y of the singular FBSDE. The value
function v (and the optimal state) can be computed directly with Y . In other
words from this paper we obtain that v is the minimal viscosity solution of (1) with
singular terminal condition.

The ground of this paper has been already prepared by the works [5], [26], [37] and [38],
especially for the most technical aspects. The novelty is that we gather the papers and we
obtain non trivial conditions (for example between I and S) for existence and minimality
of the viscosity solution of (1) with singularity at time T .

The paper is organized as follows. In the first part we describe the mathemati-
cal setting. Since we are interesting in singular terminal condition, the generator f
of the BSDE has to satisfy special conditions: when y becomes large, the function
y 7→ f(t, x, y, z, u) − f(t, x, y, 0, 0) decreases at least like −y|y|q. We recall the precise
result of [5] when the terminal condition is non singular. From the forward backward
SDE we get a continuous viscosity solution of the equation (1). We also give the result of
[26] concerning existence and minimality of a solution for a singular BSDE.

In the second section, we show that the minimal solution Y of the singular BSDE
provides the minimal viscosity solution u for the IPDE with singular terminal condition.
In details we show that Y t,x

t = u(t, x) is the minimal (discontinuous) viscosity solution
of (1) on any interval [0, T − ε] for ε > 0 with lim inft→T u(t, x) ≥ g(x) (Theorem 1).
Here we mainly use an a priori estimate on the solution which gives an upper bound on
the solution independent of the terminal condition. The structure of the generator f is
crucial here. Then we can apply a stability result on viscosity solutions: roughly speaking
an increasing sequence of viscosity solutions is itself a viscosity solution. Minimality is
obtained by a comparison result for viscosity solution for IPDE adapted for our setting.

The singularity of the terminal condition becomes a main trouble if we want to prove
that lim supt→T u(t, x) ≤ g(x) on the regular set R = {g < +∞} (Theorem 2). As in [37],
we first prove that the solution is bounded (locally on R) by a localization argument.
Then we derive that the upper semi-continuous envelop u∗ solves the IPDE (1) with a
relaxed terminal condition. Finally we derive the wanted result. These steps can be done
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under extra assumptions between the jumps of the forward SDE (or the coefficients in the
non local operator I) and the singular set S = {g = +∞}.

The last part is devoted to study the regularity of this minimal solution on [0, T −
ε] × Rd. Indeed the minimal viscosity solution constructed before is the increasing limit
of continuous functions. Hence it is lower semicontinuous, but the continuity is an open
question. Therefore we give several conditions on the coefficients of the forward SDE and
on the Lévy measure λ in order to obtain:

• Sobolev-type regularity: u and ∇u are in some L2 weighted space. Only the coeffi-
cients of the forward SDE are supposed to be regular.

• Hölder regularity of u. We will impose some conditions on λ, but no additional
regularity condition on the parameters.

• Classical regularity: u is of class C1,2 on [0, T ) × Rd. The matrix diffusion σ is
supposed to be uniformly elliptic and λ is not too singular on 0.

Our conditions are quite classical and widely used. Different sets of assumptions could
be also used to obtain similar results and we do not claim that we are exhaustive. Let us
emphasize that most existing results assume that the terminal condition for (1) is already
smooth enough (Lipschitz continuous or C2). In our case we only have boundedness far
from the terminal time T and we need to circumvent this difficulty.

1 Setting and known results

We consider a filtered probability space (Ω,F ,P,F = (Ft)t≥0). We assume that this
set supports a k-dimensional Brownian motion W and a Poisson random measure µ with
intensity λ(de)dt on the space E ⊂ Rd′ \ {0}. The filtration F is generated by W and µ.
We will denote E the Borelian σ-field of E and µ̃ is the compensated measure: for any
A ∈ E such that λ(A) < +∞, then µ̃([0, t] × A) = µ([0, t] × A) − tλ(A) is a martingale.
The measure λ is σ-finite on (E, E) satisfying

∫

E

(1 ∧ |e|2)λ(de) < +∞.

In this paper for a given T ≥ 0, we denote by P the predictable σ-field on Ω × [0, T ] and

P̃ = P ⊗ E .

On Ω̃ = Ω × [0, T ] × E, a function that is P̃-measurable, is called predictable. Gloc(µ) is

the set of P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0 a.s.

∫ t

0

∫

E

(|ψs(e)|
2 ∧ |ψs(e)|)λ(de) < +∞.

D (resp. D(0, T )) is the set of all predictable processes on R+ (resp. on [0, T ]). We refer
to [24] for details on random measures and stochastic integrals. On Rd, |.| denotes the
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Euclidean norm whereas the symbol · stands for the inner product. The space R
d×d′ is

identified with the space of real matrices with d rows and d′ columns. If z ∈ Rd×d′ , we
have |z|2 = trace(zz∗).

Now to define the solution of our BSDE, let us introduce the following spaces for p ≥ 1.
Dp(0, T ) is the space of all adapted càdlàg processes X such that E

(
supt∈[0,T ] |Xt|

p
)

is
finite. Hp(0, T ) denotes the subspace of all processes X ∈ D(0, T ) such that the expecta-

tion E

[(∫ T

0
|Xt|

2dt
)p/2

]
is finite. Lp

µ(0, T ) = Lp
µ(Ω × (0, T ) × E) is the set of processes

ψ ∈ Gloc(µ) such that E

[(∫ T

0

∫
E
|ψs(e)|

2λ(de)ds
)p/2

]
< +∞. L

p
λ(E) = L

p(E, λ;Rm) is

the set of measurable functions ψ : E → Rm with λ-integrable p moment. Finally

S
p(0, T ) = D

p(0, T ) ×H
p(0, T ) × L

p
µ(0, T ).

Concerning function spaces, in the sequel Πpg(0, T ) will denote the space of functions
φ : [0, T ] × Rd → Rk of polynomial growth, i.e. for some non negative constants δ and C

∀(t, x) ∈ [0, T ] × R
d, |φ(t, x)| ≤ C(1 + |x|δ).

For a continuous function φ : [0, T ] × Rd → R and α ∈ [0, 1), we define

‖φ‖∞ = sup
(t,x)∈[0,T ]×Rd

|φ(t, x)|,

‖φ‖α = sup
(t,x)6=(s,y), |x−y|≤1

|φ(t, x) − φ(s, y)|

|t− s|α/2 + |x− y|α
.

For k ∈ N, Ck,2k = Ck,2k([0, T ]×Rd) is the subset of continuous functions φ : [0, T ]×Rd →
R whose partial derivatives of order less than or equal to k w.r.t. t and 2k w.r.t. x are
continuous on [0, T ] × R

d. For α ∈ [0, 1), the set Hk+α/2,2k+α is the subset of Ck,2k such
that ‖∂kt φ‖α + ‖∂2kx φ‖α < +∞. We denote Ck

l,b(R
d) the set of Ck-functions which grow at

most linearly at infinity and whose partial derivatives of order less than or equal to k are
bounded.

1.1 Our forward backward SDE, assumptions on the coefficients

First of all we consider the forward SDE: for any 0 ≤ t ≤ s ≤ T and any x ∈ Rd

(3) X t,x
s = x +

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr +

∫ s

t

∫

E

β(X t,x
r− , e)µ̃(de, dr).

Moreover for 0 ≤ s < t, X t,x
s = x. The coefficients b : Rd → Rd, σ : Rd → Rd×k

and β : Rd × E → Rd are supposed to be measurable w.r.t. all variables and satisfy
Conditions (A):

A1. b and σ are Lipschitz continuous w.r.t. x, i.e. there exists a constant Kb,σ such that
for any x and y in R

d:

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ Kb,σ|x− y|
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A2. β is Lipschitz continuous w.r.t. x uniformly in e, i.e. there exists a constant Kβ such
that for all e ∈ E, for any x and y in Rd:

|β(x, e) − β(y, e)| ≤ Kβ|x− y|(1 ∧ |e|).

A3. There exists a constant Cβ such that

|β(x, e)| ≤ Cβ(1 ∧ |e|).

Under these assumptions, for any (t, x) ∈ [0, T ] × Rd, the forward SDE (3) has a unique
strong solution X t,x = {X t,x

s , t ≤ s ≤ T}. Moreover for all (t, x) ∈ [0, T ] × R
d and p ≥ 2

(4) E

[
sup

t≤s≤T
|X t,x

s − x|p
]
≤ C(1 + |x|p)(T − t).

These results can be found in [39], chapter V, Theorems 7 and 67.
The terminal condition ξ of the BSDE will satisfy several assumptions, denoted by

Conditions (B).

B1. There exists a function g defined on Rd with values in R+ ∪ {+∞} such that

ξ = g(X t,x
T ).

We denote
S := {x ∈ R

d s.t. g(x) = ∞}

the set of singularity points for the terminal condition induced by g. This set S is supposed
to be non empty and closed. We also denote by ∂S the boundary of S.

B2. Integrability condition:

g(X t,x
T )1Rd\S(X t,x

T ) ∈ L1 (Ω,FT ,P) .

B3. Continuity condition: g is continuous from Rd to R+ ∪ {+∞}.

Now we consider the BSDE: for any t ≤ s ≤ T

(5) Y t,x
s = ξ +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr −

∫ T

s

Zt,x
r dWr −

∫ T

s

∫

E

U t,x
r (e)µ̃(de, dr).

The generator f of the BSDE (5) is a deterministic function f : [0, T ]×Rd×R×Rk×L2
λ →

R. The unknowns are (Y t,x, Zt,x, U t,x). The BSDE is called singular since the probability
P(ξ = +∞) can be positive.

The function f has the special structure for u in L2
λ:

C1. There exists a function γ from Rd ×E to R such that

f(t, x, y, z, u) = f

(
t, x, y, z,

∫

E

u(e)γ(x, e)λ(de)

)
.
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For simplicity we denote with the same function f the right and the left hand side. For
notational convenience we will denote f 0

r = f 0,t,x
r = f(r,X t,x

r , 0, 0, 0).

C2. The process f 0,t,x is non negative for any (t, x) ∈ [0, T ] × Rd.

C3. The function y 7→ f(t, x, y, z, u) has a monotonicity property as follows: there exists
χ ∈ R such that for any t ∈ [0, T ], x ∈ Rd, z ∈ Rk and u ∈ R

(f(t, x, y, z, u) − f(t, x, y′, z, u))(y − y′) ≤ χ(y − y′)2.

C4. f is locally Lipschitz continuous w.r.t. y: for all R > 0, there exists LR such that
for any y and y′ and any (t, x, z, u)

|y| ≤ R, |y′| ≤ R =⇒ |f(t, x, y, z, u) − f(t, x, y′, z, u)| ≤ LR|y − y′|.

C5. f is Lipschitz in z, uniformly w.r.t. all parameters: there exists L > 0 such that for
any (t, x, y, u), z and z′:

|f(t, x, y, z, u) − f(t, x, y, z′, u)| ≤ L|z − z′|.

C6. The function u ∈ R 7→ f(t, x, y, z, u) is Lipschitz and non decreasing for all (t, x, y, z) ∈
[0, T ] × Rd × R× Rk:

∀u ≤ u′, 0 ≤ f(t, x, y, z, u′) − f(t, x, y, z, u) ≤ L(u′ − u).

C7. There exists a function ϑ ∈ L2
λ such that for all (x, e) ∈ Rd × E

0 ≤ γ(x, e) ≤ ϑ(e).

Since the terminal condition may be singular, to ensure that the solution component Y
attains the value ∞ on S at time T but is finite a.s. before time T , we suppose that

C8. There exists a constant q > 0 and a positive measurable function a : [0, T ]×Rd → R

such that for any y ≥ 0

f(r,X t,x
r , y, z, u) ≤ −a(r,X t,x

r )yq+1 + f(r,X t,x
r , 0, z, u).

Moreover, in order to derive the a priori estimate, the following assumptions will hold.

C9. The function

(t, x) 7→
1

a(t, x)1/q
+ f(t, x, 0, 0, 0)

belongs to Πpg(0, T ).

C10. There exists ℓ > 1 such that the function ϑ in C5 belongs to L
ℓ̃
λ with ℓ̃ = ℓ/(ℓ−1).
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Again to lighten the notations, a(r,X t,x
r ) will be denoted ar or at,xr if we do not need to

precise the variables t and x.
Since we want to work on the link with IPDE, in order to use the work [5], we need

extra assumptions on the regularity of f w.r.t. t and x.

C11. The function t 7→ f(t, x, y, z, u) is continuous on [0, T ].

C12. For all R > 0, t ∈ [0, T ], |x| ≤ R, |x′| ≤ R, |y| ≤ R, z ∈ Rk, u ∈ R,

|f(t, x, y, z, u) − f(t, x′, y, z, u)| ≤ ̟R(|x− x′|(1 + |z|)),

where ̟R(s) → 0 when sց 0.

C13. There exists Cγ > 0 such that for all (x, x′) ∈ (Rd)2, e ∈ E,

|γ(x, e) − γ(x′, e)| ≤ Cγ|x− x′|(1 ∧ |e|2).

Definition 1 (Conditions (C)) If f satisfies all conditions C1 to C13, we say that f
verifies Conditions (C).

1.2 Comments on the hypotheses (C) and examples

The previous list is rather long. It is the union of the conditions of [5] and [26]. Let
us clarify several points. The condition C1 is classical (see [5], [15], [23], etc.)

The conditions C2 to C7 are assumed in [25] to ensure that if ξ and f 0
r are in Lp for

some p > 1, the BSDE (5) has a unique solution in Sp(0, T ). Indeed by C4, for every
n > 0 the function

sup
|y|≤n

|f(r,X t,x
r , y, 0, 0) − f 0

r | ≤ nLn

is bounded on [0, T ] and thus in L1(0, T ).

Lemma 1 Under Hypotheses C6 and C7, for all (t, x, y, z, u, v) ∈ [0, T ]×Rd+1+k×(L2
λ)2,

there exists a progressively measurable process κ = κt,x,y,z,u,v : Ω ×R+ ×E → R such that

(6) f(r,X t,x
r , y, z, u) − f(r,X t,x

r , y, z, v) ≤

∫

E

(u(e) − v(e))κt,x,y,z,u,vr (e)λ(de)

with P⊗ Leb ⊗ λ-a.e. for any (t, x, y, z, u, v), 0 ≤ κt,x,y,z,u,vt (e) and |κt,x,y,z,u,vt (e)| ≤ ϑ(e).

Proof. From Hypotheses C1 and C6, we have

f(r,X t,x
r , y, z, u) − f(r,X t,x

r , y, z, v)

= f

(
r,X t,x

r , y, z,

∫

E

u(e)γ(x, e)λ(de)

)
− f

(
r,X t,x

r , y, z,

∫

E

v(e)γ(x, e)λ(de)

)

=

∫

E

(u(e) − v(e))F t,x,y,z,u,v
r γ(x, e)λ(de)

=

∫

E

(u(e) − v(e))κt,x,y,z,u,vr (e)λ(de),
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with

F t,x,y,z,u,u′

r =
f
(
r,X t,x

r , y, z,
∫
E
u(e)γ(x, e)λ(de)

)
− f

(
r,X t,x

r , y, z,
∫
E
v(e)γ(x, e)λ(de)

)
∫
E

(u(e) − v(e))γ(x, e)λ(de)

and
κx,y,z,u,vt (e) = F t,x,y,z,u,v

t γ(x, e).

Since f is non decreasing and from C7, κt,x,y,z,u,vr (e) ≥ 0 and from the Lipschitz condition,

|κt,x,y,z,u,vr (e)| ≤ Lϑ(e).

This achieves the proof. �

The previous lemma implies that f is Lipschitz continuous w.r.t. u uniformly in ω, t,
y and z:

|f(t, x, y, z, u) − f(t, x, y, z, v)| ≤ L‖ϑ‖L2
λ
‖u− v‖L2

λ
.

Hence we can apply Theorems 1 and 2, together with Proposition 2 in [25] and deduce
the existence and the uniqueness of the solution of the BSDE under suitable integrability
conditions on ξ and f 0. Moreover we can compare two solutions of the BSDE (5) with
different terminal conditions (see Theorem 4.1 and Assumption 4.1 in [40] or Proposition
4 in [25]).

The assumptions C8, C9 and C10 are used to deal with singular terminal condition
ξ, that is when P(ξ = +∞) > 0.

Remark 1 Assumption C8 implies that the function a must be bounded.

Lemma 2 For any η > 0 and ℓ > 0

(7) E

∫ T

0

(T − s)−1+η

[(
1

qas

)1/q

+ (T − s)1+1/qf 0
s

]ℓ

ds < +∞.

Proof. From integrability property (4) of X , C9 implies that a−1/q and f 0 belong to any
Lδ((0, T ) × Ω) for any δ > 1. Hence:

E

∫ T

0

(T − s)−1+η

[(
1

qat,xs

)1/q

+ (T − s)1+1/qf 0,t,x
s

]ℓ

ds

≤ C(1 + |x|δℓ)E

∫ T

0

(T − s)−1+ηds < +∞

for any 0 < η. �

This lemma implies in particular that there exists ℓ > 1 such that

E

∫ T

0

[(
1

qa(r,X t,x
r )

)1/q

+ (T − r)1+1/qf 0,t,x
r

]ℓ

dr < +∞

and from C10, ϑ is in Lℓ̃
λ, where ℓ̃ is the Hölder conjugate of ℓ.
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Finally with Condition C11, we will deduce existence of a viscosity solution for the
IPDE as in [5], whereas C12 and C13 are assumed to ensure uniqueness of the viscosity
solution.

Now let us give two examples of generators f satisfying Conditions (C).

• Assume that y 7→ f(y) is a non increasing function of class C1, with f(0) ≥ 0 and
such that for some constant a > 0 and any y ≥ 0: f(y) − f(0) ≤ −ay|y|q. Then
(C) holds. In particular, f(y) = −y|y|q (for some q > 0) is a classical example.

• In [26] the generator related to the optimal closure portfolio strategy is given by:

f(t, x, y, u) = −
y|y|q

qη(t, x)q
+ f 0(t, x).

The parameter η > 0 is the price impact parameter and f 0 ≥ 0 is the risk measure
of the open position. Here a(t, x) = − 1

qη(t,x)q
and η and f 0 are continuous functions

of polynomial growth.

1.3 A first link with viscosity solution of a IPDE

First assume that (t, x) ∈ [0, T ] × Rd is fixed. Under Conditions C1 to C7, from
Theorems 1 or 2 in [25], there exists a unique solution for the truncated version of BSDE
(5), where the terminal condition ξ = g(X t,x

T ) is replaced by ξ∧n = g(X t,x
T )∧n = gn(X t,x

T )
and where the generator f is replaced by fn for some n > 0:

fn(r, y, z, u) = (f(r,X t,x
r , y, z, u) − f 0

r ) + (f 0
r ∧ n).

From B3, for any n ∈ N∗, x 7→ gn(x) = g(x) ∧ n is a continuous function on Rd. The
solution of this truncated BSDE will be denoted by (Y n,t,x, Zn,t,x, Un,t,x): for any t ≤ s ≤ T

Y n,t,x
s = ξ ∧ n +

∫ T

s

fn(r, Y n,t,x
r , Zn,t,x

r , Un,t,x
r )dr −

∫ T

s

Zn,t,x
r dWr(8)

−

∫ T

s

∫

E

Un,t,x
r (e)µ̃(dr, de).

Moreover (Y n,t,x, Zn,t,x, Un,t,x) ∈ Sδ(0, T ) for any δ > 1.
If (C) holds, we work with almost the same setting as in [5]. The only difference is that

f is not Lipschitz continuous w.r.t. y. But for a fixed n, a straightforward consequence
of the comparison principle for BSDE implies that Y n,t,x is bounded by n(T + 1) (see

Proposition 4 in [25]). We can replace in the BSDE (8) our generator fn by f̂n with

f̂n(t, x, y, z, q) = fn(t, x, Tn(y), z, q) with Tn(y) = (n(T + 1)y)/(|y| ∨ n(T + 1)). From

Condition C4, f̂n is Lipschitz w.r.t. y.
We will use the notion of viscosity solution of the IPDE (1). The reason will be clearer

later. For a locally bounded function v in [0, T ] × Rd, we define its upper (resp. lower)
semicontinuous envelope v∗ (resp. v∗) by:

v∗(t, x) = lim sup
(s,y)→(t,x)

v(s, y) (resp. v∗(t, x) = lim inf
(s,y)→(t,x)

v(s, y)).
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For such equation (1) we introduce the notion of viscosity solution as in [1] (see also
Definition 3.1 in [5] or Definitions 1 and 2 in [8]). Since we do not assume the continuity
of the involved function u, we adapt the definition of discontinuous viscosity solution (see
Definition 4.1 and 5.1 in [23]).

Definition 2 A locally bounded function v is

1. a viscosity subsolution of (1) if it is upper semicontinuous (usc) on [0, T )×Rd

and if for any φ ∈ C2([0, T ]×R
d) wherever (t, x) ∈ [0, T )×R

d is a global maximum
point of v − φ,

−
∂

∂t
φ(t, x) − Lφ(t, x) − I(t, x, φ) − f(t, x, v, (∇φ)σ,B(t, x, φ)) ≤ 0.

2. a viscosity supersolution of (1) if it is lower semicontinuous (lsc) on [0, T )×Rd

and if for any φ ∈ C2([0, T ]×Rd) wherever (t, x) ∈ [0, T )×Rd is a global minimum
point of v − φ,

−
∂

∂t
φ(t, x) − Lφ(t, x) − I(t, x, φ) − f(t, x, v, (∇φ)σ,B(t, x, φ)) ≥ 0.

3. a viscosity solution of (1) if its upper envelope v∗ is a subsolution and if its lower
envelope v∗ is a supersolution of (1).

This definition is equivalent to Definition 4.1 in [23]. We can also give another definition
like Definition 5.1 in [23]. For any δ > 0, the operators I and B will be split in two parts:

I1,δ(t, x, φ) =

∫

|e|≤δ

[φ(t, x+ β(x, e)) − φ(t, x) − (∇φ)(t, x)β(x, e)]λ(de)

I2,δ(t, x, p, φ) =

∫

|e|>δ

[φ(t, x+ β(x, e)) − φ(t, x) − pβ(x, e)]λ(de),

Bδ(t, x, φ, v) =

∫

|e|≤δ

[φ(t, x+ β(x, e)) − φ(t, x)]γ(x, e)λ(de)

+

∫

|e|>δ

[v(t, x+ β(x, e)) − v(t, x)]γ(x, e)λ(de).

Definition 3 A locally bounded and upper (resp. lower) semicontinuous function v is a
viscosity sub (resp. super) solution of (1) if for any δ > 0, for any φ ∈ C2([0, T ]×
Rd) wherever (t, x) ∈ [0, T )×Rd is a global maximum (resp. minimum) point of v− φ on
[0, T ] ×B(x,Rδ),

−
∂

∂t
φ(t, x) −Lφ(t, x) − I1,δ(t, x, φ) − I2,δ(t, x,∇φ, v)

−f(t, x, v, (∇φ)σ,Bδ(t, x, φ, v)) ≤ 0 (resp. ≥ 0).
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We refer to Remark 3.2 and Lemma 3.3 in [5], to condition (NLT), Proposition 1 and
Section 2.2 in [8] and to Appendix in [23] for the discussion (and the proof) on the
equivalence between Definitions 2 and 3.

In these two definitions the terminal condition u(T, .) = g is not implied. For the
Cauchy problem (1) with u(T, .) = g where g is a bounded1 and continuous solution, we
say that a comparison principle holds if: for two functions u and v,

• u is locally bounded and lsc (resp. v is locally bounded and usc) on [0, T ] × Rd ;

• u is a subsolution (resp. v is a supersolution) of (1) ;

• u(T, x) ≤ g(x) (resp. v(T, x) ≥ g(x)) ;

then u ≤ v on [0, T ]×Rd. A comparison principle has two immediate consequences. First
if v is a viscosity solution of (1) such that v∗(T, .) ≤ g ≤ v∗(T, .) on Rd, then v is a
continuous function. Second uniqueness of a continuous and bounded viscosity solution
holds.

From Theorem 3.4 and Theorem 3.5 in [5], we have directly the next result.

Proposition 1 Under conditions (A) on the coefficients of the SDE (3) and assumptions
(B) and (C) on the terminal condition and on the generator of the BSDE (5), the function
un(t, x) := Y n,t,x

t , (t, x) ∈ [0, T ] × Rd, is the unique bounded (by n(T + 1)) continuous
viscosity solution of (1) with generator fn and with terminal condition un(T, .) = gn.

1.4 Known results on singular BSDE

In [26], we extend the result of [37] and [2] concerning BSDE with a singular terminal
condition, i.e. when P(ξ = +∞) > 0. Note that the special structure C1 of the generator
is useless here.

Proposition 2 ([26], Theorem 1) Under Conditions C2 to C10, the sequence of pro-
cesses (Y n,t,x, Zn,t,x, Un,t,x) converges to (Y t,x, Zt,x, U t,x) on Sℓ(t, r) for any t ≤ r < T
and

• Y t,x
r ≥ 0 a.s. for any t ≤ r ≤ T .

• (Y t,x, Zt,x, U t,x) belongs to Sℓ(t, r) for any t ≤ r < T .

• For all t ≤ s ≤ s′ < T :

Y t,x
s = Y t,x

s′ +

∫ s′

s

f(r,X t,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr −

∫ s′

s

Zt,x
r dWr −

∫ s′

s

∫

E

U t,x
r (e)µ̃(dr, de).

• (Y t,x, Zt,x, U t,x) is a super-solution in the sense that: a.s.

(9) lim inf
r→T

Y t,x
r ≥ ξ = g(X t,x

T ).

1This condition can be relaxed. See for example Condition 3.3 in [5].
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Definition 4 Any process (Ỹ , Z̃, Ũ) satisfying the previous four items is called super-
solution of the BSDE (5) with singular terminal condition ξ.

In [26], we have also proved minimality of the constructed solution in the sense that if

(Ỹ , Z̃, Ũ) is another non negative super-solution, then for all r ∈ [t, T ], P-a.s. Ỹr ≥ Y t,x
r .

Let us precise immediately that from the second and/or third items Y is càdlàg 2 on
[0, T [. This problem is studied in [38]. But in general we do not know if Y has a left limit
at time T .

A key point of the proof is the a priori estimate: for any n, a.s. for any t ≤ s ≤ T

(10) Y n,t,x
s ≤ Y t,x

s ≤
Kℓ,L,ϑ

(T − s)1+1/q



E




∫ T

s

[(
1

qar

)1/q

+ (T − r)1+1/qf 0
r

]ℓ

dr

∣∣∣∣Fs







1/ℓ

where Kℓ,L,ϑ is a non negative constant depending only on ℓ, L and ϑ and this constant
is a non decreasing function of L and ϑ and a non increasing function of ℓ.

2 Existence of a minimal viscosity solution with sin-

gular data

The minimal solution Y t,x of the singular BSDE (5) is obtained as the increasing limit
of Y n,t,x: for any t ≤ s ≤ T

lim
n→+∞

Y n,t,x
s = Y t,x

s .

And it is well known that viscosity solutions are stable by monotone limit. That is the
reason why we use this notion of weak solutions.

We define the function u by:
u(t, x) = Y t,x

t .

Therefore the sequence un(t, x) converges to u(t, x). Since a and f 0 depend only on X t,x,
using Condition C9 and Property (4), the a priori estimate (10) becomes: there exist two
constants K > 0 and δ > 0 such that for all (t, x) ∈ [0, T ] × Rd:

(11) 0 ≤ un(t, x) ≤ u(t, x) ≤
K

(T − t)1/q
(1 + |x|δ).

Since un is a continuous function, the function u is lower semi-continuous on [0, T ] × Rd

and satisfies for all x0 ∈ Rd:

(12) lim inf
(t,x)→(T,x0)

u(t, x) ≥ g(x0).

2French acronym for right-continuous with left limit.
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2.1 Minimal viscosity solution

The aim of this section is to prove the following result.

Theorem 1 Under conditions (A)-(B)-(C), u(t, x) = Y t,x
t is a viscosity solution of the

IPDE (1) on [0, T [×Rd. Moreover u is the minimal viscosity solution among all non
negative solutions satisfying (12).

Note that we do not prove the continuity of u because of the lack of uniform con-
vergence of the approximating sequence un. But we are also not able to show that u is
discontinuous.

Proof. In order to prove that u is a viscosity solution, the main tool is the half-relaxed
upper- and lower-limit of the sequence of functions {un}, i.e.

u(t, x) = lim sup
n→+∞

(t′,x′)→(t,x)

un(t′, x′) and u(t, x) = lim inf
n→+∞

(t′,x′)→(t,x)

un(t′, x′).

In our case, u∗ = u = u ≤ u = u∗ because the sequence {un} is non decreasing and un is
continuous for all n ∈ N

∗. From the estimate (11), for all ε > 0, there exists a constant
Kε such that for every n ∈ N∗ and all (t, x) ∈ [0, T − ε] × Rd,

(13) 0 ≤ un(t, x) ≤ u(t, x) ≤ Kε(1 + |x|δ).

Hence u∗ also satisfies (11) and (13). In other words un, u and u∗ belong to Πpg(0, T − ε)
and the upper bound does not depend on the (singular or not) terminal condition.

Since un is a viscosity solution of the IPDE (1), passing to the limit with a stability
result, we can obtain that u (resp. u∗) is a supersolution (resp. subsolution) of (1) on
[0, T [×Rd. The details are left to the reader (see the proof of Theorem 4.1 in [23] or the
results in [1], [8] or [9]).

We want to prove minimality of the viscosity solution obtained by approximation
among all non negative viscosity solutions. Let us consider a non negative viscosity
solution v (in the sense of Definition 3) with terminal condition (12). We prove that for
all integer n: for all (t, x) ∈ [0, T ] × Rd, un(t, x) ≤ v∗(t, x). We deduce that u ≤ v∗ ≤ v.
This result (un ≤ v∗) seems to be a direct consequence of a well-known maximum principle
for viscosity solutions (see [4] or [14] when I = 0, [5], [8] or [23] in general). But to the
best of our knowledge, this principle was not proved for solutions which can take the
value +∞ at time T , except in [37] in the Brownian setting and for f(y) = −y|y|q. Let
us adapt the proof of Proposition 23 in [37] to the IPDE (1). The key point is to avoid
the terminal time T .

To simplify the notation, we will denote F the following function on [0, T ]×Rd×R×
Rd × Sd × R2:

(14) F (t, x, u, p,X, I, B) = −pb(x) −
1

2
Trace(X(σσ∗)(x)) − I − f(t, x, u, pσ(x), B).

Sd is the set of symmetric matrices of size d× d.
The beginning of the proof is exactly the same: we fix ε > 0 and n ≥ 1 and we define

un,ε(t, x) = un(t, x) − ε
t
. We prove that un,ε ≤ v∗ for every ε, hence we deduce un ≤ v∗.
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Then we argue by contradiction: we suppose that there exists (s, z) ∈ [0, T ] × R
d such

that un,ε(s, z) − v∗(s, z) ≥ ν > 0. First of all, it is clear that s is not equal to 0 or T ,
because un,ε(0, z) = −∞ and v∗(T, z) ≥ g(z) from (12). Next the functions un,ε and
−v∗ are bounded from above on [0, T ] × Rd respectively by n(T + 1) and 0. Thus, for
(η, ̺) ∈ (R∗)2, if we define:

m(t, x, y) = un,ε(t, x) − v∗(t, y) −
η

2
|x− y|2 − ̺

(
|x|2 + |y|2

)
,

m has a supremum Mη,̺ on [0, T ] × Rd × Rd and the penalization terms assure that the
supremum is attained at a point (t̂, x̂, ŷ) = (tη,̺, xη,̺, yη,̺). By classical arguments we
prove that if ̺ is sufficiently small

|x̂|2 + |ŷ|2 ≤
n(T + 1)

̺
and |x̂− ŷ|2 ≤

2n(T + 1)

η
.

Moreover for η large enough, the time t̂ satisfies 0 < t̂ < T (see [37] for the details).
Now since we avoid the terminal time, for η large enough, we can apply Jensen-Ishii’s

Lemma for non local operator established by Barles and Imbert (Lemma 1 and Corollary
2 in [8]) with un,ε subsolution, v∗ supersolution and φ(x, y) = η

2
|x − y|2 + χ (|x|2 + |y|2)

at the point (t̂, x̂, ŷ). We deduce that for any δ > 0 there exists ζ̄ > 0, (a, p,X), (b, q, Y )
such that for any 0 < ζ < ζ̄

ε

T
+ o(ζ) ≤ −F (t̂, x̂, un,ε(t̂, x̂), p,X, In,ε, Bn,ε) + F (t̂, ŷ, v∗(t̂, ŷ), q, Y, I∗, B∗).

where F is the function defined by (14) and the non local operators are

In,ε = I1,δ(t̂, x̂, φ(., ŷ)) + I2,δ(t̂, x̂, p, un,ε(t̂, x̂))

I∗ = I1,δ(t̂, ŷ,−φ(x̂, .)) + I2,δ(t̂, ŷ, q, v∗(t̂, ŷ))

Bn,ε = Bδ(t̂, x̂, φ(., ŷ), un,ε(t̂, x̂))

B∗ = Bδ(t̂, ŷ,−φ(x̂, .)), v∗(t̂, ŷ)).

Using Conditions (A) and (C) (in particular C3–C5–C6–C12–C13) and arguing as in
[37], Proposition 4.1 in [23] or Theorem 3 in [8], one can control the difference of the
right-hand side to obtain:

(15)
ε

T
+ o(ζ) ≤ ω1 (η, ̺, x̂, ŷ)O(δ) + ω2

(
η|x̂− ŷ|2, ̺(1 + |x̂|2 + |ŷ|2), |x̂− ŷ|

)

where we have gathered in the ω1 terms, all terms multiplied by O(δ). The ω2 term
contains all terms of the form η|x̂− ŷ|2, ̺(1 + |x̂|2 + |ŷ|2) or |x̂− ŷ|. The details are left
to the reader.

We let ζ and δ go to zero and since

lim
η→+∞

lim
̺→0

(η
2
|x̂− ŷ|2 + ̺

(
|x̂|2 + |ŷ|2

))
= 0,

the inequality (15) leads to a contradiction taking ̺ sufficiently small and η sufficiently
large. Hence un,ε ≤ v∗ and it is true for every ε > 0, so the result is proved. �
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2.2 Singular terminal condition

Now we want to study the behaviour of u at the terminal time T . As for the singular
BSDE (5), the main difficulty is to show that

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0) = u(T, x0).

On the set S = {g = +∞}, we already have (12). Hence we concentrate ourselves on
R = {g < +∞}. We overcome this problem in two steps:

• We prove that u∗ is locally bounded on a neighbourhood of T on the open set R.

• We deduce that u∗ is a subsolution with relaxed terminal condition and we apply
this to demonstrate that u∗(T, x) ≤ g(x) if x ∈ R.

To obtain the local boundedness of u∗, we add some conditions. We need to control a
term due to the covariance between the jumps of the SDE (3) and the jumps of the BSDE
(5). We make a link between the singularity set S and the jumps of the forward process
X . More precisely we assume Conditions (D):

D1. The boundary ∂S is compact and of class C2.

D2. For any x ∈ S, λ-a.s.
x + β(x, e) ∈ S.

Furthermore there exists a constant ν > 0 such that if x ∈ ∂S, then d(x +
β(x, e), ∂S) ≥ ν, λ-a.s.

These assumptions mean in particular that if Xs− ∈ S, then Xs ∈ S a.s. Moreover if Xs−

belongs to the boundary of S, and if there is a jump at time s, then Xs is in the interior
of S. We prove the next result

Theorem 2 Under conditions (A)-(B)-(C)-(D) and if

(16)
2

q
+ 2

(
1 −

1

ℓ

)
< 1

holds, then
lim

(t,x)→(T,x0)
u(t, x) = g(x0).

Remark 2 (On the condition (16)) The condition (16) is a balance between the non-
linearity q and the singularity of the generator f . It holds for ℓ < 2 and q > 2ℓ

2−ℓ
. In other

words if q > 2, we can take ℓ ∈ (1, 2) such that q > 2ℓ/(2 − ℓ). The counterpart is that ϑ

should be in L2
λ ∩ Lℓ̃

λ with ℓ̃ = ℓ/(ℓ− 1). If the generator is f(y) = −y|y|q, it is sufficient
to suppose that q > 2, which was supposed in [36] and in [37].

We split the proof in two lemmas.
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Lemma 3 Under the conditions of Theorem 2, there exists a constant C independent of
n and t such that for φ defined by (17)

un(t, x)φ(x) ≤ C(1 + |x|δ).

Proof. To prove the local boundedness of u∗, we follow the same scheme as in [38],
Section 4.4. Remember that S is the singular set of g, R = Sc is open and for any ε > 0
we define

Γ(ε) := {x ∈ R : d(x, ∂S) ≥ ε}.

d(., ∂S) is the distance to the boundary ∂S. By the C∞ Urysohn lemma, there exists a
C∞ function ψ such that ψ ∈ [0, 1], ψ ≡ 1 on Γ(ε) and ψ ≡ 0 on Γ(ε/2)c. In particular
the support of ψ is included in R and since ∂S is compact, ψ belongs to C∞

b (Rd). We
take γ > 2(q + 1)/q and we define

(17) φ = ψγ.

Note that φ also takes its values in [0, 1], φ ≡ 1 on Γ(ε) and φ ≡ 0 on Γ(ε/2)c.
Using Lemma 2, since (16) holds, we can take η > 0 such that

(18) ρ =
2

q
+ 2

(
1 −

1

ℓ

)
+

2η

ℓ
< 1.

From Proposition 2 in [38], there exist two constants C and δ independent of (n, t, x) such
that the process (Zn,t,x, Un,t,x) satisfies:

(19) E

[∫ T

t

(T − s)ρ
(
|Zn,t,x

s |2 + ‖Un,t,x
s ‖2

L2
λ

)
ds

]ℓ/2
≤ C(1 + |x|δ).

We use Itô’s formula to the process Y n,t,xφ(X t,x) where φ is defined by (17), between
t and T and we take the expectation since (Y n, Zn, Un,Mn) belongs to S2(0, T ), X is in
H2(0, T ), and φ and the derivatives of φ are supposed to be bounded. Thus we obtain for
x ∈ Rd and t ∈ [0, T ):

un(t, x)φ(x) = E[Y n,t,x
T φ(X t,x

T )] − E

∫ T

t

Y n,t,x
s−

[
Lφ(s,X t,x

s ) + I(s,X t,x
s− , φ)

]
ds(20)

+E

[∫ T

t

φ(X t,x
s−

)fn(s, Y n,t,x
s , Zn,t,x

s , Un,t,x
s )ds

]

−E

[∫ T

t

∇φ(X t,x
s )σ(X t,x

s )Zn,t,x
s ds

]

−E

[∫ T

t

∫

E

(φ(X t,x
s ) − φ(X t,x

s−
))Un,t,x

s (e)λ(de)ds

]
.

From the Assumptions B1 and B2 on ξ = g(X t,x
T ), we have for any n:

E(Y n,t,x
T φ(X t,x

T )) ≤ E(g(X t,x
T )φ(X t,x

T )) < +∞.

17



Now we decompose the quantity with the generator fn as follows:

E

[∫ T

t

φ(X t,x
s− )fn(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , Un,t,x
s )ds

]
(21)

= E

[∫ T

t

φ(X t,x
s−

)(f(s,X t,x
s , Y n,t,x

s , 0, 0) − f 0,t,x
s )ds

]

+E

[∫ T

t

φ(X t,x
s− )(f 0,t,x

s ∧ n)ds

]

+E

[∫ T

t

φ(X t,x
s−

)ζns Z
n,t,x
s ds

]
+ E

[∫ T

t

φ(X t,x
s−

)Un,t,x
s ds

]

where ζns is a k-dimensional random vector defined by:

ζ i,ns =
(f(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , 0) − f(s,X t,x
s , Y n,t,x

s , 0, 0))

Z i,n
s

1Zi,n,t,x
s 6=0

and
Un
s = f(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , Un,t,x
s ) − f(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , 0).

Now from Conditions C5 and C9, using Property (4), Lemma 1 and Estimate (19),
with ρ < 1 given by (18), we can prove that there exists a constant C such that for any n

E

∫ T

t

|
(
∇φ(X t,x

s )σ(X t,x
s ) + φ(X t,x

s )ζns
)
Zn,t,x

s |ds(22)

+E

∫ T

t

(∫

E

|φ(X t,x
s ) − φ(X t,x

s−
)||Un,t,x

s (e)|λ(de) + |φ(X t,x
s−

)||Un
s |

)
ds

+E

[∫ T

t

φ(X t,x
s− )(f 0,t,x

s ∧ n)ds

]
≤ C(1 + |x|δ)

Moreover since γ > 2(q + 1)/q in (17), there is a constant C such that

Lφ = L(ψγ) ≤ Cψγ−2,

(see [30]). Hence by Hölder’s inequality

E

[∫ T

t

|Y n,t,x
s−

Lφ(s,X t,x
s )|ds

]
≤ C

[
E

∫ T

t

a(s,X t,x
s )φ(X t,x

s )(Y n,t,x
s )q+1ds

]1/(q+1)

.(23)

Up to now Conditions (D) were not used. In fact they are assumed only to control
the non local term I. Since ∂S is compact and of class C1, then there exists a constant
ε0 > 0 such that for every y ∈ R ∩ Γ(ε0)

c, there exists a unique z ∈ ∂S such that
d(y, ∂S) = ‖y − z‖ (see for example [21], Section 14.6). From [38], Lemma 4.8, we can
choose ε0 small enough such that for any 0 < ε < ε0:

(24) ψ(Xs−) = 0 ⇒ ψ(Xs) = 0,
ψ(Xs)

ψ(Xs−)
= ψ(Xs)1Γ(ε)(Xs−).
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These last properties are used to prove as in [38] that:

(25) E

[∫ T

t

Y n,t,x
s−

|I(s,X t,x
s− , φ)|ds

]
≤ C

[
E

∫ T

t

a(s,X t,x
s )φ(X t,x

s− )(Y n,t,x
s )q+1ds

] 1
q+1

.

Now we come to the conclusion. By Condition C8

−E

[∫ T

t

φ(X t,x
s− )(f(s,X t,x

s , Y n,t,x
s , 0, 0) − f 0,t,x

s )ds

]
(26)

≥ E

[∫ t

0

φ(X t,x
s− )a(s,X t,x

s )(Y n,t,x
s )1+qds

]
.

The relations (22), (23), (25) and (26) hold. Thus, we have:

−E

∫ T

t

φ(X t,x
s )fn(s, Y n,t,x

s , Zn,t,x
s , Un,t,x

s )ds

+E

∫ T

t

Y t,x,n
s−

[
Lφ(X t,x

s ) + I(s,X t,x
s− , φ)

]
ds ≤ C(1 + |x|δ).

The constant C does not depend on n and t. In the left hand side, the second term is
controlled by the first one raised to a power strictly smaller than 1 (see (23) and (25)).
Therefore, there exists a constant C:

E

∫ T

t

φ(X t,x
s )|fn(s, Y n,t,x

s , Zn,t,x
s , Un,t,x

s )|ds ≤ C(1 + |x|δ).

From (20) we deduce that there exists a constant C independent of n and t such that

un(t, x)φ(x) ≤ C(1 + |x|δ).

This achieves the proof of the lemma. �

From the boundedness of un on [0, T ] × Γ(ε), uniformly in n, we can derive the next
result.

Lemma 4 Assumptions (A)-(B)-(C)-(D) and (16) hold. For any ε > 0, if we define
the closed subset of R

Γ(ε) := {x ∈ R : d(x, ∂S) ≥ ε}

u∗ is a subsolution with relaxed terminal condition:




−
∂u∗

∂t
− Lu∗ − Iu∗ − f(t, x, u∗,∇u∗σ,B(t, x, u∗)) = 0, in [0, T ) × Γ(ε);

min

[
−
∂u∗

∂t
− Lu∗ − Iu∗ − f(t, x, u∗,∇u∗σ,B(t, x, u∗)); u∗ − g

]
≤ 0, in {T} × Γ(ε).
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Proof. For any 0 < ε < ε0, un is bounded on [0, T ]×Γ(ε) by C(1 + |x|δ) uniformly w.r.t.
to n. Therefore, u∗ is bounded on [0, T ] × Γ(ε) by C(1 + |x|δ). We know that un is a
subsolution of the IPDE (1) restricted to [0, T ] × Γ(ε), i.e. for (t, x) ∈ [0, T [×Γ(ε)

−
∂un
∂t

(t, x) −Lun(t, x) − I(t, x, un) − fn(t, x, un, (∇un)σ(t, x),B(t, x, un)) = 0

with the terminal condition

un(T, x) = (g ∧ n)(x), x ∈ Γ(ε).

From Theorem 1, u∗ is a subsolution of the IPDE (1) on [0, T [×Γ(ε).
The behaviour at time T is an adaptation of Theorem 4.1 in [4] (see also section 4.4.5

in [4]). Since g is continuous (Hypothesis B3),

g(x) = g(x) = lim sup
n→+∞

x′→x

(g ∧ n)(x′).

Now assume that for ϑ ∈ C1,2([0, T ] × R
d) ∩ Πpg such that u∗ − ϑ has a strict global

maximum on [0, T ] × Γ(ε) at (T, x) and suppose that u∗(T, x) > g(x). There exists a
subsequence nk such that (tnk

, xnk
) is the global maximum of unk

−ϑ on [0, T ]×B(x,Rδ)
and as k goes to ∞, (tnk

, xnk
) −→ (T, x) and unk

(tnk
, xnk

) −→ u∗(T, x). This implies in
particular that tnk

< T for any k large enough. If not, then up to a subsequence (still
denoted nk),

u∗(t, x) = lim sup
k

unk
(tnk

, xnk
) = lim sup

k
unk

(T, xnk
) = lim sup

k
(g ∧ nk)(xnk

) ≤ g(x).

Since unk
is a subsolution, we still have by Definition 3,

−
∂

∂t
ϑ(tnk

, xnk
) − Lϑ(tnk

, xnk
) − I1,δ(tnk

, xnk
, ϑ) − I2,δ(tnk

, xnk
,∇ϑ, unk

)

−fnk(tnk
, xnk

, unk
, (∇ϑ)σ(tnk

, xnk
),Bδ(tnk

, xnk
, ϑ, unk

)) ≤ 0.

and passing through the limit we obtain

−
∂

∂t
ϑ(T, x) − Lϑ(T, x) − I1,δ(T, x, ϑ)

≤ I2,δ(T, x,∇ϑ, ϑ) + f(T, x, u∗, (∇ϑ)σ(T, x),B(T, x, ϑ)).

Thus u∗ is a subsolution on [0, T ] × Γ(ε). �

From Lemma 4, Theorem 4.7 in [4] (with straightforward modifications) shows that
u∗ ≤ g in {T} × Γ(ε). In other words for any x0 ∈ R,

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0).

With Inequality (12), we obtain the desired behaviour of u near terminal time T . This
achieves the proof of Theorem 2.
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3 Regularity of the minimal solution

The function u is the minimal non negative viscosity solution of the PDE (1). From
(11) we know that u is finite on [0, T [×Rd, and for ε > 0 u is bounded on [0, T − ε] × Rd

by K(1+ |x|δ)ε−1/q. We cannot expect regularity on [0, T ]×Rd, but only on [0, T −ε]×Rd

for any ε > 0. In order to obtain a smoother solution u, some assumptions are imposed
on the coefficients. We distinguish three different conditions.

• Sobolev regularity. The viscosity solution is a weak solution in the Sobolev sense
if the coefficients on the forward SDE (3) are smooth and if the linkage operator
x 7→ x + β(x, e) is a C2-diffeomorphism.

• Hölder regularity. Under some non degeneration assumption on the operators L
(A5) or I ((E)), then the viscosity solution is locally Hölder continuous.

• Strong regularity. Under the uniform ellipticity condition A5, u can be a classical
solution under different settings.

– If the measure λ is finite we can transform the IPDE (1) into some PDE without
non local operator (technique developed in [29] or [35]) and then use regularity
arguments for such PDE.

– In the setting of [20], i.e. for some γ < 2

(27)

∫

E

(1 ∧ |e|γ)λ(de) < +∞

and the linkage operator satisfies

(28) det(Idd + ∇xβ(x, e)) ≥ c1 > 0,

the existence of a Green function G with suitable properties will ensure a
regularizing effect of the operator L + I.

Of course, none of these settings gives necessary conditions and other sufficient assump-
tions could be exhibited.

3.1 Sobolev regularity of the solution

The solution u is the increasing limit of un. For un we can apply Theorem 1 of [31].
Indeed let us fix a continuous positive and integrable weight function ρ such that 1/ρ is
locally integrable. We define L2

ρ([0, T ]×Rd) the Hilbert space of functions v : [0, T ]×Rd →
R such that ∫ T

0

∫

Rd

|v(t, x)|2ρ(x)dxdt < +∞.

We assume that

• The functions b, σ, β(., e) are in C3
l,b(R

d) for any e ∈ E. Condition A3 holds also
for all derivatives of β of order less than or equal to 3.

21



• For each e ∈ E the linkage operator x 7→ x+ β(x, e) is a C2-diffeomorphism.

These extra assumptions are used to control the stochastic flow generated by X t,x (see
Proposition 2 in [31]).

Recall that we can replace in the BSDE (8) our generator fn by f̂n where f̂n is Lipschitz
continuous w.r.t. y. Hence all assumptions of Theorem 1 in [31] are fulfilled: un(t, x) =
Y n,t,x
t is the unique Sobolev solution of IPDE (1) in the space

HT =
{
v ∈ L2

ρ([0, T ] × R
d), σ∗∇v ∈ L2

ρ([0, T ] × R
d)
}
.

The definition of Sobolev solution is given in Definition 1 in [31]. Moreover (σ∗∇un)(t, x) =
Zn,t,x

t . In particular for any ε > 0, and each function φ ∈ C∞([0, T ] × R
d) with compact

support in Rd, for any t ≤ T − ε

∫ T−ε

t

(un(s, .), ∂sφ(s, .))ds+ (un(t, .), φ(t, .)) − (un(T − ε, .), φ(T − ε, .))

−

∫ T−ε

t

(un(s, .),A∗φ(s, .))ds

=

∫ T−ε

t

(f(s, ., un(s, .), σ∗∇un(s, .),B(s, ., un)), φ(s, .))ds

where (v, w) =
∫
Rd u(x)v(x)dx is the scalar product on L2(Rd) and A∗ is the adjoint

operator of the operator L + I.
Moreover for any ε > 0, on [0, T − ε], by the estimate (11), and from the inequality

(19) if (16) holds, we deduce that un and σ∗∇un are bounded from above by C(1 + |x|δ)
for some C > 0 and δ > 0. Hence if we choose the suitable weight ρ, un and σ∗∇un are
bounded in HT−ε. Therefore the next result is proved.

Proposition 3 Under conditions (A)-(B)-(C) and (16), if the coefficients b, σ and β
satisfy the above conditions, then u ∈ HT−ε and is a Sobolev solution of the IPDE (1) on
[0, T − ε] for any ε > 0.

Note that in the case f(y) = −y|y|q, the only hypotheses in order to have a Sobolev
solution are on the coefficients of the forward diffusion.

3.2 Lipschitz/Hölder regularity of the solution

Recently there have been several papers [6, 7, 11, 12, 13, 41] (among many others)
dealing with Cα estimates and regularity of the solution of the IPDE (1). Here we will
mainly use the papers [6, 7].

In our setting we defined F by (14) and from Conditions (A) and (C) we can easily
check that F is continuous and degenerate elliptic and (H0) and (H2) of [6] hold:

• If X ≥ Y , I ≥ I ′, B ≥ B′, F (t, x, u, p,X, I, B) ≤ F (t, x, u, p, Y, I ′, B′).

• For any t ∈ [0, T ], x ∈ R
d, u, v in R, p ∈ R

d, X ∈ Sd and (I, B) ∈ R
2,

F (t, x, u, p,X, I, B) − F (t, x, v, p,X, I, B) ≥ 0, when u ≥ v.
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• (I, B) 7→ F (., I, B) is Lipschitz continuous, uniformly with respect to all the other
variables.

Since we are just interesting in a global regularity property, we add the strict ellipticity
condition (H) of [6]. In our setting F is linear w.r.t. X and I. Hence with Λ1(x) = 1 and
if 2Λ2(x) ≥ 0 is the minimal eigenvalue of the matrix σσ∗(x), we have Λ1(x) + Λ2(x) ≥ 1
and

F (t, x, u, p, Y, I ′, B) − F (t, x, u, p,X, I, B) ≤ Λ1(x)(I − I ′) + Λ2(x)Trace(X − Y ).

Moreover from our conditions (A) and C12 if we assume that ̟R in C12 does not
depend on R, then there exists a modulus of continuity ̟F such that Condition (H) is
satisfied (see Section 4.1 in [6]). As explained in the introduction of [6], the diffusion term
gives the ellipticity in certain directions whereas it is given by the non local term in the
complementary directions.

Now when the strict ellipticity is involved by the non local terms, we need some
extra conditions on the Lévy measure λ and on the coefficient β in the SDE (3). These
assumptions are denoted by (J1) to (J5) in [6]. In the following, B is the unit ball in E
and Bε is the ball centred at zero with radius ε > 0. Remember that λ is a Lévy measure
on E = Rd \ {0}: ∫

E

(1 ∧ |e|2)λ(de) < +∞.

From Condition A3, there exists a constant Cλ,β such that for all x ∈ Rd:
∫

B

|β(x, e)|2λ(de) +

∫

Rd\B

λ(de) ≤ Cλ,β.

From A2 there exists a constant Kβ such that for all e ∈ B, and x and y in Rd:

|β(x, e) − β(y, e)| ≤ Kβ|e||x− y|.

Moreover from A3 for all (e, x) ∈ E × R
d

|β(x, e)| ≤ Cβ|e|.

Assumption A2 implies that for all e ∈ E, |e| ≥ 1, and x and y in Rd:

|β(x, e) − β(y, e)| ≤ Kβ|x− y|.

Thereby to verify all conditions of [6] we add these additional hypotheses (E).

E1. There exists cβ > 0 such that for all (e, x) ∈ E × R
d, cβ|e| ≤ |β(x, e)|.

E2. There exists τ ∈ (0, 2) such that for every a ∈ Rd, there exists 0 < η < 1 and a

constant C̃λ > 0 such that the following holds for any x ∈ Rd

∀ε > 0,

∫

Cη,ε(a)

|β(x, e)|2λ(de) ≥ C̃λη
d−1
2 ε2−τ

with Cη,ε(a) = {e; |β(x, e)| ≤ ε, (1 − η)|β(x, e)||a| ≤ |a.β(x, e)|}.
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E3. There exists τ ∈ (0, 2) such that for ε > 0 small enough

∫

B\Bε

|e|λ(de) ≤

{
Ĉλε

1−τ for τ 6= 1,

Ĉλ| ln(ε)| for τ = 1.

We denote by (E) the three conditions E1, E2, E3. If (E) holds then Conditions (J1)
to (J5) of [6] are satisfied. Recall that our terminal condition g is continuous from Rd to
R∪{+∞} (Hypothesis B3). Now we state the main result of this part. This Proposition
is a modification of Corollary 7 of [6].

Proposition 4 Assume that Conditions (A)-(B)-(C)-(E) are satisfied. Moreover the
modulus of continuity in C12 does not depend on R.

• Assume that τ > 1 and that for all M ≥ 0, g is a Lipschitz continuous function on
the set OM = {|g| ≤ M}. Then for all ε > 0, u is locally Lipschitz continuous on
Rd, uniformly w.r.t. t ∈ [0, T − ε]: for all M , there exists a constant CM,ε such that

∀|x| ≤M, ∀|y| ≤M, |u(t, x) − u(t, y)| ≤ CM,ε|x− y|.

The constant CM,ε depends only on ε, on M on the dimension d, and on the con-
stants in Assumption (E).

• If τ ≤ 1, and if for some α < τ , g is α-Hölder continuous function on the set
OM = {|g| ≤ M} for all M ≥ 0, then u is locally α-Hölder continuous on Rd,
uniformly w.r.t. t ∈ [0, T − ε].

Proof. For any n ∈ N, un is a continuous viscosity solution of (1) with terminal condition
gn. Moreover this function is bounded on [0, T ] × R

d by n(T + 1). We can apply to un
the results of Theorem 6 and Corollary 7 in [6].

• Assume that τ > 1. Our condition on g implies that gn is Lipschitz on Rd. From
[6], un is locally Lipschitz continuous w.r.t. x on [0, T ], i.e. for any M > 0, there
exists a constant CM,n such that for all t ∈ [0, T ], all (x, y) ∈ (Rd)2, |x| ≤ M and
|y| ≤M

|un(t, x) − un(t, y)| ≤ CM,n|x− y|.

The key point here is that the constant CM,n depends only on M , on ‖un‖∞, on the
dimension d, and on the constants in Assumption (E). From the upper bound (11)
(or (13)), we deduce that for any ε > 0, on [0, T − ε], ‖un‖∞ is controlled uniformly
w.r.t. n. Thus un is locally Lipschitz continuous w.r.t. x and the Lipschitz constant
CM,n = CM,ε does not depend on n. The pointwise convergence of un to u implies
that the limit u is locally Lipschitz continuous with the same constants.

• If τ ≤ 1, then un is locally α-Hölder continuous w.r.t. x on [0, T ]. The conclusion
follows by the same arguments as above.

�
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Remark 3 (On Condition (E)) If the matrix σσ∗ is uniformly elliptic (see Condition
A5), then the conclusion of the previous proposition still holds without Assumption (E)
and the regularity of u depends on the regularity of g (no more on τ). Nevertheless Con-
dition (E) is crucial to have regularity estimates when the local second order differential
operator L becomes degenerated.

3.3 Strong regularity of the solution

Here we explain how we can derive that this minimal viscosity solution is a regular
function on [0, T − ε] × Rd under additional conditions. To have more regularity on the
solution u we will assume that:

A4. σ and b are bounded: there exists a constant C s.t.

∀x ∈ R
d, |b(x)| + |σ(x)| ≤ C;

A5. σσ∗ is uniformly elliptic, i.e. there exists Λ0 > 0 s.t. for all x ∈ Rd:

∀y ∈ R
d, σσ∗(x)y · y ≥ Λ0|y|

2.

If λ is a finite measure, we obtain a regularity result with a transformation of the non
local operator I. If v is a (classical) solution of the IPDE (1), that is

∂tv + Lv + I(t, x, v) + f(t, x, v,∇vσ(t, x),B(t, x, v)) = 0,

if we define the drift term b̃:

b̃(x) = b(x) −

∫

E

β(x, e)λ(de),

the differential operator L̃:

L̃φ =
1

2
Trace(D2φσσ∗(x)) + b̃(x)∇φ,

and the generator f̃ :

f̃(t, x, v,∇vσ,B(t, x, v)) =

f(t, x, v(t, x),∇v(t, x)σ(t, x),B(t, x, v)) +

∫

E

[v(x + β(x, e)) − v(x)]λ(de),

then

(29) ∂tv + L̃v + f̃(t, x, v,∇vσ,B(t, x, v)) = 0,

This transformation allows us to use all results concerning the PDE (29), especially the
ones contained in the reference book [27]. This idea is used in [29] and [35].
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Lemma 5 Under (A)–A4–A5 and (C), if the measure λ is finite and if one of the next
conditions holds:

• f depends only on (t, x, v) with f(t, x, 0) bounded uniformly w.r.t. (t, x),

• (t, x) 7→ f(t, x, y, z, u) is in Hα/2,α, the (α/2, α)-Hölder norm is uniformly bounded
w.r.t. (y, z, u) and f(t, x, 0, z, u) is bounded,

then for every bounded and continuous function φ, the IPDE (1) with terminal condition
v(T, .) = φ, has a unique bounded classical solution v in the sense that v ∈ C1,2([0, T ) ×
Rd) ∩ C([0, T ] × Rd).

Proof. For the first case we use the scheme done in [37] (Proposition 24) on PDE
(29), for the second the technique developed in Ma et al. [29] (Theorem 1) and in Pham
[35] (Proposition 5.3). The details of the proof are left to the reader. �

Remark 4 Let us emphasize that in the first case no regularity assumption on the coef-
ficients b, σ and f(., ., 0) is required. Only boundedness and A5 are important.

The main drawback of the previous lemmas is the finiteness of the measure λ. To
avoid this condition, we must use regularity results on IPDE.

Lemma 6 Under (A)–A4–A5 and (C), assume that

• The measure λ satisfies (27) for some γ < 2.

• The function β is differentiable w.r.t. x and (28) holds.

• f is Hölder-continuous w.r.t. (t, x) uniformly w.r.t. the other parameters, that is
there exists α ∈ (0, 1) such that there exists a constant C such that for all (y, z, u)

|f(t, x, y, z, u) − f(t′, x′, y, z, u)| ≤ C(|t− t′|α/2 + |x− x′|α).

Then for any bounded and continuous function φ, the IPDE (1) with terminal condition
φ has a unique solution v in the set C([0, T ] ×Rd) ∩H1+δ/2,2+δ([0, T ) × Rd) where δ = α
if γ < 2 − α and δ ∈ (0, 2 − α) if γ ∈ [2 − α, 2). Moreover v is bounded on [0, T ] × Rd.

Proof. From [18, 19, 20], there exists a unique Green function G associated with the
parabolic second-order integro-differential operator ∂tu − Lu − Iu. The key properties
of G are inherited from the properties of the Green function GL associated to L, studied
in Chapter IV, Sections 12 to 14 of [27]. From Theorem VIII.2.1 of [18], Theorem 3.2 of
[19] and Section IV.14 of [27], if φ is a continuous and bounded function, and f ∈ Hα/2,α,
then the function v defined by

v(t, x) =

∫

Rd

G(x, t, y, 0)φ(y)dy+

∫ t

0

∫

Rd

G(x, t, y, s)f(y, s)dyds = v1(t, x) + v2(t, x)

on (0,+∞) × R
d is in H1+δ/2,2+δ((0, τ ] × R

d) for any τ > 0, and solves the IPDE:

∂tv − Lv − Iv = f(t, x)
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with the initial condition v(0, .) = φ. Moreover there exists a constant C independent of
φ such that:

ε1+δ/2‖v1‖H1+δ/2,2+δ([ε,τ ]×Rd) ≤ C‖φ‖∞,

and
‖v2‖H1+δ/2,2+δ([ε,τ ]×Rd) ≤ C‖f‖δ.

The time reversion will give the same inequality on [0, T − ε] × R
d, if φ is a terminal

condition at time T .
Using this regularizing property, we can follow the ideas developed in the proof of

Theorem 4.2, Chapter VI (see also Theorem 6.1, Chapter V) in [27]. For 0 ≤ ρ ≤ 1, we
consider the family of linear problems: on [0, T ) × Rd

(30) ∂tv(t, x) + Lv(t, x) + I(t, x, v) + ρf(t, x, w, (∇w)σ,B(t, x, w)) = 0

with terminal condition v(T, .) = φ. This defines an operator Ψ which associates each
function w ∈ H1+δ/2,2+δ([0, T ) × R

d) with a solution v of the linear problem (30): v =
Ψ(w, ρ). The Leray-Schauder principle (see [27] for the details) implies that for each
ρ ∈ [0, 1], there exists at least one fixed point vρ ∈ H1+δ/2,2+δ([0, T )×Rd) for Ψ. We just
have to take ρ = 1 to obtain v.

The continuity and the boundedness on the solution v comes from classical a priori
estimate on the BSDE (see [5]). �

Proposition 5 Under (A)–A4–A5, (B) and (C), we assume that the conditions of
Lemmas 5 or 6 hold. Moreover the function in C9 is bounded. Then:

(31) u ∈ C1,2([0, T ) × R
d;R+).

Before the proof let us remark that if (D) is also satisfied, then u is continuous on
[0, T ] × Rd.

Proof. Recall that un is jointly continuous in (t, x) and from (13), un is bounded on
[0, T − ε] × R

d uniformly in n. But if the function involved in C9 is bounded, then we
can take δ = 0 in Lemma 6. Thus, the problem

∂tv + Lv + I(t, x, v) + fn(t, x, v,∇vσ(t, x),B(t, x, v)) = 0,

with terminal condition φ = un(T − ε, .) has a bounded classical solution. Since every
classical solution is a viscosity solution and since un is the unique bounded and continuous
viscosity solution, we deduce that:

∀ε > 0, un ∈ C1,2([0, T − ε[×R
d;R+).

From the construction of the classical solution un, we also know that the sequence {un}
is bounded in Hα,1+α([0, T − ε/2] × K) for any compact subset K of Rd. Among other
parameters the bound is given by the L∞ norm of un which is smaller than (T − ε/4)−1/q.
Therefore u is continuous on [0, T − ε/2] × Rd and if we consider the IPDE (1) with
continuous terminal data u(T − ε, .), with the same argument as for un, we obtain that u
is a classical solution, i.e. u ∈ C1,2([0, T − ε] × Rd;R+). This achieves the proof. �
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