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Avenue O. Messiaen, 72085 Le Mans cedex 9
France

January 31, 2017

Abstract

In this paper, we show that the minimal solution of a backward differential

equation gives a probabilistic representation of the minimal viscosity solution of an

integro-partial differential equation both with a singular terminal condition. Singu-

larity means that at the final time, the value of the solution can be equal to infinity.

Different types of regularity of this viscosity solution are investigated: Sobolev,

Hölder or strong regularity.
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Introduction

The notion of backward stochastic differential equations (BSDEs) was first introduced
in [12] in the linear setting and in [38] for non linear equation. One particular interest
for the study of BSDE is the application to partial differential equations (PDEs). Indeed
as proved in the paper [37], BSDEs can be seen as generalization of the Feynman-Kac
formula for non linear PDEs. Since then a large literature has been developped on this
topic (see in particular the books [19], [47], [17], [39] and the references therein).

In this context the considered PDEs are semi-linear, i.e. of the following form:

(1)
∂u

∂t
(t, x) + Lu(t, x) + f(t, x, u(t, x),∇u(t, x)σ(t, x)) = 0
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where u : [0, T ]×R
d → R is the unknown function, b and σ are given functions1 defined on

Rd and with values respectively in Rd and Rd×d. L is a second-order differential operator
defined by

(2) Lφ = (∇u)b+
1

2
Trace((D2u)σσ∗).

The notations ∇ and D2 are respectively the gradient and the Hessian matrix w.r.t. x.
Moreover the solution u should satisfy the terminal condition u(T, x) = g(x). When f is
equal to zero, the Feynman-Kac formula states that the solution u is given by:

∀(t, x) ∈ [0, T ] × R
d, u(t, x) = E(g(X t,x

T ),

where X t,x is the solution of a (forward) stochastic differential equation (SDE): for any
0 ≤ t ≤ s ≤ T and x ∈ R

d

(3) X t,x
s = x+

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr.

W is a d-dimensional Brownian motion. In general, the probabilistic representation of
the solution u is given by a couple of two SDEs, the forward SDE (3) and a backward
equation: for any 0 ≤ t ≤ s ≤ T and x ∈ Rd

(4) Y t,x
s = g(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr.

The main result of [37] can be summarized by the equality:

u(t, x) = Y t,x
t .

Roughly speaking, if we can solve the system (3) and (4), then Y t,x
t is a deterministic

function and is a (weak) solution of (1). This is a method of characteristics to solve the
parabolic PDE. The converse assertion can be proved provided we can apply Itô’s formula.
If the solution u is enough regular, then Itô’s formula gives: Y t,x

s = u(s,X t,x
s ). See for

example [9] for more details. The extension to quasi-linear PDEs (when the functions b
and σ depend on u and ∇u) or to fully non linear PDEs has been already developped (see
among other [32] and [48]).

Here we are interesting in another development of the theory: the case of Poisson
random noise. In [5], Barles et al. show that we can add in the system (3)–(4) a Poisson
random measure µ:

(5)





X t,x
s = x +

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr +

∫ s

t

∫

E

β(X t,x
r−
, e)µ̃(de, dr)

Y t,x
s = g(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr −

∫ T

s

Zt,x
r dWr

−

∫ T

s

∫

E

U t,x
r (e)µ̃(de, dr).

1b and σ can also depend on time with straightforward modifications in the proofs.
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Here µ̃(de, ds) = µ(de, ds) − λ(de)ds is the martingale measure related to µ, λ being the
characteristic measure of µ. And if we can find a solution (X t,x, Y t,x, Zt,x, U t,x) to this
problem, then again u(t, x) = Y t,x

t will be a weak solution of a integro-partial differential
equation (IPDE):

(6)
∂

∂t
u(t, x) + Lu(t, x) + I(t, x, u) + f(t, x, u, (∇u)σ,B(t, x, u)) = 0

where L is given by (2) and I and B are two integro-differential operators2:

I(t, x, φ) =

∫

E

[φ(x + β(x, e)) − φ(x) − (∇φ)(x)β(x, e)]λ(de)

B(t, x, φ) =

∫

E

[φ(x + β(t, x, e)) − φ(x)]γ(x, e)λ(de).

The term γ is related to the generator f which is supposed to have the special form:

f(t, x, y, z, u) = f

(
t, x, y, z,

∫

E

u(e)γ(x, e)λ(de)

)
.

In [5], weak solution means viscosity solution. Since this paper, several authors have
weaken the assumptions of [5]. The books [47] (Section 8.17) and [17] (Chapter 4) give a
nice review of these results (and several references on this topic). Let us mention that in
[34] the authors obtain a similar result, but for Sobolev-type solution of the IPDE (6).

Among all semi-linear PDEs like (1), a particular form has been widely studied:

(7)
∂u

∂t
(t, x) + Lu(t, x) − u(t, x)|u(t, x)|q = 0.

Baras & Pierre [3], Marcus & Veron [33] (and many other papers) have given existence
and uniqueness results for this PDE. In [33] it is shown that every positive solution of (7)
possesses a uniquely determined final trace g which can be represented by a couple (S, µ)
where S is a closed subset of Rd and µ a non negative Radon measure on R = Rd \ S.
The final trace can also be represented by a positive, outer regular Borel measure ν, and
ν is not necessary locally bounded. The two representations are related by:

∀A ⊂ R
m, A Borel,

{
ν(A) = ∞ if A ∩ S 6= ∅
ν(A) = µ(A) if A ⊂ R.

The set S is the set of singular final points of u and it corresponds to a “blow-up” set of
u. From the probabilistic point of view Dynkin & Kuznetsov [18] and Le Gall [31] have
proved similary results for the PDE (7) in the case 0 < q ≤ 1: they use the theory of
superprocesses.

Now if we want to represent u using a FBSDE, we have to deal with a singular terminal
condition ξ in (5), which means that P(ξ = +∞) > 0. This singular case has been studied
first in [41] and recently it was used to solve a stochastic control problem for portfolio

2Again β and γ can be time-depend, the results would not be changed.
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liquidation (see [2] or [23]). In [28] we enlarge the known results on this subject in several
directions: more general generator f (than f(y) = −y|y|q) and almost no assumption on
the filtration F (instead of the Brownian-Poisson filtration). Finally in [41] we established
a link between the solution Y of the BSDE with singular terminal condition and the
viscosity solution u of the PDE (7).

In this paper we generalize the results of [41] and using our recent papers [28] we want
to study of the related IPDE (6) when the terminal condition u(T, .) = g is singular in
the sense that g takes values in R+ ∪ {+∞} and the set

S = {x ∈ R
d, g(x) = +∞}

is a non empty closed subset of Rd. Again in the non singular case, if the terminal function
g is of linear growth, the relation u(t, x) = Y t,x

t is also obtained in [5]. Moreover several
papers have studied the existence and the uniqueness of the solution of such IPDE (see
among others [1], [8], [10] or [25]). To our best knowledges the study of (6) with a
singularity at time T is completely new. There is no probabilistic representation of
such IPDE using superprocesses and no deterministic works on this topic. In the PhD
thesis of Piozin, we have studied the case when f(t, y, z, u) = f(y) = −y|y|q. Hence the
aim of the paper is to prove that this minimal solution Y of the singular BSDE is the
probabilistic representation of the minimal positive viscosity solution u of the IPDE for
general function f with a singular terminal condition.

One applied motivation for this study is developed in [24] and [28]. Indeed the optimal
solution of a stochastic control problem with constraint is the minimal solution of the
FBSDE (5). The value function v and the optimal state can be computed directly with Y
(Z and U are not involved here). In other words v will be the minimal viscosity solution
of a IPDE with singular terminal condition.

The paper is organized as follows. In the first part we describe the mathematical
setting. Since we are interesting in singular terminal condition, the generator f of the
BSDE has to satisfy special conditions, in particular C8. When y becomes large, the
function y 7→ f(t, x, y, z, u) − f(t, x, y, 0, 0) decreases at least like −y|y|q. We recall the
precise result concerning the link between (5) and (6) when the terminal condition is non
singular. From the system (5) we get a continuous viscosity solution of the equation (6).

In the second section, we show that the minimal solution Y of the BSDE provides
the minimal viscosity solution u for the IPDE (see Theorem 3 in Section 2). In details
we show that Y t,x

t = u(t, x) is a (discontinuous) viscosity solution of (6) on any interval
[0, T − ε] for ε > 0 with lim inft→T u(t, x) ≥ g(x). Here we mainly use a stability result on
viscosity solutions: roughly speaking an increasing sequence of viscosity solutions is itself
a viscosity solution. Extra assumptions (denoted by (D)) are supposed to prove that
u(t, x) converges to g(x) as t goes to T . Then we prove minimality of this solution, which
requires a comparison result for viscosity solution for IPDE adapted for our setting.

The last part is devoted to study the regularity of this minimal solution on [0, T−ε]×R
d

for ε > 0. Indeed the minimal viscosity solution constructed before is the increasing limit
of continuous functions. Hence it is lower semicontinuous, but the continuity is an open
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question. Therefore we give several conditions on the coefficients of the forward SDE and
on the Lévy measure λ in order to obtain:

• Sobolev-type regularity: u and ∇u are in some L2 weighted space (Proposition 3).
Only the coefficients of the forward SDE are supposed to be regular.

• Hölder regularity of u (Proposition 4). We will impose some conditions on λ, but
no additional regularity condition on the parameters.

• Classical regularity: u is of class C1,2 on [0, T ) × Rd (Proposition 5). The matrix
diffusion σ is supposed to be uniformly elliptic and λ is not too singular on 0.

Of course we do not claim that we are exhaustive. Our conditions are quite classical and
widely used. But different sets of assumptions could be also used to obtain similar results.

1 Setting and known results

We consider a filtered probability space (Ω,F ,P,F = (Ft)t≥0). We assume that this
set supports a d-dimensional Brownian motion W and a Poisson random measure µ with
intensity λ(de)dt on the space E ⊂ R

d′ \ {0}. The filtration F is generated by W and µ.
We will denote E the Borelian σ-field of E and µ̃ is the compensated measure: for any
A ∈ E such that λ(A) < +∞, then µ̃([0, t] × A) = µ([0, t] × A) − tλ(A) is a martingale.
The measure λ is σ-finite on (E, E) satisfying

∫

E

(1 ∧ |e|2)λ(de) < +∞.

In this paper for a given T ≥ 0, we denote:

• P: the predictable σ-field on Ω × [0, T ] and

P̃ = P ⊗ E .

• On Ω̃ = Ω×[0, T ]×E, a function that is P̃-measurable, is called predictable. Gloc(µ)

is the set of P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0 a.s.
∫ t

0

∫

E

(|ψs(e)|
2 ∧ |ψs(e)|)λ(de) < +∞.

• D (resp. D(0, T )): the set of all predictable processes on R+ (resp. on [0, T ]).
L2
loc(W ) is the subspace of D such that for any t ≥ 0 a.s.

∫ t

0

|Zs|
2ds < +∞.

We refer to [26] for details on random measures and stochastic integrals. On Rd, |.| denotes
the Euclidean norm and Rd×d′ is identified with the space of real matrices with d rows
and d′ columns. If z ∈ R

d×d′ , we have |z|2 = trace(zz∗).
Now to define the solution of our BSDE, let us introduce the following spaces for p ≥ 1.
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• D
p(0, T ) is the space of all adapted càdlàg processes X such that

E

(
sup

t∈[0,T ]

|Xt|
p

)
< +∞.

For simplicity, X∗ = supt∈[0,T ] |Xt|.

• Hp(0, T ) is the subspace of all processes X ∈ D(0, T ) such that

E

[(∫ T

0

|Xt|
2dt

)p/2
]
< +∞.

• Lp
µ(0, T ) = Lp

µ(Ω × (0, T ) ×E): the set of processes ψ ∈ Gloc(µ) such that

E

[(∫ T

0

∫

E

|ψs(e)|
2λ(de)ds

)p/2
]
< +∞.

• L
p
λ(E) = L

p(E, λ;Rm): the set of measurable functions ψ : E → R
m such that

‖ψ‖p
L
p
λ

=

∫

E

|ψ(e)|pλ(de) < +∞.

• Sp(0, T ) = Dp(0, T ) ×Hp(0, T ) × Lp
µ(0, T ).

Concerning function spaces, in the sequel Πpg(0, T ) will denoted the space of functions
φ : [0, T ] × Rd → Rk of polynomial growth, i.e. for some non negative constants δ and C

∀(t, x) ∈ [0, T ] × R
d, |φ(t, x)| ≤ C(1 + |x|δ).

For a continuous function φ : [0, T ] × Rd → R and α ∈ [0, 1), we define

‖φ‖∞ = sup
(t,x)∈[0,T ]×Rd

|φ(t, x)|,

‖φ‖α = sup
(t,x)6=(s,y), |x−y|≤1

|φ(t, x) − φ(s, y)|

|t− s|α/2 + |x− y|α
.

For k ∈ N, Ck,2k = Ck,2k([0, T ]×Rd) is the subset of continuous functions φ : [0, T ]×Rd →
R whose partial derivatives of order less than or equal to k w.r.t. t and 2k w.r.t. x are
continuous on [0, T ] × Rd. For α ∈ [0, 1), the set Hk+α/2,2k+α is the subset of Ck,2k such
that ‖∂kt φ‖α + ‖∂2kx φ‖α < +∞. We denote Ck

l,b(R
d) the set of Ck-functions which grow at

most linearly at infinity and whose partial derivatives of order less than or equal to k are
bounded.
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1.1 Our forward backward SDE, assumptions on the coefficients

First of all we consider the forward SDE: for any 0 ≤ t ≤ s ≤ T and any x ∈ Rd

(8) X t,x
s = x +

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr +

∫ s

t

∫

E

β(X t,x
r−
, e)µ̃(de, dr).

Moreover for 0 ≤ s < t, X t,x
s = x. The coefficients b : Rd → Rd, σ : Rd → Rd×k and

β : Rd ×E → Rd satisfy the following conditions.

A1. b and σ are Lipschitz continuous w.r.t. x, i.e. there exists a constant Kb,σ such that
for any x and y in Rd:

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ Kb,σ|x− y|

A2. β is Lipschitz continuous w.r.t. x uniformly in e, i.e. there exists a constant Kβ such
that for all e ∈ E, for any x and y in Rd:

|β(x, e) − β(y, e)| ≤ Kβ|x− y|(1 ∧ |e|).

A3. b and σ growth at most linearly:

|b(x)| + |σ(x)| ≤ Cb,σ(1 + |x|).

A4. β is bounded w.r.t. x and there exists a constant Cβ such that

|β(x, e)| ≤ Cβ(1 ∧ |e|).

Under these assumptions, the forward SDE (8) has a unique strong solution X t,x =
{X t,x

s , t ≤ s ≤ T} (see [35] or [43]). Moreover for all (t, x) ∈ [0, T ] × Rd and p ≥ 2

(9) E

[
sup

t≤s≤T
|X t,x

s − x|p
]
≤ C(1 + |x|p)(T − t).

In Section 3, we will also assume that the next conditions hold.

A5. σ and b are bounded: there exists a constant C s.t.

∀x ∈ R
d, |b(x)| + |σ(x)| ≤ C;

A6. σσ∗ is uniformly elliptic, i.e. there exists Λ0 > 0 s.t. for all x ∈ Rd:

∀y ∈ R
d, σσ∗(x)y.y ≥ Λ0|y|

2.

The use of these two hypotheses will be precised when necessary.

Definition 1 (Assumptions (A) and (A+)) When Conditions A1, A2, A3 and A4
hold, f verifies Conditions (A). When the coefficients satisfy (A) with A5 and A6, f
satisfies Assumptions (A+).
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The terminal condition ξ of the BSDE will satisfy several assumptions, denoted by
Conditions (B).

B1. There exists a function g defined on Rd with values in R+ ∪ {+∞} such that

ξ = g(X t,x
T ).

We denote
S := {x ∈ R

d s.t. g(x) = ∞}

the set of singularity points for the terminal condition induced by g. This set S is supposed
to be non empty and closed. We also denote by ∂S the boundary of S.

B2. Integrability condition:

g(X t,x
T )1Rd\S(X t,x

T ) ∈ L1 (Ω,FT ,P) .

B3. Continuity condition: g is continuous from Rd to R+ ∪ {+∞}.

This last assertion implies that for any n ∈ N∗, x 7→ gn(x) = g(x) ∧ n is a continuous
function on Rd.

Now we consider the BSDE: for any t ≤ s ≤ T

(10) Y t,x
s = ξ +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr −

∫ T

s

Zt,x
r dWr −

∫ T

s

∫

E

U t,x
r (e)µ̃(de, dr).

The generator f of the BSDE (10) is a deterministic function f : [0, T ]×Rd×R×Rk×L2
λ →

R. The unknowns are (Y t,x, Zt,x, U t,x) such that

• Y t,x is progressively measurable and càdlàg with values in R;

• Zt,x ∈ L2
loc(W ), with values in Rd;

• U t,x ∈ Gloc(µ) with values in R.

The BSDE is called singular since the probability P(ξ = +∞) can be positive.

First the function f has the special structure for u in L2
λ.

C1. There exists a function γ from Rd ×E to R such that

f(t, x, y, z, u) = f

(
t, x, y, z,

∫

E

u(e)γ(x, e)λ(de)

)
.

For simplicity we denote with the same function f the right and the left hand side. For
notational convenience we will denote f 0

r = f 0,t,x
r = f(r,X t,x

r , 0, 0, 0).

C2. The process f 0,t,x is non negative for any (t, x) ∈ [0, T ] × Rd.
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C3. The function y 7→ f(t, x, y, z, u) is monotone: there exists χ ∈ R such that for any
t ∈ [0, T ], x ∈ Rd, z ∈ Rk and u ∈ R

(f(t, x, y, z, u) − f(t, x, y′, z, u))(y − y′) ≤ χ(y − y′)2.

C4. f is locally Lipschitz continuous w.r.t. y: for all R > 0, there exists LR such that
for any y and y′ and any (t, x, z, u)

|y| ≤ R, |y′| ≤ R =⇒ |f(t, x, y, z, u) − f(t, x, y′, z, u)| ≤ LR|y − y′|.

C5. f is Lispchitz in z, uniformly w.r.t. all parameters: there exists L > 0 such that for
any (t, x, y, u), z and z′:

|f(t, x, y, z, u) − f(t, x, y, z′, u)| ≤ L|z − z′|.

C6. The function u ∈ R 7→ f(t, x, y, z, u) is Lipschitz and non decreasing for all (t, x, y, z) ∈
[0, T ] × Rd × R× Rk:

∀u ≤ u′, 0 ≤ f(t, x, y, z, u′) − f(t, x, y, z, u) ≤ L(u′ − u).

C7. There exists a function ϑ ∈ L2
λ such that for all (x, e) ∈ Rd × E

0 ≤ γ(x, e) ≤ ϑ(e).

Since the terminal condition may be singular, to ensure that the solution component Y
attains the value ∞ on S at time T but is finite a.s. before time T , we suppose that

C8. There exists a constant q > 0 and a positive function a : [0, T ] × Rd → R such that
for any y ≥ 0

f(r,X t,x
r , y, z, q) ≤ −a(r,X t,x

r )y|y|q + f(r,X t,x
r , 0, z, q).

p = 1 + 1
q

is the Hölder conjugate of 1 + q. Moreover, in order to derive the a priori
estimate, the following assumptions will hold.

C9. The function

(t, x) 7→
1

a(t, x)1/q
+ |f(t, x, 0, 0, 0)|

belongs to Πpg(0, T ).

C10. There exists ℓ > 1 such that the function ϑ in C5 belongs to Lℓ̃
λ with ℓ̃ = ℓ/(ℓ−1).

Again to lighten the notations, a(r,X t,x
r ) will be denoted ar or at,xr if we do not need to

precise the variables t and x.
Since we want to work on the link with IPDE, in order to use the work of Barles et

al. [5], we need extra assumptions on the regularity of f w.r.t. t and x.

C11. The function t 7→ f(t, x, y, z, u) is continuous on [0, T ].

9



C12. For all R > 0, t ∈ [0, T ], |x| ≤ R, |x′| ≤ R, |y| ≤ R, z ∈ R
k, u ∈ R,

|f(t, x, y, z, u) − f(t, x′, y, z, u)| ≤ ̟R(|x− x′|(1 + |z|)),

where ̟R(s) → 0 when sց 0.

C13. There exists Cγ > 0 such that for all (x, x′) ∈ (Rd)2, e ∈ E,

|γ(x, e) − γ(x′, e)| ≤ Cγ|x− x′|(1 ∧ |e|2).

Definition 2 (Conditions (C)) If f satisfies all conditions C1 to C13, we say that f
verifies Conditions (C).

1.2 Comments on the hypotheses (C) and examples

The previous list is rather long. It is the union of the conditions of [5] and [28]. Let
us clarify several points. The condition C1 is classical (see [5], [17], [25], etc.)

The conditions C2 to C7 are assumed in [27] to ensure that if ξ and f 0
r are in Lp for

some p > 1, the BSDE (10) has a unique solution in Sp(0, T ). Indeed by C4, for every
n > 0 the function

sup
|y|≤n

|f(r,X t,x
r , y, 0, 0) − f 0

r | ≤ nLn

is bounded on [0, T ] and thus in L1(0, T ).

Lemma 1 Under Hypotheses C6 and C7, for all (t, x, y, z, u, v) ∈ [0, T ]×Rd+1+k×(L2
λ)2,

there exists a progressively measurable process κ = κt,x,y,z,u,v : Ω ×R+ ×E → R such that

(11) f(r,X t,x
r , y, z, u) − f(r,X t,x

r , y, z, v) ≤

∫

E

(u(e) − v(e))κt,x,y,z,u,vr (e)λ(de)

with P⊗ Leb ⊗ λ-a.e. for any (t, x, y, z, u, v), 0 ≤ κt,x,y,z,u,vt (e) and |κt,x,y,z,u,vt (e)| ≤ ϑ(e).

Proof. From Hypotheses C1 and C6, we have

f(r,X t,x
r , y, z, u) − f(r,X t,x

r , y, z, v)

= f

(
r,X t,x

r , y, z,

∫

E

u(e)γ(x, e)λ(de)

)
− f

(
r,X t,x

r , y, z,

∫

E

v(e)γ(x, e)λ(de)

)

=

∫

E

(u(e) − v(e))F t,x,y,z,u,v
r γ(x, e)λ(de)

=

∫

E

(u(e) − v(e))κt,x,y,z,u,vr (e)λ(de),

with

F t,x,y,z,u,u′

r =
f
(
r,X t,x

r , y, z,
∫
E
u(e)γ(x, e)λ(de)

)
− f

(
r,X t,x

r , y, z,
∫
E
v(e)γ(x, e)λ(de)

)
∫
E

(u(e) − v(e))γ(x, e)λ(de)

and
κx,y,z,u,vt (e) = F t,x,y,z,u,v

t γ(x, e).

10



Since f is non decreasing and from C7, κt,x,y,z,u,vr (e) ≥ 0 and from the Lipschitz condition,

|κt,x,y,z,u,vr (e)| ≤ Lϑ(e).

This achieves the proof. �

The previous lemma implies that f is Lipschitz continuous w.r.t. u uniformly in ω, t,
y and z:

|f(t, x, y, z, u) − f(t, x, y, z, v)| ≤ L‖ϑ‖L2
λ
‖u− v‖L2

λ
.

Hence we can apply Theorems 1 and 2, together with Proposition 2 in [27] and deduce
the existence and the uniqueness of the solution of the BSDE under suitable integrability
conditions on ξ and f 0. Moreover we can compare two solutions of the BSDE (10) with
different terminal conditions (see Theorem 4.1 and Assumption 4.1 in [44] or Proposition
4 in [27]).

Remark 1 By very classical arguments we can suppose w.l.o.g. that χ = 0 in C3.

The assumptions C8, C9 and C10 are used to deal with singular terminal condition
ξ, that is when P(ξ = +∞) > 0.

Lemma 2 For any η > 0 and ℓ > 0

(12) E

∫ T

0

(T − s)−1+η

[(
1

qas

)1/q

+ (T − s)1+1/qf 0
s

]ℓ
ds < +∞.

Proof. From integrability property (9) of X , C9 implies that a−1/q and f 0 belongs to
any Lδ((0, T ) × Ω) for any δ > 1. Hence:

E

∫ T

0

(T − s)−1+η

[(
1

qat,xs

)1/q

+ (T − s)1+1/qf 0,t,x
s

]ℓ
ds

≤ C(1 + |x|δℓ)E

∫ T

0

(T − s)−1+ηds < +∞

for any 0 < η. �

This lemma implies in particular that there exists ℓ > 1 such that

E

∫ T

0

[(
1

qa(r,X t,x
r )

)1/q

+ (T − r)1+1/qf 0,t,x
r

]ℓ
dr < +∞

and from C10, ϑ is in Lℓ̃
λ, where ℓ̃ is the Hölder conjugate of ℓ.

Remark 2 Assumptions C8 and C9 imply that the function a must be bounded.

Finally with Condition C11, we will deduce existence of a viscosity solution for the
IPDE as in [5], whereas C12 and C13 are assumed to ensure uniqueness of the viscosity
solution.

Now let us give two examples of generators f satisfying Conditions (C).

11



• Assume that y 7→ f(y) is a non increasing function of class C1, with f(0) ≥ 0 and
such that for some constant a > 0 and any y ≥ 0: f(y) − f(0) ≤ −ay|y|q. Then
(C) holds. In particular, f(y) = −y|y|q (for some q > 0) is a classical example.

• In [28] the generator related to the optimal closure portfolio strategy is given by:

f(t, x, y, u) = −
y|y|q

qη(t, x)q
+ f 0(t, x)

The parameter η > 0 is the price impact parameter and f 0 ≥ 0 is the risk measure
of the open position. Here a(t, x) = − 1

qη(t,x)q
and η and f 0 are continuous functions

of polynomial growth.

1.3 A first link with viscosity solution of a IPDE

First assume that (t, x) ∈ [0, T ] × R
d is fixed. Under Conditions C1 to C7, from

Theorems 1 or 2 in [27], there exists a unique solution for the truncated version of BSDE
(10), where the terminal condition ξ is replaced by ξ ∧ n and where the generator f is
replaced by fn for some n > 0:

fn(r, y, z, u) = (f(r,X t,x
r , y, z, u) − f 0

r ) + (f 0
r ∧ n).

The solution of this truncated BSDE will be denoted by (Y n,t,x, Zn,t,x, Un,t,x): for any
t ≤ s ≤ T

Y n,t,x
s = ξ ∧ n +

∫ T

s

fn(r, Y n,t,x
r , Zn,t,x

r , Un,t,x
r )dr −

∫ T

s

Zn,t,x
r dWr(13)

−

∫ T

s

∫

E

Un,t,x
r (e)µ̃(dr, de).

Moreover (Y n,t,x, Zn,t,x, Un,t,x) ∈ Sδ(0, T ) for any δ > 1.
If (C) holds, we work with almost the same setting as in [5]. The only difference is that

f is not Lipschitz continuous w.r.t. y. But for a fixed n, a straightforward consequence
of the comparison principle for BSDE implies that Y n,t,x is bounded by n(T + 1) (see

Proposition 4 in [27]). We can replace in the BSDE (13) our generator fn by f̂n with

f̂n(t, x, y, z, q) = fn(t, x, Tn(y), z, q) with Tn(y) = (n(T + 1)y)/(|y| ∨ n(T + 1)). From

Condition C4, f̂n is Lipschitz w.r.t. y.
We will use the notion of viscosity solution of the IPDE (6). The reason will be clearer

later. For a locally bounded function v in [0, T ] × Rd, we define its upper (resp. lower)
semicontinuous envelope v∗ (resp. v∗) by:

v∗(t, x) = lim sup
(s,y)→(t,x)

v(s, y) (resp. v∗(t, x) = lim inf
(s,y)→(t,x)

v(s, y)).

For such equation (6) we introduce the notion of viscosity solution as in [1] (see also
Definition 3.1 in [5] or Definitions 1 and 2 in [8]). Since we do not assume the continuity
of the involved function u, we adapt the definition of discontinuous viscosity solution (see
Definition 4.1 and 5.1 in [25]).
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Definition 3 A locally bounded function v is

1. a viscosity subsolution of (6) if it is upper semicontinuous on [0, T )×Rd and if

v(T, x) ≤ h(x), x ∈ R
d,

and if for any φ ∈ C2([0, T ] × Rd) wherever (t, x) ∈ [0, T [×Rd is a global maximum
point of v − φ,

−
∂

∂t
φ(t, x) − Lφ(t, x) − I(t, x, φ) − f(t, x, v, (∇φ)σ,B(t, x, φ)) ≤ 0.

2. a viscosity supersolution of (6) if it is lower semicontinuous on [0, T )×Rd and
if

v(T, x) ≥ h(x), x ∈ R
d,

and if for any φ ∈ C2([0, T ] × Rd) wherever (t, x) ∈ [0, T [×Rd is a global minimum
point of v − φ,

−
∂

∂t
φ(t, x) − Lφ(t, x) − I(t, x, φ) − f(t, x, v, (∇φ)σ,B(t, x, φ)) ≥ 0.

3. a viscosity solution of (6) if its upper envelope v∗ is a subsolution and if its lower
envelope v∗ is a supersolution of (6).

This definition is equivalent to Definition 4.1 in [25]. Note that if a comparison principle
holds for (6), then v∗ = v∗ and thus a viscosity solution is a continuous function. We can
also give another definition like Definition 5.1 in [25]. For any δ > 0, the operators I and
B will be split in two parts:

I1,δ(t, x, φ) =

∫

|e|≤δ

[φ(t, x+ β(x, e)) − φ(t, x) − (∇φ)(t, x)β(x, e)]λ(de)

I2,δ(t, x, p, φ) =

∫

|e|>δ

[φ(t, x+ β(x, e)) − φ(t, x) − pβ(x, e)]λ(de),

Bδ(t, x, φ, v) =

∫

|e|≤δ

[φ(t, x+ β(x, e)) − φ(t, x)]γ(x, e)λ(de)

+

∫

|e|>δ

[v(t, x+ β(x, e)) − v(t, x)]γ(x, e)λ(de).

Definition 4 A locally bounded and upper (resp. lower) semicontinuous function v is a
viscosity sub (resp. super) solution of (6) if

v(T, x) ≤ h(x) (resp. v(T, x) ≤ h(x)), x ∈ R
d,

and if for any δ > 0, for any φ ∈ C2([0, T ] × R
d) wherever (t, x) ∈ [0, T [×R

d is a global
maximum (resp. minimum) point of v − φ on [0, T ] × B(x,Rδ),

−
∂

∂t
φ(t, x) −Lφ(t, x) − I1,δ(t, x, φ) − I2,δ(t, x,∇φ, v)

−f(t, x, v, (∇φ)σ,Bδ(t, x, φ, v)) ≤ 0 (resp. ≥ 0).
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We refer to Remark 3.2 and Lemma 3.3 in [5], to condition (NLT), Proposition 1 and
Section 2.2 in [8] and to Appendix in [25] for the discussion (and the proof) on the
equivalence between Definitions 3 and 4.

From Theorem 3.4 and Theorem 3.5 in [5], we have directly the next result.

Proposition 1 Under conditions (A) on the coefficients of the SDE (8) and assumptions
(B) and (C) on the terminal condition and on the generator of the BSDE (10), the
function un(t, x) := Y n,t,x

t , (t, x) ∈ [0, T ] × Rd, is the unique bounded (by n(T + 1))
continuous viscosity solution of (6) with terminal condition gn and generator fn.

1.4 Known results on singular BSDE

In [28], we extend the result of [41] and [2] concerning BSDE with a singular terminal
condition, i.e. when P(ξ = +∞) > 0. Note that the special structure C1 of the generator
is useless here.

Theorem 1 (of [28]) Under Conditions C2 to C10, the sequence (Y n,t,x, Zn,t,x, Un,t,x)
converges to (Y t,x, Zt,x, U t,x) on Sℓ(t, r) for any t ≤ r < T and

• Y t,x
r ≥ 0 a.s. for any t ≤ r ≤ T .

• (Y t,x, Zt,x, U t,x) belongs to Sℓ(t, r) for any t ≤ r < T .

• For all t ≤ s ≤ s′ < T :

Y t,x
s = Y t,x

s′ +

∫ s′

s

f(r,X t,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr −

∫ s′

s

Zt,x
r dWr −

∫ s′

s

∫

E

U t,x
r (e)µ̃(dr, de).

• (Y t,x, Zt,x, U t,x) is a super-solution in the sense that: a.s.

(14) lim inf
r→T

Y t,x
r ≥ ξ = g(X t,x

T ).

Definition 5 Any process (Ỹ , Z̃, Ũ) satisfying the previous four items is called super-
solution of the BSDE (10) with singular terminal condition ξ.

A key point of the proof is the a priori estimate: for any n, a.s. for any t ≤ s ≤ T

(15) Y n,t,x
s ≤ Y t,x

s ≤
Kℓ,L,ϑ

(T − s)1+1/q



E



∫ T

s

[(
1

qar

)1/q

+ (T − r)1+1/qf 0
r

]ℓ
dr

∣∣∣∣Fs







1/ℓ

where Kℓ,L,ϑ is a non negative constant depending only on ℓ, L and ϑ and this constant
is a non decreasing function of L and ϑ and a non increasing function of ℓ.

In [28], we have also proved minimality of the constructed solution in the sense that if

(Ỹ , Z̃, Ũ) is another non negative super-solution, then for all r ∈ [t, T ], P-a.s. Ỹr ≥ Y t,x
r .

In [42], we studied the behaviour of this minimal solution Y t,x at time T . In particular
we gave sufficient conditions in order to obtain an equality in (14):

lim inf
r→T

Y t,x
r = ξ = g(X t,x

T ).
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From Lemma 2 and Proposition 2 in [42], there exist two constants C and δ independent
of (n, t, x) such that the process (Zn,t,x, Un,t,x) satisfies:

(16) E

[∫ T

t

(T − s)ρ
(
|Zn,t,x

s |2 + ‖Un,t,x
s ‖2

L2
λ

)
ds

]ℓ/2
≤ C(1 + |x|δ).

The constant ρ is given by:

(17) ρ =
2

q
+ 2

(
1 −

1

ℓ

)
+

2η

ℓ
.

In order to prove that lim inf
t→T

Yt = ξ, we needed to control a term due to the covariance

between the jumps of the SDE (8) and the jumps of the BSDE (10). Thus we made a link
between the singularity set S and the jumps of the forward process X . More precisely we
assume

Conditions (D).

D1. The boundary ∂S is compact and of class C2.

D2. For any x ∈ S, any s ∈ [0, T ] and λ-a.s.

x + β(s, x, e) ∈ S.

Furthermore there exists a constant ν > 0 such that if x ∈ ∂S, then for any
s ∈ [0, T ], d(x+ β(s, x, e),Γ) ≥ ν, λ-a.s.

These assumptions mean in particular that if Xs− ∈ S, then Xs ∈ S a.s. Moreover if Xs−

belongs to the boundary of S, and if there is a jump at time s, then Xs is in the interior
of S.

Theorem 2 (Theorem 3 in [42]) Under Conditions (A)-(B)-(C)-(D), if ρ < 1 and
if f 0 ∈ L1((0, T ) × Ω), the minimal supersolution Y t,x satisfies a.s.

lim inf
r→T

Y t,x
r = ξ.

Again C1 is not involved in this result. The condition ρ < 1 is a balance between the
non linearity q and the singularity of the generator f .

Remark 3 (On the coefficient ρ) From Lemma 2, Estimate (12) holds for any 0 <
η < 1. Then ρ < 1 for ℓ < 2 and q > 2ℓ

2−ℓ
. In other words if q > 2, we can take ℓ ∈ (1, 2)

such that q > 2ℓ/(2 − ℓ) and thus ρ < 1. The counterpart is that ϑ should be in L
2
λ ∩ L

ℓ̃
λ

with ℓ̃ = ℓ/(ℓ − 1). If the generator is f(y) = −y|y|q, then ρ < 1 if q > 2, which was
supposed in [41].

Therefore the minimal solution Y of the singular BSDE (10) is obtained as the in-
creasing limit of Y n. And it is well known that viscosity solutions are stable by monotone
limit. That is the reason why we use this notion of weak solutions.
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2 Existence of a minimal viscosity solution with sin-

gular data

In [28] we have proved that for any t ≤ s ≤ T

lim
n→+∞

Y n,t,x
s = Y t,x

s

and Y t,x also satisfies (15). As before we define the function u by:

u(t, x) = Y t,x
t .

Therefore the sequence un(t, x) converges to u(t, x). Since a and f 0 depend only on X t,x,
using Condition C9 and Property (9), the a priori estimate (15) becomes: there exists
two constants K > 0 and δ > 0 such that for all (t, x) ∈ [0, T ] × Rd:

(18) 0 ≤ un(t, x) ≤ u(t, x) ≤
K

(T − t)1/q
(1 + |x|δ).

Since un is a continuous function, the function u is lower semi-continuous on [0, T ] × Rd

and satisfies for all x0 ∈ Rd:

(19) lim inf
(t,x)→(T,x0)

u(t, x) ≥ g(x0).

Definition 6 (Viscosity solution with singular data) A function u is a viscosity so-
lution of (6) with terminal data g if u is a viscosity solution on [0, T [×Rd and satisfies:

lim
(t,x)→(T,x0)

u(t, x) = g(x0).

The aim of this section is to prove the following result.

Theorem 3 Under conditions (A)-(B)-(C), u(t, x) = Y t,x
t is a viscosity solution of the

IPDE (6) on [0, T [×Rd. Moreover u is the minimal viscosity solution among all non
negative solutions satisfying (19).

Finally if we add Conditions (D) and if ρ < 1, then

lim
(t,x)→(T,x0)

u(t, x) = g(x0).

Note that we do not prove the continuity of u because of the lack of uniform convergence of
the approximating sequence un. But we are also not able to show that u is discontinuous.

2.1 Viscosity solution

In order to prove that u is a viscosity solution, the main tool is the half-relaxed upper-
and lower-limit of the sequence of functions {un}, i.e.

u(t, x) = lim sup
n→+∞

(t′,x′)→(t,x)

un(t′, x′) and u(t, x) = lim inf
n→+∞

(t′,x′)→(t,x)

un(t′, x′).

In our case, u = u ≤ u = u∗ because the sequence {un} is non decreasing and un is
continuous for all n ∈ N∗. Note that u∗ also satisfies estimate (18).
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Lemma 3 The function u is a viscosity solution of (6) on [0, T [×R
d.

Proof. First u = u∗ = u is lower semi-continuous on [0, T [×Rd. From the estimate
(18), for all ε > 0, there exists a constant Kε such that for every n ∈ N∗ and all (t, x) ∈
[0, T − ε] × Rd,

(20) 0 ≤ un(t, x) ≤ u(t, x) ≤ Kε(1 + |x|δ).

In other words un and u belong to Πpg(0, T − ε).
Since un is a supersolution of the IPDE (6), passing to the limit with a stability result

(see the proof of Theorem 4.1 in [25] or the results in [1], [8] or [10]), we can obtain that
u is a supersolution of (6) on [0, T [×Rd.

For convenience of the reader, let us give the main ideas (for details see the proof of
Theorem 4.1 in [25]). Let (t, x) ∈ [0, T [×Rd and let φ be a function which belongs to
C1,2([0, T ]×Rd)∩Πpg such that u−φ has a strict global minimum in (t, x) on [0, T ]×Rd

and we assume w.l.o.g. that u(t, x) = φ(t, x). Now let δ > 0 and (tn, xn) be the global
minimum of un − φ on [0, T ] × B(x,Rδ). Rδ is a positive number such that Rδ tends to
zero when δ → 0. As in [25], one can prove that

lim
n

(tn, xn) = (t, x), lim
n
un(tn, xn) = u(t, x).

The bound (20) is crucial here. Now since un is a viscosity supersolution, by Definition 4,

−
∂

∂t
φ(tn, xn) − Lφ(tn, xn) − I1,δ(tn, xn, φ) − I2,δ(tn, xn,∇φ, un)(21)

−fn(tn, xn, un, (∇φ)σ(tn, xn),Bδ(tn, xn, φ, un)) ≥ 0.

By continuity of φ and of the coefficients of the SDE (8), we can pass to the limit as n
goes to ∞:

lim
n→+∞

[
−
∂

∂t
φ(tn, xn) −Lφ(tn, xn)

]
= −

∂

∂t
φ(t, x) − Lφ(t, x)

and
lim

n→+∞
I1,δ(tn, xn, φ) = I1,δ(t, x, φ).

Since un − φ ≥ 0 attains his minimum at (tn, xn)

I2,δ(tn, xn,∇φ, un)

=

∫

|e|>δ

[un(tn, xn + β(xn, e)) − un(tn, xn) −∇φ(tn, xn)β(xn, e)]λ(de)

≥

∫

|e|>δ

[φ(tn, xn + β(xn, e)) − φ(tn, xn) −∇φ(tn, xn)β(xn, e)]λ(de),
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and

Bδ(tn, xn, φ, un))

=

∫

|e|≤δ

[φ(tn, xn + β(xn, e)) − φ(tn, xn)]γ(xn, e)λ(de)

+

∫

|e|>δ

[un(tn, xn + β(xn, e)) − un(tn, xn)]γ(xn, e)λ(de)

≥

∫

|e|≤δ

[φ(tn, xn + β(x, e)) − φ(tn, xn)]γ(xn, e)λ(de)

+

∫

|e|>δ

[φ(tn, xn + β(x, e)) − φ(tn, xn)]γ(x, e)λ(de)

and by Fatou’s lemma

lim inf
n→+∞

I2,δ(tn, xn,∇φ, un) ≥ I2,δ(t, x,∇φ, φ)

and
lim inf
n→+∞

Bδ(tn, xn, φ, un)) ≥ B(t, x, φ).

The function f(t, x, y, z, u) is non decreasing w.r.t. u and continuous w.r.t. all variables:

lim inf
n→+∞

fn(tn, xn, un, (∇φ)σ(tn, xn),Bδ(tn, xn, φ, un)) ≥ f(t, x, u, (∇φ)σ(t, x),B(t, x, φ)).

Passing to the limit in (21) we obtain:

−
∂

∂t
φ(t, x) −Lφ(t, x) − I1,δ(t, x, φ)

≥ I2,δ(t, x,∇φ, φ) + f(t, x, u, (∇φ)σ(t, x),B(t, x, φ)).

Thus u is a supersolution of (6) on [0, T [×Rd.
By the same argument we can show that u∗ is a subsolution on [0, T [×Rd. Let (t, x) ∈

[0, T ) × Rd and φ ∈ C1,2([0, T ] × Rd) ∩ Πg such that u∗ − φ has a strict global maximum
at (t, x) on [0, T ] × R

d with u∗(t, x) = φ(t, x). As in [25] there exists a subsequence nk

such that

• (tnk
, xnk

) is the global maximum of unk
− φ on [0, T ] × B(x,Rδ);

• as k goes to ∞, (tnk
, xnk

) −→ (t, x) and unk
(tnk

, xnk
) −→ u∗(t, x).

Now for k large, since unk
is a subsolution, we have again by Definition 4,

−
∂

∂t
φ(tnk

, xnk
) −Lφ(tnk

, xnk
) − I1,δ(tnk

, xnk
, φ) − I2,δ(tnk

, xnk
,∇φ, unk

)(22)

−fnk(tnk
, xnk

, unk
, (∇φ)σ(tnk

, xnk
),Bδ(tnk

, xnk
, φ, unk

)) ≤ 0.
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Again since unk
− φ has a maximum at the point (tnk

, xnk
), we have

I2,δ(tnk
, xnk

,∇φ, unk
)

=

∫

|e|>δ

[unk
(tnk

, xnk
+ β(xnk

, e)) − unk
(tnk

, xnk
) −∇φ(tnk

, xnk
)β(xnk

, e)]λ(de)

≤

∫

|e|>δ

[φ(tnk
, xnk

+ β(xnk
, e)) − unk

(tnk
, xnk

) −∇φ(tnk
, xnk

)β(xnk
, e)]λ(de)

and
Bδ(tnk

, xnk
, φ, unk

)) ≤ B(tnk
, xnk

, φ)).

By continuity and monotonicity w.r.t. q of f , Lebesgue’s theorem and since u(t, x) =
φ(t, x)

−
∂

∂t
φ(t, x) −Lφ(t, x) − I1,δ(t, x, φ)

≤ I2,δ(t, x,∇φ, φ) + f(t, x, u, (∇φ)σ(t, x),B(t, x, φ)).

Thus u∗ is a subsolution on [0, T [×Rd. �

As for the singular BSDE (10), the main difficulty is to show that

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0) = u(T, x0).

We will prove that u∗ is locally bounded on a neighbourhood of T on the open set R =
{g < +∞}. Then, we deduce u∗ is a subsolution with relaxed terminal condition and we
apply this to demonstrate that u∗(T, x) ≤ g(x) if x ∈ {g < +∞}, which shows the wanted
inequality on u.

Lemma 4 Assumptions (A)-(B)-(C)-(D) hold. For any ε > 0, if we define the closed
subset of R

Γ(ε) := {x ∈ R : d(x, ∂S) ≥ ε}

u∗ is a subsolution with relaxed terminal condition:




−
∂u∗

∂t
− Lu∗ − Iu∗ − f(t, x, u∗,∇u∗σ,B(t, x, u∗)) = 0, in [0, T ) × Γ(ε);

min

[
−
∂u∗

∂t
− Lu∗ − Iu∗ − f(t, x, u∗,∇u∗σ,B(t, x, u∗)); u∗ − g

]
≤ 0, in {T} × Γ(ε).

Proof. We make the same calculation as in [42], Section 3.4. Hence we only give here
the main steps.

Remember that S is the singular set of g, R = Sc is open and for any ε > 0 we define

Γ(ε) := {x ∈ R : d(x, ∂S) ≥ ε}.

d(., ∂S) is the distance to the boundary ∂S. By the C∞ Urysohn lemma, there exists a
C∞ function ψ such that ψ ∈ [0, 1], ψ ≡ 1 on Γ(ε) and ψ ≡ 0 on Γ(ε/2)c. In particular
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the support of ψ is included in R and since ∂S is compact, ψ belongs to C∞
b (Rd). We

take γ > 2(q + 1)/q and we define

(23) φ = ψγ.

Note that φ also takes its values in [0, 1], φ ≡ 1 on Γ(ε) and φ ≡ 0 on Γ(ε/2)c. Moreover
again with (D), we can choose ε0 small enough such that for any 0 < ε < ε0:

(24) ψ(Xs−) = 0 ⇒ ψ(Xs) = 0,
ψ(Xs)

ψ(Xs−)
= ψ(Xs)1Γ(ε)(Xs−).

(see Lemma 4 in [42] for the details).

Lemma 5 There exists a constant C independent of n and t such that

un(t, x)φ(x) ≤ C(1 + |x|δ).

The proof of this lemma is postponed at the end of this section.
For any 0 < ε < ε0, un is bounded on [0, T ] × Γ(ε) by C(1 + |x|δ) uniformly w.r.t.

to n. Therefore, u∗ is bounded on [0, T ] × Γ(ε) by C(1 + |x|δ). We know that un is a
subsolution of the IPDE (6) restricted to [0, T ] × Γ(ε), i.e. for (t, x) ∈ [0, T [×Γ(ε)

−
∂un
∂t

(t, x) −Lun(t, x) − I(t, x, un) − fn(t, x, un, (∇un)σ(t, x),B(t, x, un)) = 0

with the terminal condition

un(T, x) = (g ∧ n)(x), x ∈ Γ(ε).

From Lemma 3, u∗ is a subsolution of the IPDE (6) on [0, T [×Γ(ε).
The behaviour at time T is an adaptation of Theorem 4.1 in [4] (see also section 4.4.5

in [4]). Since g is continuous (Hypothesis B3),

g(x) = g(x) = lim sup
n→+∞

x′→x

(g ∧ n)(x′).

Now assume that for φ ∈ C1,2([0, T ] × Rd) ∩ Πpg such that u∗ − φ has a strict global
maximum on [0, T ] × Γ(ε) at (T, x) and suppose that u∗(T, x) > g(x). There exists a
subsequence nk such that (tnk

, xnk
) is the global maximum of unk

−φ on [0, T ]×B(x,Rδ)
and as k goes to ∞, (tnk

, xnk
) −→ (T, x) and unk

(tnk
, xnk

) −→ u∗(T, x). This implies in
particular that tnk

< T for any k large enough. If not, then up to a subsequence (still
denoted nk),

u∗(t, x) = lim sup
k

unk
(tnk

, xnk
) = lim sup

k
unk

(T, xnk
) = lim sup

k
(g ∧ nk)(xnk

) ≤ g(x).

Since unk
is a subsolution, we still have (22) and passing though the limit we obtain

−
∂

∂t
φ(T, x) −Lφ(T, x) − I1,δ(T, x, φ)

≤ I2,δ(T, x,∇φ, φ) + f(T, x, u∗, (∇φ)σ(T, x),B(T, x, φ)).
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Thus u∗ is a subsolution on [0, T ] × Γ(ε). �

Now Theorem 4.7 in [4] (with straightforward modifications) shows that u∗ ≤ g in
{T} × Γ(ε). In other words for any x0 ∈ R,

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0).

With Inequality (19), we obtain the desired behaviour of u near terminal time T . This
achieves the proof of Theorem 3 (except minimality).

Now we prove Lemma 5.
Proof. From assumptions (D), Γ is compact and of class C1, then there exists a constant
ε0 > 0 such that for every y ∈ R ∩ Γ(ε0)

c, there exists a unique z ∈ ∂S such that
d(y, ∂S) = ‖y − z‖.

We use Itô’s formula to the process Y n,t,xφ(X t,x) between t and T and we take the
expectation since (Y n, Zn, Un,Mn) belongs to S2(0, T ), X is in H2(0, T ), and φ and the
derivatives of φ are supposed to be bounded. Thus we obtain for x ∈ Rd and t ∈ [0, T ):

un(t, x)φ(x) = E[Y n,t,x
T φ(X t,x

T )] − E

∫ T

t

Y n,t,x
s−

[
Lφ(s,X t,x

s ) + I(s,X t,x
s− , φ)

]
ds(25)

+E

[∫ T

t

φ(X t,x
s− )fn(s, Y n,t,x

s , Zn,t,x
s , Un,t,x

s )ds

]

−E

[∫ T

t

∇φ(X t,x
s )σ(X t,x

s )Zn,t,x
s ds

]

−E

[∫ T

t

∫

E

(φ(X t,x
s ) − φ(X t,x

s−
))Un,t,x

s (e)λ(de)ds

]
.

From the Assumptions B1 and B2 on ξ = g(X t,x
T ), we have for any n:

E(Y n,t,x
T φ(X t,x

T )) ≤ E(g(X t,x
T )φ(X t,x

T )) < +∞.

Now we decompose the quantity with the generator fn as follows:

E

[∫ T

t

φ(X t,x
s− )fn(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , Un,t,x
s )ds

]
(26)

= E

[∫ T

t

φ(X t,x
s−

)(f(s,X t,x
s , Y n,t,x

s , 0, 0) − f 0,t,x
s )ds

]

+E

[∫ T

t

φ(X t,x
s− )(f 0,t,x

s ∧ n)ds

]

+E

[∫ T

t

φ(X t,x
s−

)ζns Z
n,t,x
s ds

]
+ E

[∫ T

t

φ(X t,x
s−

)Un,t,x
s ds

]

where ζns is a k-dimensional random vector defined by:

ζ i,ns =
(f(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , 0) − f(s,X t,x
s , Y n,t,x

s , 0, 0))

Z i,n
s

1Zi,n,t,x
s 6=0
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and
Un
s = f(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , Un,t,x
s ) − f(s,X t,x

s , Y n,t,x
s , Zn,t,x

s , 0).

Now from Condition C5, |ζns | ≤ K. Using Estimate (16), where ρ is given by (17), by
Hölder inequality and since ρ < 1, there exists a constant C such that for any n

(27) E

∫ T

t

|
(
∇φ(X t,x

s )σ(X t,x
s ) + φ(X t,x

s )ζns
)
Zn,t,x

s |ds ≤ C(1 + |x|δ).

The same estimate holds for Un,t,x. Indeed from Lemma 1:

|Un
s | ≤

∫

E

ϑ(e)|Un,t,x
s (e)|λ(de),

and again by Hölder inequality and since ρ < 1,

(28) E

∫ T

t

(∫

E

|φ(X t,x
s ) − φ(X t,x

s−
)||Un,t,x

s (e)|λ(de) + |φ(X t,x
s−

)||Un
s |

)
ds ≤ C(1 + |x|δ).

In (26), by Condition C9 and Property (9), since φ is bounded

(29) E

[∫ T

t

φ(X t,x
s−

)(f 0,t,x
s ∧ n)ds

]
≤ C(1 + |x|δ).

Now we treat the two terms with the operators L and I. First

E

[∫ T

t

|Y n,t,x
s− Lφ(s,X t,x

s )|ds

]
≤ C

[
E

∫ T

t

a(s,X t,x
s )φ(X t,x

s )(Y n,t,x
s )q+1ds

]1/(q+1)

.(30)

To obtain this inequality, we use that γ > 2(q+ 1)/q in (23), Hölder’s inequality, and the
existence of a constant C such that

Lφ = L(ψγ) ≤ Cψγ−2

which can be found in [33]. The same inequality holds for I:

(31) E

[∫ T

t

Y n,t,x
s− |I(s,X t,x

s− , φ)|ds

]
≤ C

[
E

∫ T

t

a(s,X t,x
s )φ(X t,x

s− )(Y n,t,x
s )q+1ds

] 1
q+1

.

To prove this estimate, we use Assumptions (D) and the properties (24).
Now we come to the conclusion. By Condition C8

−E

[∫ T

t

φ(X t,x
s− )(f(s,X t,x

s , Y n,t,x
s , 0, 0) − f 0,t,x

s )ds

]
(32)

≥ E

[∫ t

0

φ(X t,x
s− )a(s,X t,x

s )(Y n,t,x
s )1+qds

]
.

The relations (27), (28), (29), (30), (31) and (32) hold. Thus, we have:

−E

∫ T

t

φ(X t,x
s )fn(s, Y n,t,x

s , Zn,t,x
s , Un,t,x

s )ds

+E

∫ T

t

Y t,x,n
s−

[
Lφ(X t,x

s ) + I(s,X t,x
s− , φ)

]
ds ≤ C(1 + |x|δ).
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The constant C does not depend on n and t. In the left hand side, the second term
is controlled by the first one raised to a power strictly smaller than 1 using Hölder’s
inequality (see (30) and (31)). Therefore, there exists a constant C:

E

∫ T

t

φ(X t,x
s )|fn(s, Y n,t,x

s , Zn,t,x
s , Un,t,x

s )|ds ≤ C(1 + |x|δ).

From (25) we deduce that there exists a constant C independent of n and t such that

un(t, x)φ(x) ≤ C(1 + |x|δ).

This achieves the proof of the lemma. �

2.2 Minimality of the solution

The aim here is to prove minimality of the viscosity solution obtained by approximation
among all non negative viscosity solutions (Theorem 3). We compare a viscosity solution
v (in the sense of Definition 6) with un, for all integer n: for all (t, x) ∈ [0, T ] × Rd,
un(t, x) ≤ v∗(t, x). We deduce that u ≤ v∗ ≤ v. Recall that g : Rd → R+ is continuous
from B3, which implies that g ∧ n : Rd → R

+ is continuous.
To simplify the notation, we will denote F the following function on [0, T ]×Rd×R×

Rd × Sd × R2:

(33) F (t, x, u, p,X, I, B) = −pb(x) −
1

2
Trace(X(σσ∗)(x)) − I − f(t, x, u, pσ(x), B).

Sd is the set of symmetric matrices of size d× d.

Proposition 2 un ≤ v∗, where v is a non negative viscosity solution of the PDE (6).

Proof. This result seems to be a direct consequence of a well-known maximum principle
for viscosity solutions (see [4] or [16] when I = 0, [5], [8] or [25] in general). But to
the best of our knowledge, this principle was not proved for solutions which can take the
value +∞. Recall that the terminal condition and the generator can be singular at time
T . Thus, following the proof of Proposition 4.1 in [25] or Theorem 3 in [8], we just give
here the main points.

The beginning of the proof is exactly the same as the proof of Proposition 23 in [41].
We fix ε > 0 and n ≥ 1 and we define un,ε(t, x) = un(t, x)− ε

t
. We will prove that un,ε ≤ v∗

for every ε, hence we deduce un ≤ v∗.
We suppose that there exists (s, z) ∈ [0, T ]×R

d such that un,ε(s, z)− v∗(s, z) ≥ ν > 0
and we will find a contradiction. First of all, it is clear that s is not equal to 0 or T ,
because un,ε(0, z) = −∞ and v∗(T, z) ≥ g(z) (by definition of a supersolution).

un,ε and −v∗ are bounded from above on [0, T ] × Rd respectively by n(T + 1) and 0.
Thus, for (η, χ) ∈ (R∗)2, if we define:

m(t, x, y) = un,ε(t, x) − v∗(t, y) −
η

2
|x− y|2 − χ

(
|x|2 + |y|2

)
,
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m has a supremum Mη,χ on [0, T ] × R
d × R

d and the penalization terms assure that the
supremum is attained at a point (t̂, x̂, ŷ) = (tη,χ, xη,χ, yη,χ). By classical arguments we
prove that if χ is sufficiently small

(34) ν/2 ≤Mη,χ, |x̂|2 + |ŷ|2 ≤
n(T + 1)

χ
and |x̂− ŷ|2 ≤

2n(T + 1)

η
.

Moreover for η large enough, the time t̂ satisfies 0 < t̂ < T (see [41] for the details).
For η large enough, we can apply Jensen-Ishii’s Lemma for non local operator estab-

lished by Barles and Imbert (Lemma 1 and Corollary 2 in [8]) with un,ε subsolution, v∗
supersolution and φ(x, y) = η

2
|x− y|2 +χ (|x|2 + |y|2) at the point (t̂, x̂, ŷ). For any δ > 0

there exists ζ > 0 and (a, p,X), (b, q, Y ) such that

• a = b, p = ∇xφ(x̂, ŷ) = η(x̂− ŷ) + 2χx̂, q = −∇yφ(x̂, ŷ) = −η(ŷ − x̂) − 2χŷ

• X and Y are symmetric matrices of size d× d such that

(
X 0
0 −Y

)
≤ η

(
I −I
−I I

)
+ 2χ

(
I 0
0 I

)
+ oζ(1)

• the non local operators become

In,ε = I1,δ(t̂, x̂, φζ(., ŷ)) + I2,δ(t̂, x̂, p, un,ε(t̂, x̂))

I∗ = I1,δ(t̂, ŷ,−φζ(x̂, .)) + I2,δ(t̂, ŷ, q, v∗(t̂, ŷ))

Bn,ε = Bδ(t̂, x̂, φζ(., ŷ), un,ε(t̂, x̂))

B∗ = Bδ(t̂, ŷ,−φζ(x̂, .)), v∗(t̂, ŷ))

• and finally

−a + F (t̂, x̂, un,ε(t̂, x̂), p,X, In,ε, Bn,ε) ≤ −
ε

T 2

−b+ F (t̂, ŷ, v∗(t̂, ŷ), q, Y, I∗, B∗) ≥ 0.

The result holds for any 0 < ζ < ζ̄ and the value ζ̄ > 0 depends on the coefficients of the
IPDE. The function φζ is defined in the same way as in [8]. Proposition 3 in [8] shows
that we can replace φζ in I1,δ by φ up to some o(ζ). We substract the two previous
inequalities:

ε

T 2
+ o(ζ) ≤ −F (t̂, x̂, un,ε(t̂, x̂), p,X, In,ε, Bn,ε) + F (t̂, ŷ, v∗(t̂, ŷ), q, Y, I∗, B∗).(35)

Let us separate the local terms with the non local ones. For the first ones we have:

1

2
Trace (σσ∗(x̂)X) −

1

2
Trace (σσ∗(ŷ)Y )

+ (b(x̂) − b(ŷ)) .η(x̂− ŷ) + 2χ (b(x̂).x̂ + b(ŷ).ŷ)
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As in [41], using A1 and A3, we prove that there exists a constant K independent of η
and χ such that:

(b(x̂) − b(ŷ)) .η(x̂− ŷ) + 2χ (b(x̂).x̂+ b(ŷ).ŷ)(36)

≤ ηK|x̂− ŷ|2 + 2χK(1 + |x̂|2 + |ŷ|2),

and

(37) Trace (σσ∗(x̂)X) − Trace (σσ∗(ŷ)Y ) ≤ Kη|x̂− ŷ|2 +Kχ(1 + |x̂|2 + |ŷ|2).

Now we deal with the non local terms. First we control

I2,δ(t̂, x̂, p, un,ε(t̂, x̂)) − I2,δ(t̂, ŷ, q, v∗(t̂, ŷ))

=

∫

|e|>δ

[un,ε(t̂, x̂+ β(x̂, e)) − un,ε(t̂, x̂) − pβ(x̂, e)]λ(de)

−

∫

|e|>δ

[v∗(t̂, ŷ + β(ŷ, e)) − v∗(t̂, ŷ) − qβ(ŷ, e)]λ(de)

We use the following inequality:

un,ε(t̂, x̂ + β(x̂, e)) − v∗(t̂, ŷ + β(ŷ, e)) ≤ m(t̂, x̂, ŷ)(38)

+
η

2
|x̂+ β(x̂, e) − ŷ − β(ŷ, e)|2 + χ

(
|x̂+ β(x̂, e)|2 + |ŷ + β(ŷ, e)|2

)

≤ m(t̂, x̂, ŷ) +
η

2
|x̂− ŷ|2 + χ

(
|x̂|2 + |ŷ|2

)

+
η

2
|β(x̂, e) − β(ŷ, e)|2 + χ

(
|β(x̂, e)|2 + |β(ŷ, e)|2

)

+η(x̂− ŷ)(β(x̂, e) − β(ŷ, e)) + 2χ (x̂β(x̂, e) + ŷβ(ŷ, e))

= un,ε(t̂, x̂) − v∗(t̂, ŷ) + pβ(x̂, e) − qβ(ŷ, e)

+
η

2
|β(x̂, e) − β(ŷ, e)|2 + χ

(
|β(x̂, e)|2 + |β(ŷ, e)|2

)
.

By construction, v∗(t̂, ŷ) ≤ un,ε(t̂, x̂) and therefore by assumptions A2 and A4 on β, there
exists K independent of η and χ such that:

I2,δ(t̂, x̂, p, un,ε(t̂, x̂)) − I2,δ(t̂, ŷ, q, v∗(t̂, ŷ)) ≤ K
(η

2
|x̂− ŷ|2 + χ(1 + |x̂| + |ŷ|)

)
.(39)

Now

I1,δ(t̂, x̂, φ(., ŷ)) − I1,δ(t̂, x̂,−φ(x̂, .))(40)

=

∫

|e|≤δ

[φ(x̂ + β(x̂, e), ŷ) − φ(x̂, ŷ) − (∇xφ)(x̂, ŷ)β(x̂, e)]λ(de)

−

∫

|e|≤δ

[−φ(x̂, ŷ + β(ŷ, e)) + φ(x̂, ŷ) + (∇yφ)(x̂, ŷ)β(ŷ, e)]λ(de)

=
(η

2
+ χ

)∫

|e|≤δ

(
|β(x̂, e)|2 + |β(ŷ, e)|2

)
λ(de)

≤ 2K2
(η

2
+ χ

)∫

|e|≤δ

(1 ∧ |e|2)λ(de) = 2K2
(η

2
+ χ

)
O(δ),
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by assumption A4. To finish we need to control

fn(t̂, x̂, un,ε(t̂, x̂), pσ(x̂), Bn,ε) − f(t̂, ŷ, v∗(t̂, ŷ), qσ(ŷ), B∗).

Recall that we can replace φζ by φ (up to some oζ(1)). We begin with

Bn,ε − B∗ = Bδ(t̂, x̂, φζ(., ŷ), un,ε(t̂, x̂)) − Bδ(t̂, ŷ,−φζ(x̂, .)), v∗(t̂, ŷ))

=

∫

|e|≤δ

[φζ(x̂ + β(x̂, e), ŷ) − φζ(x̂, ŷ)] γ(x̂, e)λ(de)

+

∫

|e|>δ

[
un,ε(t̂, x̂+ β(x̂, e)) − un,ε(t̂, x̂)

]
γ(x̂, e)λ(de)

+

∫

|e|≤δ

[φζ(x̂, ŷ + β(ŷ, e)) − φζ(x̂, ŷ)] γ(ŷ, e)λ(de)

−

∫

|e|>δ

[
v∗(t̂, ŷ + β(ŷ, e)) − v∗(t̂, ŷ)

]
γ(ŷ, e)λ(de)

≤

∫

|e|>δ

[
un,ε(t̂, x̂+ β(x̂, e))γ(x̂, e) − v∗(t̂, ŷ + β(ŷ, e))γ(ŷ, e)

]
λ(de)

+

∫

|e|>δ

un,ε(t̂, x̂) [γ(ŷ, e) − γ(x̂, e)]λ(de)

+

∫

|e|≤δ

[φζ(x̂+ β(x̂, e), ŷ) − φζ(x̂, ŷ)] γ(x̂, e)λ(de)

+

∫

|e|≤δ

[φζ(x̂, ŷ + β(ŷ, e)) − φζ(x̂, ŷ)] γ(ŷ, e)λ(de).

The last two integrals are almost the same:
∫

|e|≤δ

[φζ(x̂ + β(x̂, e), ŷ) − φζ(x̂, ŷ)] γ(x̂, e)λ(de)

= (2χx̂+ η|x̂− ŷ|)

∫

|e|≤δ

β(x̂, e)γ(x̂, e)λ(de) +
(
χ+

η

2

)∫

|e|≤δ

|β(x̂, e)|2γ(x̂, e)λ(de)

≤ K
(

2χ|x̂| + η|x̂− ŷ| + χ+
η

2

)
O(δ)

for some constant K depending only on β and γ. Then from Condition C13
∫

|e|>δ

un,ε(t̂, x̂) [γ(ŷ, e) − γ(x̂, e)]λ(de) ≤ un,ε(t̂, x̂)Cγ|x̂− ŷ|

∫

|e|>δ

(1 ∧ |e|2)λ(de)(41)

≤ Kun,ε(t̂, x̂)|x̂− ŷ| ≤ Kn(T + 1)|x̂− ŷ|.

The remaining term can be controlled as follows:
∫

|e|>δ

[
un,ε(t̂, x̂+ β(x̂, e))γ(x̂, e) − v∗(t̂, ŷ + β(ŷ, e))γ(ŷ, e)

]
λ(de)

=

∫

|e|>δ

un,ε(t̂, x̂+ β(x̂, e)) [γ(x̂, e) − γ(ŷ, e)]λ(de)

+

∫

|e|>δ

[
un,ε(t̂, x̂+ β(x̂, e)) − v∗(t̂, ŷ + β(ŷ, e))

]
γ(ŷ, e)λ(de)
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The first term on the right-hand side can be bounded as (41). For the second one, we use
inequality (38):

∫

|e|>δ

[
un,ε(t̂, x̂+ β(x̂, e)) − v∗(t̂, ŷ + β(ŷ, e))

]
γ(ŷ, e)λ(de)

≤

∫

|e|>δ

[
pβ(x̂, e) − qβ(ŷ, e) +

η

2
|β(x̂, e) − β(ŷ, e)|2 + χ

(
|β(x̂, e)|2 + |β(ŷ, e)|2

)]
γ(ŷ, e)λ(de)

≤ K
(η

2
|x̂− ŷ|2 + χ(1 + |x̂| + |ŷ|)

)
.

Hence all these bounds give

Bn,ε −B∗ ≤ 2n(T + 1)K|x̂− ŷ| +K
(η

2
|x̂− ŷ|2 + χ(1 + |x̂| + |ŷ|)

)

+2K
(
χ(|x̂| + |ŷ|) + η|x̂− ŷ| + χ +

η

2

)
O(δ) = ♮(x̂, ŷ).

We can now control the term

fn(t̂, x̂, un,ε(t̂, x̂), pσ(x̂), Bn,ε) − f(t̂, ŷ, v∗(t̂, ŷ), qσ(ŷ), B∗)(42)

≤
[
(f 0 ∧ n) − f 0

]
+̟n/χ(|x̂− ŷ|(1 + |px̂|)) + L|pσ(x̂) − qσ(ŷ)| + L♮(x̂, ŷ)

≤ ̟n/χ(|x̂− ŷ|(1 + |px̂|)) + LK
(
η|x̂− ŷ|2 + χ(1 + |x̂|2 + |ŷ|2)

)
+ L♮(x̂, ŷ)

We have used that the function f = f(t, x, y, z, u) is Lipschitz continuous w.r.t. z (Condi-
tion C5), locally Lipschitz continuous w.r.t. x (Condition C12), is non increasing w.r.t.
y (Condition C3) and non decreasing w.r.t. u (Condition C6).

Finally plugging (36), (37), (39) and (40), (42) in (35) we obtain:

(43)
ε

T 2
+ o(ζ) ≤ ω1 (η, χ, x̂, ŷ)O(δ) + ω2

(
η|x̂− ŷ|2, χ(1 + |x̂|2 + |ŷ|2), |x̂− ŷ|

)

where we have gathered in the ω1 terms, all terms multiplied by O(δ). The ω2 term
contains all terms of the form η|x̂ − ŷ|2, χ(1 + |x̂|2 + |ŷ|2) or |x̂ − ŷ|. We let ζ and δ go
to zero and since

lim
η→+∞

lim
χ→0

(η
2
|x̂− ŷ|2 + χ

(
|x̂|2 + |ŷ|2

))
= 0,

the inequality (43) leads to a contradiction taking χ sufficiently small and η sufficiently
large. Hence un,ε ≤ v∗ and it is true for every ε > 0, so the result is proved. �

3 Regularity of the minimal solution

The function u is the minimal non negative viscosity solution of the PDE (6). From
(18) we know that u is finite on [0, T [×Rd and For ε > 0, u is bounded on [0, T − ε]×Rd

by K(1+ |x|δ)ε−1/q. We cannot expect regularity on [0, T ]×R
d, but only on [0, T −ε]×R

d

for any ε > 0. In order to obtain a smoother solution u, some assumptions are imposed
on the coefficients. We distinguish three different conditions.
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• Sobolev regularity: the viscosity solution is a weak solution in the Sobolev sense
if the coefficients on the forward SDE (8) are smooth and if the linkage operator
x 7→ x + β(x, e) is a C2-diffeomorphism. Under these assumptions, we can control
the stochastic flow of X t,x and then deduce the Sobolev regularity of u.

• Hölder regularity: if the Lévy measure λ verifies (E), then the viscosity solution is
locally Hölder continuous. Remark that under the stronger condition A6, (E) is
unnecessary.

• Strong regularity. u can be a classical solution provided (A+) holds, if the function
in C9 is bounded, and under different settings.

– If the measure λ is finite and if f only depend on (t, x, y), then using Vereten-
nikov’s result, u is in C1,2([0, T − ε] × Rd) for any ε > 0. Note that here no
regularity on b, σ or f is required.

– Again if λ is finite and if f(t, x, 0, z, u) is bounded with (t, x) 7→ f(t, x, y, z, u) ∈
Hα/2,α uniformly w.r.t. (t, x), then we can use the technic developped in Ma
et al. [32].

– In the setting of Garroni and Menaldi [22], i.e. for some γ < 2

(44)

∫

E

(1 ∧ |e|γ)λ(de) < +∞

and the linkage operator satisfies

(45) det(Idd + ∇xβ(x, e)) ≥ c1 > 0,

the existence of a Green function G with suitable properties will ensure a
regularizing effect of the operator L + I.

Of course, none of these settings gives necessary conditions. For sure other sufficient
assumptions could be exhibited.

3.1 Sobolev regularity of the solution

The solution u is the increasing limit of un. And on un we can apply Theorem 1
of [34]. Indeed let us fix a continuous positive and integrable weight function ρ such
that 1/ρ is locally integrable. We define L2

ρ([0, T ] × Rd) the Hilbert space of function
v : [0, T ] × Rd → R such that

∫ T

0

∫

Rd

|v(t, x)|2ρ(x)dxdt < +∞.

We assume that

• The functions b, σ, β(., e) are in C3
l,b(R

d) for any e ∈ E. Condition A4 holds also
for all derivatives of β of order less than or equal to 3.
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• For each e ∈ E the linkage operator x 7→ x+ β(x, e) is a C2-diffeomorphism.

These extra assumptions are used to control the stochastic flow generated by X t,x (see
Proposition 2 in [34]).

Recall that we can replace in the BSDE (13) our generator fn by f̂n where f̂n is
Lipschitz continuous w.r.t. y. Hence all assumptions of Theorem 1 in [34] are fulfilled:
un(t, x) = Y n,t,x

t is the unique Sobolev solution of IPDE (6) in the space

HT =
{
v ∈ L2

ρ([0, T ] × R
d), σ∗∇v ∈ L2

ρ([0, T ] × R
d)
}
.

The definition of Sobolev solution is given in Definition 1 in [34]. Moreover (σ∗∇u)(t, x) =
Zn,t,x

t . In particular for any ε > 0, and each function φ ∈ C∞([0, T ]) × C∞
c (Rd) (i.e. the

space of infinite differentiable functions in a neighborhood on [0, T ] with compact support
in Rd), for any t ≤ T − ε

∫ T−ε

t

(un(s, x), ∂sφ(s, x))ds+ (un(t, x), φ(t, x)) − (un(T − ε, x), φ(T − ε, x))

−

∫ T−ε

t

(un(s, x),A∗φ(s, x))ds

=

∫ T−ε

t

(f(s, x, un(s, x), σ∗∇un(s, x),B(s, x, un)), φ(s, x))ds

where (v, w) =
∫
Rd u(x)v(x)dx is the scalar product on L2(Rd) and A∗ is the adjoint

operator of the operator L + I.
Moreover for any ε > 0, on [0, T − ε], by the estimate (18), and from Inequality (16),

we deduce that un and σ∗∇un are bounded from above by C(1 + |x|δ) for some C > 0
and δ > 0. Hence if we choose the suitable weight ρ, un and σ∗∇un are bounded in
H(0, T − ε). Therefore the next result is proved.

Proposition 3 Under conditions (A)-(B)-(C), if the coefficients b, σ and β satisfy the
above conditions, then u ∈ HT−ε and is a Sobolev solution of the IPDE (6) on [0, T − ε]
for any ε > 0.

Note that in the case f(y) = −y|y|q, the only hypotheses in order to have a Sobolev
solution are on the coefficients of the forward diffusion.

3.2 Lipschitz/Hölder regularity of the solution

Recently there have been several papers [6, 7, 13, 14, 15, 45, 46] (among many others)
dealing with Cα estimates and regularity of the solution of the IPDE (6). Here we will
mainly use the paper written by Barles et al. [6, 7].

In our setting we defined F by (33) and from Conditions (A) and (C) we can easily
check that F is continuous and degenerate elliptic and (H0) and (H2) of [6] hold:

• If X ≥ Y , I ≥ I ′, B ≥ B′, F (t, x, u, p,X, I, B) ≤ F (t, x, u, p, Y, I ′, B′).
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• For any t ∈ [0, T ], x ∈ R
d, u, v in R, p ∈ R

d, X ∈ Sd and (I, B) ∈ R
2,

F (t, x, u, p,X, l, B) − F (t, x, v, p,X, l, B) ≥ 0 = 0 × (u− v), when u ≥ v.

• (I, B) 7→ F (., I, B) is Lipschitz continuous, uniformly with respect to all the other
variables.

Since we are just interesting in a global regularity property, we add the strict ellipticity
condition (H) of [6]: there exist two non negative functions Λ1 and Λ2 defined on Rd, a
positive constant Λ0 such that Λ1(x) + Λ2(x) ≥ Λ0 > 0, and a modulus of continuity ̟F

such that for any ε > 0, t ∈ [0, T ], u ∈ R, x, y in Rd, B ∈ R,

• if X , Y in Sd satisfy the matrix inequality:

−
1

ε

(
Id 0
0 Id

)
≤

(
X 0
0 −Y

)
≤

1

ε

(
Z −Z
−Z Z

)

with Z = Id− ωẑ ⊗ ẑ for some unit vector ẑ ∈ Rd and ω ≥ 1,

• and if I ′ ≥ I,

then

F (t, y, u, p, Y, I ′, B) − F (t, x, u, p,X, I, B) ≤ Λ1(x)(I − I ′)

+Λ2(x)Trace(X − Y ) +̟F

(
|x− y|2

ε
+ |x− y|(1 + |p|)

)

As explained in the introduction of [6], the diffusion term gives the ellipticity in certain
directions whereas it is given by the non local term in the complementary directions.

In our setting, the existence of ̟F follows from our conditions (A) and C12 if we
assume that ̟R in C12 does not depend on R (see Section 4.1 in [6]). Moreover F is
linear w.r.t. I. Hence with Λ1(x) = 1

F (t, x, u, p,X, I ′, B) − F (t, x, u, p,X, I, B) = Λ1(x)(I − I ′).

Moreover 2Λ2(x) is the minimal eigenvalue of the matrix σσ∗(x). Thus Λ2(x) ≥ 0. There-
fore the strict ellipticity condition (H) is satisfied with Λ0 = 1.

Now when the strict ellipticity is involved by the non local terms, we need some
extra conditions on the Lévy measure λ and on the coefficient β in the SDE (8). These
assumptions are denoted by (J1) to (J5) in [6]. In the following, B is the unit ball in E
and Bε is the ball centered at zero with radius ε > 0. Remember that λ is a Lévy measure
on R

d: ∫

E

(1 ∧ |e|2)λ(de) < +∞.

From (A), the next conditions hold already.

• From Condition A4, there exists a constant Cλ,β such that for all x ∈ Rd:
∫

B

|β(x, e)|2λ(de) +

∫

Rd\B

λ(de) ≤ Cλ,β.
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• (partially). From A2 there exists a constant Kβ such that for all e ∈ B, and x and
y in Rd:

|β(x, e) − β(y, e)| ≤ Kβ|e||x− y|.

Moreover from A4 for all (e, x) ∈ E × Rd

|β(x, e)| ≤ Cβ|e|.

• Assumption A2 implies that for all e ∈ E, |e| ≥ 1, and x and y in Rd:

|β(x, e) − β(y, e)| ≤ Kβ|x− y|.

To verify all conditions of [6] we add these additional hypotheses.

E1. There exists cβ > 0 such that for all (e, x) ∈ E × Rd, cβ|e| ≤ |β(x, e)|.

E2. There exists τ ∈ (0, 2) such that for every a ∈ Rd, there exists 0 < η < 1 and a

constant C̃λ > 0 such that the following holds for any x ∈ Rd

∀ε > 0,

∫

Cη,ε(a)

|β(x, e)|2λ(de) ≥ C̃λη
d−1
2 ε2−τ

with Cη,ε(a) = {e; |β(x, e)| ≤ ε, (1 − η)|β(x, e)||a| ≤ |a.β(x, e)|}.

E3. There exists τ ∈ (0, 2) such that for ε > 0 small enough

∫

B\Bε

|e|λ(de) ≤

{
Ĉλε

1−τ for τ 6= 1,

Ĉλ| ln(ε)| for τ = 1.

We denote by (E) the three conditions E1, E2, E3. If (E) holds then Conditions (J1)
to (J5) of [6] are satisfied. Recall that our terminal condition g is continuous from Rd to
R∪{+∞} (Hypothesis B3). Now we state the main result of this part. This Proposition
is a modification of Corollary 7 of [6].

Proposition 4 Assume that Conditions (A)-(B)-(C)-(E) are satisfied. Moreover the
modulus of continuity in C12 does not depend on R.

• Assume that τ > 1 and that for all M ≥ 0, g is a Lipschitz continuous function on
the set OM = {|g| ≤ M}. Then for all ε > 0, u is locally Lipschitz continuous on
Rd, uniformly w.r.t. t ∈ [0, T − ε]: for all M , there exists a constant CM,ε such that

∀|x| ≤M, ∀|y| ≤M, |u(t, x) − u(t, y)| ≤ CM,ε|x− y|.

The constant CM,ε depends only on ε, on M on the dimension d, and on the con-
stants in Assumption (E).

• If τ ≤ 1, and if for some α < τ , g is α-Hölder continuous function on the set
OM = {|g| ≤ M} for all M ≥ 0, then u is locally α-Hölder continuous on R

d,
uniformly w.r.t. t ∈ [0, T − ε].
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Proof. For any n ∈ N, un is a continuous viscosity solution of (6) with terminal condition
gn. We know that this function is bounded on [0, T ]×Rd by n(T + 1) and has a uniform
w.r.t. n upper bound given by (18). We can apply to un the results of Corollary 7 in [6].

• Assume that τ > 1. Our condition on g implies that gn is Lipschitz on Rd. From
[6], un is Lipschitz continuous w.r.t. x on [0, T ], i.e. there exists a constant Cn such
that for all t ∈ [0, T ], all (x, y) ∈ (Rd)2,

|un(t, x) − un(t, y)| ≤ Cn|x− y|.

The key point here is that the constant Cn depends only on ‖un‖∞, on the dimension
d, and on the constants in Assumption (E). From the upper bound (20), we deduce
that for any ε > 0, on [0, T − ε], un is locally Lipschitz continuous w.r.t. x and the
Lipschitz constant CM,ε does not depend on n. Thus by Arzelà-Ascoli theorem, the
limit u is locally Lipschitz continuous with the same constants.

• If τ ≤ 1, then un is α-Hölder continuous w.r.t. x on [0, T ], i.e. there exists a constant
C such that for all t ∈ [0, T ], all (x, y) ∈ (Rd)2,

|un(t, x) − un(t, y)| ≤ C|x− y|α.

And C depends on the norm of un, which does not depend on n if we take t in
[0, T − ε]. The conclusion follows immediately.

�

Remark 4 (On Condition (E)) If the matrix σσ∗ is uniformly elliptic (see Condition
A6), then the conclusion of the previous proposition still holds without Assumption (E)
and the regularity of u depends on the regularity of g (no more on τ).

Indeed Condition (E) is crucial to have regularity estimates when the local second order
differential operator L becomes degenerated. But if L remains strictly elliptic, then
regularity of the solution can be derived directly without the help of the non local operator
I.

3.3 Strong regularity of the solution

Here we briefly explain how we can derive that this minimal viscosity solution is a
regular function on [0, T − ε] × Rd under additional conditions. For results concerning
classical solutions of the IPDE (6), the book of Garroni and Menaldi [22] is an important
reference (see also references therein).

To have more regularity on the solution u we will assume that Conditions (A+) hold,
that is σ and b are bounded and σσ∗ is uniformly elliptic:

(A6) ∀y ∈ R
d, σσ∗(x)y.y ≥ Λ0|y|

2.

Recall that A6 implies Condition H of the previous section.
In this first lemma, we obtain a regularity result with a transformation of the non local

operator I. This idea is used in [32] and [40]. This transformation requires the finiteness
of the measure λ. But after we can use all results concerning (linear) PDE, especially the
ones contained in the reference book [30].
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Lemma 6 Under (A+) and (C), if the measure λ is finite and if f depends only on
(t, x, v) with f(t, x, 0) bounded uniformly w.r.t. (t, x), then for every bounded and contin-
uous function φ, the Cauchy problem

(46) ∂tv + Lv + I(t, x, v) + f(t, x, v) = 0

with terminal condition v(T, .) = φ, has a unique bounded classical solution v in the sense
that v ∈ C1,2([0, T ) × Rd) ∩ C([0, T ] × Rd).

Here in fact no regularity assumption on the coefficients b, σ and f(., ., 0) is required.
Only boundedness and A6 are important.

Proof. We will use the scheme done in [41] (Proposition 24), in Ma et al. [32]
(Theorem 1) and in Pham [40] (Proposition 5.3). For a given continuous and bounded
function φ, the problem (46) has a unique bounded and continuous viscosity solution v
(just apply Theorem 3.4 and Theorem 3.5 in [5]). All regularity estimates come from the
book of Ladyzhenskaya et al. [30].

We consider the following Cauchy problem: on [0, T ] × Rd

(47) ∂tw + L̃w + fv = 0,

with

• the differential operator L̃:

L̃φ =
1

2
Trace(D2φσσ∗(x)) + b̃(x)∇φ,

• the drift term b̃:

b̃(x) = b(x) −

∫

E

β(x, e)λ(de).

• the generator fv:

fv(t, x) = f(t, x, v(t, x)) +

∫

E

[v(x+ β(x, e)) − v(x)]λ(de).

First note that v is also the unique bounded viscosity solution of (47).

Then the assumptions A4, A5 and C4 imply that the drift term b̃ and the function fv
are also bounded. Using the result of Veretennikov [49], Theorem 3.1, the problem (47)

has a unique solution w in the class C([0, T ] × R
d;R+) ∩

⋂

p>1

W 1,2
p,loc([0, T [×R

d). Now we

define three processes for all s ≥ t:

X
t,x

s = x+

∫ s

t

b̃(u,X
t,x

u )du+

∫ s

t

σ(u,X
t,x

u )dBu,

and
Y

t,x

s = w(s,X
t,x

s ), and Z
t,x

s = ∇w(s,X t,x
s )σ(s,X

t,x

s ).
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We can apply the Itô formula to the function w (see [29], section 2.10). We have for all
s ≥ t:

Y
t,x

s = Y
t,x

T−δ −

∫ T−δ

s

fv(r,X
t,x

r )dr −

∫ T−δ

s

Z
t,x

r dBr.

Since fv is bounded, it is well known (see [36]) that the function (t, x) 7→ Y
t,x

t is a
continuous and bounded viscosity solution of (47). Therefore w = v and thus the viscosity
solution v belongs to

⋂
p>1W

1,2
p,loc([0, T [×Rd).

Hence for all α < 1, v belongs to the space Hβ/2,1+β (the set of functions which are
β/2-Hölder-continuous in time and 1 + β-Hölder-continuous in space), and the Hölder
norm of v depends just on the L∞ bound of v. Thus fv is also Hölder continuous, and
from the existence result of [30] (see section IV, theorems 5.1 and 10.1), v is a classical
solution of (47) and of (46). �

Lemma 7 Under (A+) and (C), if the measure λ is finite, if f(t, x, 0, z, u) is bounded,
and if (t, x) 7→ f(t, x, y, z, u) is in Hα/2,α uniformly w.r.t. (t, x), then for every bounded
and continuous function φ, the Cauchy problem

(48) ∂tv + Lv + I(t, x, v) + f(t, x, v,∇vσ(t, x),B(t, x, v)) = 0

with terminal condition v(T, .) = φ, has a unique bounded classical solution v in the sense
that v ∈ C1,2([0, T ) × Rd) ∩ C([0, T ] × Rd).

Proof. If the functions σ, b, β, f and γ were of class C1 with bounded derivatives
w.r.t. all parameters (x, y, z, u), then the conditions of [32] would be satisfied. Thus from
Theorem 1 in [32], if φ ∈ H2+α(Rd) for some α > 0, then w ∈ H1+α/2,2+α([0, T ] × Rd).
But we claim that we do not need these conditions if we relax the regularity condition on
the solution w.

Indeed the first key point in [32] is the transformation of (48):

(49) ∂tw + L̃w + f̃(t, x, w,∇wσ,B(t, x, w)) = 0,

where L̃ is the same as in (47) and

f̃(t, x, w,∇wσ,B(t, x, w)) =

f(t, x, w(t, x),∇w(t, x)σ(t, x),B(t, x, w)) +

∫

E

[w(x+ β(x, e)) − w(x)]λ(de).

The bounded viscosity solution v of (48) is also the unique viscosity solution of (49).
Moreover the bound on v depends on the Lipschitz constants of f and the bound on φ.
A classical solution being a viscosity solution, by uniqueness of the viscosity solution, a
classical solution is bounded with the same bound. As already denoted, we can truncate
f w.r.t. y and assume that f is in fact Lipschitz w.r.t. y (from Condition C4).

Then we follow the same steps as in [32]. For a classical solution w the first estimate
is:

‖∇w‖∞ + ‖w‖Hα/2,α([0,T ]×Rd) ≤ M
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where M and α ∈ (0, 1) depend only on the bounds in A5, A6 and the Lipschitz constants
of the coefficients. Then (49) can be seen as a linear equation with Hölder continuous
leading coefficients, all other coefficients being bounded. Hence Lp estimates give that

‖w, ∂tw,∇w,D
2w‖Lp

loc
≤ Cp

where Cp depends only on M and the bound on w. Thereby for all α < 1, w belongs to
the space Hβ/2,1+β, and the Hölder norm of w depends just on M and on the L∞ bound of
w. Again after this step, we can deduce the existence of a classical solution w by Schauder
estimate. �

Now if f does not depend on z (or on ∇v), a straightforward modification of the proof
shows the next result.

Lemma 8 The conclusion of the lemma 7 holds under the assumptions:

• f does not depend on z;

• φ is bounded Lipschitz continuous function;

• there exists a constant Cλ,β such that for all x ∈ Rd,

∫

E

|β(x, e)|λ(de) ≤ Cλ,β.

As an example if the measure λ satisfies (44) with γ = 1, then from Assumption A4 the
above condition holds.

Proof. Indeed the previous section 3.2 shows that v is also Lipschitz continuous. By
Condition A4, β is bounded uniformly w.r.t. x ∈ Rd. Hence there exists a constant C
such that for all (t, x) ∈ [0, T ] × R

d,

∫

E

|v(t, x+ β(x, e)) − v(t, x)|λ(de) ≤ CM

∫

E

|β(x, e)|λ(de) ≤ CMCλ,β.

Moreover with C7
∫

E

|v(t, x+ β(x, e)) − v(t, x)|γ(x, e)λ(de) ≤ CM

∫

E

|β(x, e)|γ(x, e)λ(de) ≤ CMCϑCβ,

in other words B(t, x, v) is a bounded function on [0, T ] × Rd. Thus b̃ and fv are still
bounded functions. The rest of the proof does not change. �

The main drawback of the previous lemmas is the finiteness of the measure λ. To
avoid this condition, we must use regularity results on IPDE. Some results can be found
in [11] (see Chapter 3, theorems 3.2 and 3.3), but with Condition (44) with γ = 1. The
main reference (from our best knowledge) is the book of Garroni and Menaldi [22] (with
a short version [21] and the book [20] on Green functions for IPDE).

Lemma 9 Assume that
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• The measure λ satisfies (44) for some γ < 2.

• The function β is differentiable w.r.t. x and (45) holds.

• f is Hölder-continuous w.r.t. (t, x) uniformly w.r.t. the other parameters, that is
there exists α ∈ (0, 1) such that there exists a constant C such that for all (y, z, u)

|f(t, x, y, z, u) − f(t′, x′, y, z, u)| ≤ C(|t− t′|α/2 + |x− x′|α).

Then for any bounded and continuous function φ, the Cauchy problem (48) has a unique
solution v in the set C([0, T ]×Rd)∩H1+δ/2,2+δ([0, T )×Rd) where δ = α if γ < 2−α and
δ ∈ (0, 2 − α) if γ ∈ [2 − α, 2). Moreover v is bounded on [0, T ] × Rd.

Proof. We follow the ideas developed in the proof of Theorem 4.2, Chapter VI (see
also Theorem 6.1, Chapter V) in [30]. For 0 ≤ ρ ≤ 1, we consider the family of linear
problems: on [0, T ) × R

d

(50)
∂

∂t
v(t, x) + Lv(t, x) + I(t, x, v) + ρf(t, x, w, (∇w)σ,B(t, x, w)) = 0

with terminal condition v(T, .) = φ. This defines an operator Ψ which associates each
function w ∈ H1+δ/2,2+δ([0, T ) × Rd) with a solution v of the linear problem (50): v =
Ψ(w, ρ). Its fixed points for ρ = 1 are solutions of our initial problem.

Now let us recall some facts contained in [20, 21, 22]. First if w ∈ H1+δ/2,2+δ, then for
every ε > 0 there exists a constant C(ε) such that

‖B(t, x, w)‖δ = ε‖∇w‖δ + C(ε)‖φ‖δ.

The next point concerns the existence and the uniqueness of the Green function. Under
(A+), there exists a unique Green function G associated with the parabolic second-order
integro-differential operator

∂tu− Lu− Iu,

and G has the representation

G(x, t, y, s) = GL(x, t, y, s) +

∫ t

s

du

∫

Rd

GL(x, t, ξ, u)Q(ξ, u, y, s)dξ,

where GL is the Green function associated with the differential operator L. G and Q
belong to some Green Function Spaces (see Chapter VII, Definition 1.1 in [20]). The key
properties are inherited from the properties of GL. The Green function GL is studied
in Chapter IV, Sections 12 to 14 of [30]. The properties of the Green functions GL and
G imply regularizing property for the parabolic operator ∂tu − Lu − Iu. Namely, from
Theorem VIII.2.1 of [20] and Theorem 3.2 of [21], if φ is a continuous and bounded
function, and f ∈ Hα/2,α, then the function v defined by

v(t, x) =

∫

Rd

G(x, t, y, 0)φ(y)dy+

∫ t

0

∫

Rd

G(x, t, y, s)f(y, s)dyds = v1(t, x) + v2(t, x)
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on (0,+∞)×R
d is in H1+δ/2,2+δ((0, τ ]×R

d) for any τ > 0, and solves the IPDE (50) with
f(t, x) in the right-hand side and the initial condition v(0, .) = φ. Moreover the estimates
on v and its derivatives on [ε, τ ] × Rd only depend on ε, on the bound on φ and on f .
More precisely, there exists a constant C independent of φ such that:

ε1+δ/2‖v1‖H1+δ/2,2+δ([ε,τ ]×Rd) ≤ C‖φ‖∞,

and
‖v2‖H1+δ/2,2+δ([ε,τ ]×Rd) ≤ C‖f‖δ.

These inequalities can be found in Theorem 3.2 of [21] and Section IV.14 of [30]. The
Green function G is involved in the constant C. The time reversion will give the same
inequality on [0, T − ε] × Rd, if φ is a terminal condition at time T .

In searching for the fixed points of Ψ we apply the Leray-Schauder principle (see [30]
for the details).

• Ψ is equicontinuous in w and ρ and uniformly compact. This comes immedi-
atly from the previous inequality since w ∈ H1+δ/2,2+δ([0, T ) × Rd) implies that
f(t, x, w, (∇w)σ,B(t, x, w)) is in Hδ/2,δ.

• The operator Ψ(., 0) has a unique fixed point. Existence is implied by the existence
of the Green function G, and uniqueness can be deduced from the uniqueness of the
solution of the BSDE.

• Since since Ψ(w, 0) takes all w into a single element, w 7→ w− Ψ(w, 0) invertible in
a neighborhood of the unique fixed point of Ψ(., 0).

Hence for each ρ ∈ [0, 1], there exists at least one fixed point vρ for Ψ. Using again the
regularizing result of [20], vρ ∈ H1+δ/2,2+δ([0, T ) × Rd). We just have to take ρ = 1 to
obtain v.

The continuity and the boundedness on the solution v comes from classical a priori
estimate on the BSDE (see [5]). �

Proposition 5 Under (A+), (B) and (C), we assume that the conditions of Lemmas
6, 7, 8 or 9 hold. Moreover the function in C9 is bounded. Then for all ε > 0:

(51) u ∈ C1,2([0, T − ε] × R
d;R+).

Proof. The proof of Proposition 2 shows that there is a unique continuous viscosity
solution in Πpg of the Cauchy problem (48) (or (46)). Moreover, the Cauchy problem (48)
(or (46)) has a classical solution for every continuous bounded function φ.

Recall that un is jointly continuous in (t, x) and from (20), on [0, T − ε] × R
d, un is

bounded by:
0 ≤ un(t, x) ≤ Kε(1 + |x|δ).

But if the function involved in C9 is bounded, then we can take δ = 0. Thus, the problem
(46) with condition φ = un(T −ε, .) has a bounded classical solution. Since every classical
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solution is a viscosity solution and since un is the unique bounded and continuous viscosity
solution of (46), we deduce that:

∀δ > 0, un ∈ C1,2([0, T − δ[×R
d;R+).

From the construction of the classical solution un, we also know that the sequence
{un} is locally bounded in Hα,1+α([0, T − δ/2]×Rd). The bound is given by the L∞ norm
of un which is smaller than (T −δ/4)−1/q. Therefore u is continuous on [T −δ/2]×Rd and
if we consider the problem (46) with continuous terminal data u(T − δ, .), with the same
argument as for un, we obtain that u is a classical solution, i.e. u ∈ C1,2([0, T−δ]×Rd;R+).
This achieves the proof. �

If (D) is also satisfies, then u is continuous on [0, T ] × Rd.
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[36] É. Pardoux. BSDEs, weak convergence and homogenization of semilinear PDEs. In
Nonlinear analysis, differential equations and control (Montreal, QC, 1998), volume
528 of NATO Sci. Ser. C Math. Phys. Sci., pages 503–549. Kluwer Acad. Publ.,
Dordrecht, 1999.

40
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