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Abstract

We consider diffusion processes killed at the boundary of Rieman-
nian manifolds. The aim of the paper if to provide two different sets
of assumptions ensuring the exponential convergence in total variation
norm of the distribution of the process conditioned not to be killed.
Our first criterion makes use of two sided estimates and applies to
general Markov processes. Our second criterion is based on gradient
estimates for the semi-group of diffusion processes.
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1 Introduction

We consider a Markov process X evolving in a Riemannian compact man-
ifold (M,ρ) of dimension d ≥ 1 with boundary ∂M , such that, when it
hits ∂M , X is killed and immediately sent to a cemetery point ∂ /∈ M . We
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are interested in providing sufficient criteria ensuring exponential mixing for
the distribution of X conditioned not to be killed when it is observed. More
precisely, our goal is to prove the existence of a probability measure α on
M and of positive constants C, γ > 0 such that, for all initial distribution µ
on M ,

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ Ce−γt, ∀t ≥ 0, (1.1)

where τ∂ = inf{t ≥ 0, Xt = ∂} is the killing time of X, Pµ is the law of X
with initial distribution µ and ‖ · ‖TV is the total variation norm on finite
signed measures. In the whole paper we will consider diffusions such that
Px(τ∂ < ∞) = 1 and Px(t < τ∂) > 0, for all x ∈ M and all t ≥ 0. It is well
known that (1.1) entails that α is the unique quasi-stationary distribution
for X, that is the unique probability measure satisfying

α(·) = Pα (Xt ∈ · | t < τ∂) , ∀t ≥ 0.

We provide two independent sets of assumptions to check the exponential
mixing property of the conditional distribution of X.

Our first result (Theorem 2.1) shows that a two-sided estimate for the
transition density of a general absorbed Markov process at some time t > 0
is sufficient to ensure (1.1). Two sided estimates have been recently devel-
oped for a wide range of processes, including diffusion processes in general
domains of Rd (we refer to the beginning of Section 2 for a bibliography). In
particular, we recover the results of Knobloch and Partzsch [14], who proved
that (1.1) holds for a class of diffusion processes evolving in R

d (d ≥ 3), us-
ing two sided estimates combined with non-trivial spectral properties of the
infinitesimal generator of X. We actually prove that the two sided esti-
mates are sufficient for diffusion processes in R

d but also for general Markov
processes, while some spectral properties can be recovered from our results.

Our second result (Theorem 3.1) is based on gradient estimates of the
Dirichlet semi-group obtained by Wang [22] and Priola and Wang [21]. The
gradient estimates of [22] hold for Brownian motions with C1 drift evolving
in bounded manifolds with C2 boundary ∂M and killed when they hit ∂M .
The gradient estimates of [21] hold for uniformly elliptic diffusion processes
with Hölder diffusion coefficient and bounded drift evolving in a bounded
domain M of Rd (d ≥ 1) with C2 boundary and killed when they hit ∂M .
In both situations, we prove that the convergence (1.1) holds true. Up to
our knowledge, this result is the first one of this kind for diffusion processes
in Riemannian manifolds and our conditions for diffusion processes on R

d

improve significantly the existing results of [14] and [10]. In particular, we
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prove that the global Lipschitz and local regularity assumptions near the
boundary of [10] are unnecessary. A fortiori the C1 regularity assumption
on the diffusion coefficient of [14] is also strongly relaxed, when the boundary
of the domain is of class C2 and the drift is bounded and continuous (in [14]
as in Section 2, domains with C1,1 boundary and drifts in a Kato class are
allowed).

Our two approaches are complementary. The one based on two sided
estimates is particularly adapted to irregular domains (see for instance [16]),
while the gradient estimate approach applies to diffusion processes with less
regular coefficients.

The usual tools to prove convergence as in (1.1) involve coupling ar-
guments: for example, contraction in total variation norm for the non-
conditioned semi-group can be obtained using mirror and parallel coupling,
see [17, 22, 21]. However, the process conditioned not to be killed up to a
given time t > 0 is a time-inhomogeneous diffusion process with a singular
drift for which these methods fail. For instance, a standard d-dimensional
Brownian motion (Bt)t≥0 conditioned not to exit a smooth domain D ⊂ R

d

up to a time t > 0 has the law of the solution (X
(t)
s )s∈[0,t] to the stochastic

differential equation

dX(t)
s = dBs + [∇ lnP·(t− s < τ∂)] (X

(t)
s )ds.

Since Px(t − s < τ∂) vanishes when x converges to the boundary ∂D of D,
the drift term in the above SDE is singular and existing coupling methods do
not apply. Hence, convergence of conditioned diffusion processes have been
obtained up to now using (sometimes involved) spectral theoretic arguments
(see for instance, [2, 15, 18, 20] for one-dimensional diffusion processes and
[3, 14] for multi-dimensional diffusion processes) which are strictly limited to
diffusion processes and have limitations in terms of generality and flexibility.

The strength of our approach is that, instead of using a spectral theoretic
perspective, we rely, as was done in [5] for one-dimensional diffusions, on re-
cent probabilistic criteria for convergence of conditioned processes obtained
in [4, Theorem 2.1], overcoming the difficulties pointed out in the previ-
ous paragraph. This result states that the exponential convergence (1.1) is
equivalent to the following condition.

Condition (A). There exist t0, c1, c2 > 0 such that, for all x, y ∈ M , there
exists a probability measure νx,y on M satisfying
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(A1)
Px(Xt0 ∈ · | t0 < τ∂) ≥ c1νx,y(·)

and
Py(Xt0 ∈ · | t0 < τ∂) ≥ c1νx,y(·);

(A2) for all z ∈ M and all t ≥ 0,

Pνx,y(t < τ∂) ≥ c2Pz(t < τ∂).

Condition (A) also implies that the conditional distributions of X are
in fact contracting in total variation [4, Corollary 2.2], that eλ0tPx(t < τ∂)
converges when t → +∞, uniformly in x, to a positive eigenfunction η of the
infinitesimal generator of (Xt, t ≥ 0) for the eigenvalue −λ0 characterized by
the relation Pα(t < τ∂) = e−λ0t, ∀t ≥ 0 [4, Proposition 2.3], a spectral gap
property [4, Corollary 2.4], and the existence and exponential ergodicity of
the so-called Q-process, defined as the process X conditioned to never hit
the boundary [4, Theorem 3.1].

The paper is organized as follows. In Section 2, we state and prove a suf-
ficient criterion for (1.1) based only on two-sided estimates. We also provide
several references giving two sided estimates for many kinds of processes. In
Section 3, we state a sufficient criterion for (1.1) for drifted Brownian motion
on Riemannian manifolds and for diffusion processes with Hölder diffusion
coefficients. The proof, based on gradient estimates obtained in [22, 21], is
given in Section 4.

2 Quasi-stationary behavior under two-sided esti-

mates

In this section, we consider absorbed Markov processes satisfying two-sided
estimates. More specifically, we consider a diffusion processX in some closed
Riemanian manifold M (or open subset of Rd), absorbed at the boundary of
M at first hitting time τ∂ . We assume that M is equipped with a measure
µ such that for some t > 0 and for all x ∈ M , Xt admits a density function
p(t, x, y) in M with respect to µ(dy) given X0 = x. We say that X satisfies
a two-sided estimate at time t if there exists a constant c > 0 and two
measurable function f1, f2 : M → [0,+∞) such that

c−1f1(x)f2(y) ≤ p(t, x, y) ≤ cf1(x)f2(y), ∀x, y ∈ M. (2.1)
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Our main result states that this condition, together with the assumption
µ(f1f2) > 0, guaranties the uniform exponential convergence in total varia-
tion of the conditional distributions of Xs given s < τ∂ to a unique quasi-
stationary distribution.

Two-sided estimates were already a key ingredient to prove exponen-
tial convergence of conditional distributions in [14]. However, their analysis
requires additional assumptions (continuity of the transition density and ex-
istence of ground states) and they assume that the two-sided estimate holds
with f1 and f2 the ground states of the generator and its adjoint. In addition,
checking their criterion involves intricate spectral theory arguments, whereas
our proof only requires to check the above two-sided estimate. Moreover,
our approach leads to explicit rates of convergence in terms of c, f1, f2 and
µ. Also note that the existence of the ground states are recovered afterwards
from our results: an eigenmeasure for the adjoint generator is given by the
quasi-stationary distribution α [19] and an eigenfunction for the generator
by [4, Proposition 2.3]. Moreover, as will appear clearly in the proof, we
don’t use at all the Riemannian structure of M nor the diffusion property of
X. In particular, our result applies to any sub-Markov process in any mea-
surable state space M equipped with some measure µ, whose semi-group
exhibits the property (2.1) for some t > 0. Finally, since our criterion im-
plies Condition (A), we obtain many complementary results as explained
in the Introduction. In particular, we obtain a contraction result in total
variation (see (2.3) below), the uniform convergence of eλ0tPx(t < τ∂) to the
ground state when t → +∞ [4, Proposition 2.3], a spectral gap result [4,
Corollary 2.4] and the uniform exponential ergodicity of the Q-process [4,
Theorem 3.1].

Estimates of the form (2.1) have been proved in a variety of contexts.
In the case of diffusion processes in R

d, d ≥ 3 absorbed at the boundary
of a bounded domain, this goes back to the seminal paper of Davies and
Simon [9]. The case of standard Brownian motion in a bounded C1,1 domain
of Rd, d ≥ 3 was studied in [23]. This result has then been extended in [13] to
diffusions in a bounded C1,1 domain in R

d, d ≥ 3 or more, with inifnitesimal
generator

L =
1

2

d
∑

i,j=1

aij∂i∂j +

d
∑

i=1

bi∂i,

with symmetric, uniformly elliptic and C1 diffusion matrix (aij)1≤i,j≤d, and
with drift (bi)1≤i≤d in the Kato class Kd,1, which contains Lp(dx) functions
for p > d. Diffusions on bounded, closed Riemannian manifolds with very
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irregular boundary and with generator

L = ∆+X,

where ∆ is the Laplace-Beltrami operator and X is a smooth vector field,
were also studied in [16].

Estimates of the form (2.1) are also known for quite general one-dimen-
sional diffusions (see for instance [20], where the link with quasi-stationary
distribution is studied).

Two-sided estimates are also known for other classes of processes, among
which α-stable Lévy processes (generated by the fractional Laplacian) with
drift in a Kato class in a C1,1 domain of Rd (d ≥ 2) [7], or without drift for
more general domains in any dimension [1]. Extensions to more general jump
processes similar to the α-stable Lévy process are given in [6, 12, 8]. For
example, the results of the last reference covers α-stable Lévy processes with
killing (either at some state-dependent rate, of with some state-dependent
probability at each jump time).

Remark 1. Note that most of these results are actually obtained for Markov
processes with additional killing inside the domain, and the next result also
covers this case. Indeed, two sided estimates for processes with bounded
killing rate are immediate consequences of the two sided estimates for the
process without killing

Theorem 2.1. Assume that Px(τ∂ < ∞) = 1 for all x ∈ M , that there
exists t0 > 0 such that Xt0 admits a density function p(t0, x, y) in M with
respect to a probability measure µ(dy) on M given X0 = x and that there
exist a constant c > 0 and two functions f1, f2 : M → [0,+∞) such that

c−1f1(x)f2(y) ≤ p(t0, x, y) ≤ cf1(x)f2(y), ∀x, y ∈ M, (2.2)

and such that µ(f1f2) > 0, then Assumption (A), and hence (1.1), are
satisfied. In addition, for all µ1, µ2 probability measures on M ,

‖Pµ1(Xt ∈ · | t < τ∂)− Pµ2(Xt ∈ · | t < τ∂)‖TV

≤ c3

µ(f2)
(1− c−5µ(f1f2))

⌊t/t0⌋ ‖µ1 − µ2‖TV

µ1(f1) ∧ µ2(f1)
. (2.3)

In addition, there exists a unique quasi-stationary distribution α for X,
which satisfies

c−2 f2(y)µ(dy)
∫

M f2(x)µ(dx)
≤ α(dy) ≤ c2

f2(y)µ(dy)
∫

M f2(x)µ(dx)
. (2.4)
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Proof of Theorem 2.1. Let us first check that (A1) holds with νx,y = ν in-
dependent of x, y given by

ν(dy) =
f2(y)µ(dy)

µ(f2)
.

Note that the assumptions of Theorem 2.1 imply that µ(f2) ∈ (0,+∞), and

‖f1‖∞µ(f2) ≤ c. (2.5)

In particular, ν is a well defined probability measure. For all x ∈ M and
A ⊂ M , we have, by (2.2)

c−1f1(x)

∫

A
f2(y) dµ(y) ≤ Px(Xt0 ∈ A) ≤ cf1(x)

∫

A
f2(y) dµ(y).

In particular,

Px(Xt0 ∈ A | t0 < τ∂) =
Px(Xt0 ∈ A)

Px(Xt0 ∈ E)
≥ c−2

∫

A f2(y)µ(dy)

µ(f2)
.

We thus obtained (A1) with c1 = c−2 and νx,y = ν.
Let us now check (A2). We have, for all z ∈ M ,

Pν(Xt0 ∈ A) ≥ c−1

∫

M
f1(x) dν(x)

∫

A
f2(x)µ(dx)

≥ c−1µ(f1f2)

µ(f2)

f1(z)

‖f1‖∞

∫

A
f2(x)µ(dx)

≥ c−3µ(f1f2)Pz(Xt0 ∈ A),

where we used (2.5) in the last inequality.
Hence, for all t ≥ t0 and all z ∈ M ,

Pν(t < τ∂) = Eν

(

PXt0
(t− t0 < τ∂)

)

≥ c−3µ(f1f2)Ez

(

PXt0
(t− t0 < τ∂)

)

= c−3µ(f1f2)Pz(t < τ∂).

For t < t0, we have Pν(t < τ∂) ≥ Pν(t0 < τ∂) ≥ Pν(t0 < τ∂)Pz(t < τ∂).
Integrating the first inequality in (2.2) with respect to ν(dx)µ(dy), we have

µ(f1f2) = ν(f1)µ(f2) ≤ cPν(t0 < τ∂).

Hence Pν(t < τ∂) ≥ c−1µ(f1f2)Pz(t < τ∂) for t < t0 and we have proved
(A2) for c2 = (c−3 ∧ c−1)µ(f1f2) = c−3µ(f1f2).
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We now prove (2.3). We make use of the following general consequence
of Condition (A), proved in [4, Corollary 2.2]: for all probability measures
µ1, µ2 on M and for all t > 0,

‖Pµ1(Xt ∈ · | t < τ∂)− Pµ2(Xt ∈ · | t < τ∂)‖TV ≤ (1− c1c2)
⌊t/t0⌋

c(µ1) ∧ c(µ2)
‖µ1 − µ2‖TV ,

(2.6)

with c(µi) defined by

c(µi) = inf
t≥0

Pµi(t < τ∂)

supz∈M Pz(t < τ∂)
.

Hence we need to prove that, for i = 1, 2,

c(µi) ≥ c−3µ(f2)µi(f1). (2.7)

We proceed as above. Assume first t ≥ t0. Then, using (2.2),

Pµi(Xt0 ∈ A) ≥ c−1

∫

M
f1(x) dµi(x)

∫

A
f2(x) dµ(x)

≥ c−1µi(f1)
f1(z)

‖f1‖∞

∫

A
f2(x) dµ(x)

≥ c−3µi(f1)µ(f2)Pz(Xt0 ∈ A),

where we also used (2.5). Now, for all t ≥ t0,

Pµi(t < τ∂) = Eµi

(

PXt0
(t− t0 < τ∂)

)

≥ c−3µi(f1)µ(f2)Ez

(

PXt0
(t− t0 < τ∂)

)

= c−3µi(f1)µ(f2)Pz(t < τ∂),

which implies (2.7) for t ≥ t0. For t ≤ t0, using (2.2),

Pµi(t < τ∂) ≥ Pµi(t0 < τ∂)

≥ Pµi(t0 < τ∂) sup
x∈M

Px(t < τ∂)

≥ c−1µi(f1)µ(f2) sup
x∈M

Px(t < τ∂)

≥ c−3µi(f1)µ(f2) sup
x∈M

Px(t < τ∂),

where the last inequality comes from the fact that c ≥ 1. This completes
the proof of (2.3). The existence and uniqueness of a quasi-stationary dis-
tribution α follows easily (see [4, Thm. 2.1]).
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To conclude the proof of Theorem 2.1, it only remains to check (2.4).
For this, given any bounded measurable g : M → R+, since α is a quasi-
stationary distribution,

α(g) = Eα[g(Xt) | t < τ∂ ] =

∫∫

M2 g(y)p(t, x, y)α(dx)µ(dy)
∫∫

M2 p(t, x, y)α(dx)µ(dy)
.

Using twice (2.2), we obtain

c−2ν(g) ≤ α(g) ≤ c2ν(g).

The conclusion follows.

3 Quasi-stationary behavior under gradient esti-

mates

In this section, we consider the two following distinct situations and prove
that the exponential convergence (1.1) holds for both of them. More pre-
cisely, we assume that either

S1. X is a diffusion process evolving in a bounded, connected and closed
Riemannian manifold M with C2 boundary ∂M and the infinitesimal
generator of X is given by L = 1

2∆ + Z, where ∆ is the Laplace-
Beltrami operator and Z is a C1 vector field. The process is absorbed
when it hits the boundary ∂M .

S2. X is a diffusion process evolving in a bounded and connected do-
main M of Rd with C2 boundary ∂M and X satisfies the SDE dXt =
s(Xt)dBt + b(Xt)dt, where (Bt, t ≥ 0) is a r-dimensional standard
Brownian motion, b : M → R

d is bounded and continuous and s :
M → R

d×r is continuous, ss∗ is uniformly elliptic and for all r > 0,

sup
x,y∈M, |x−y|=r

|s(x)− s(y)|2
r

≤ g(r) (3.1)

for some function g such that
∫ 1
0 g(r)dr < ∞. The process is absorbed

when it hits the boundary ∂M .

The reason why we concentrate on these two examples is that we will make
an extensive use of gradient estimates developed by Wang in [22] and Priola
and Wang in [21] respectively for the former and the latter case. In both
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cases, the authors have proved that there exists t1 > 0 and C < ∞ such
that, for all f bounded measurable,

‖∇Pt1f‖∞ ≤ C‖f‖∞, (3.2)

where (Pt) denotes the semi-group of X. Both [22] and [21] actually give a
stronger version of (3.2):

‖∇Ptf‖∞ ≤ c

1 ∧
√
t
‖f‖∞, ∀t > 0, (3.3)

with proofs relying on a careful study of some coupling for copies of X.
Situation S1 corresponds exactly to the assumptions of [22]. In Situation

S2, we need to assume that M is bounded and b is bounded on M , which
is stronger than what [21] assumes. Our assumptions clearly imply (i), (ii),
(iv) of [21, Hyp. 4.1] (see [21, Lemma 3.3] for the assumption on s). Since
we assume that M is bounded and C2, assumptions (iii’) and (v) of [21] are
also satisfied (see [21, Rk. 4.2]). Note that (3.1) is satisfied as soon as s is
uniformly α-Hölder on M for some α > 0.

We denote by ρ the Riemannian distance on M and by ρ∂M (·) :=
infx∈∂M ρ(x, ·) the distance to ∂M .

Theorem 3.1. Assume that X is a diffusion process as in situations S1
or S2 above. Then Condition (A) and hence (1.1) are satisfied. Moreover,
there exist two constants C, γ > 0 such that, for any initial distributions µ1

and µ2 on M ,

‖Pµ1(Xt ∈ · | t < τ∂)− Pµ2(Xt ∈ · | t < τ∂)‖TV

≤ Ce−γt

µ1(ρ∂M ) ∧ µ2(ρ∂M )
‖µ1 − µ2‖TV . (3.4)

Before turning to the proof of this theorem, we emphasize the novelty of
Theorem 3.1 in situation S1, since, up to our knowledge, no quasi-stationary
distribution result has been obtain for diffusion processes evolving in such
general Riemannian manifolds. As explained in the introduction, Theo-
rem 3.1 in situation S2 is a significant improvement of [10] and [14]. In ad-
dition, compared with these two papers, the contraction inequality (3.4) is a
completely new result for diffusion processes, as well as the complementary
results mentioned in the introduction (uniform convergence of eλ0tPx(t < τ∂)
to the ground state when t → +∞, a spectral gap result and the uniform
exponential ergodicity of the Q-process, see [4]).
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Remark 2. The gradient estimates of [21] are proved for diffusion processes
with space-dependent killing rate V : M → [0,∞). More precisely, they
consider infinitesimal generators of the form

L =
1

2

d
∑

i,j=1

[ss∗]ij∂i∂j +

d
∑

i=1

bi∂i − V

with V bounded measurable. Our proof also applies to this setting, although
adding a bounded killing rate would make our notations much more intricate.

4 Proof of Theorem 3.1

Since a bounded domain of R
d with C2 boundary is also a Riemannian

manifold, we will keep the latter terminology in the proof. It is important
to keep in mind that S1 and S2 correspond to quite different situations.
However, most of the proof applies to both situations simultaneously because
it mainly relies on (3.2), which has been proved in both settings, respectively
in [22] and [21].

4.1 Estimates of the boundary’s hitting probability and re-

turn time to a compact

Since the boundary ∂M is C2 and compact, there exists ε0 > 0 such that
ρ∂M is C2 on M \Mε0 , where

Mε0 := {x ∈ M : ρ∂M (x) ≥ ε0}.

The goal of this subsection is to prove that there exists constants ε2 ∈
(0, ε0) and A > 0 such that, for all x ∈ M and all s ≥ t1, where t1 comes
from (3.2),

Px(Xs ∈ Mε2 | s < τ∂) ≥ A. (4.1)

First, we deduce immediately from the gradient inequality (3.2) applied
to f = 1M that there exists a constant C > 0 such that, for all x ∈ M ,

Px(t1 < τ∂) ≤ C ρ∂M (x). (4.2)

The following Lemma is proved at the end of this subsection.
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Lemma 4.1. There exist ε1 ∈ (0, ε0) and a constant C ′ > 0 such that, for
all x ∈ M ,

Px(Tε1 < t1 < τ∂) ≥ C ′ ρ∂M (x), (4.3)

where Tε = inf{t ≥ 0, Xt ∈ Mε}.

This lemma and (4.2) imply that, for all x ∈ M ,

Px(Tε1 ≤ t1 | t1 < τ∂) =
Px(Tε1 ≤ t1 < τ∂)

Px(t1 < τ∂)
≥ C ′

C
.

Since the diffusion is uniformly elliptic, it is clear using local charts that

C2 := inf
y∈Mε1

Py(ρ(Xs, y) ≤ ε1/2, ∀s ∈ [0, t1]) > 0.

Hence, for all x ∈ M \Mε1 ,

Px(Xt1 ∈ Mε1/2) ≥ Px(Tε1 < t1) inf
y∈∂Mε1

Py(Tε1/2 > t1)

≥ C ′C2Px(t1 < τ∂)

C

For x ∈ Mε1 , we have

Px(Xt1 ∈ Mε1/2) ≥ C2 ≥ C2Px(t1 < τ∂).

Finally, we deduce that there exists a constant A > 0 such that, for all
x ∈ M ,

Px(Xt1 ∈ Mε1/2 | t1 < τ∂) ≥ A. (4.4)

This is (4.1) for s = t1 and ε2 = ε1/2.
To conclude, for some fixed s > t1 and x ∈ M , we deduce from the

Markov property that

Px(Xs ∈ Mε1/2) = Ex

[1s−t1<τ∂PXs−t1
(Xt1 ∈ Mε1/2)

]

≥ AEx

[1s−t1<τ∂PXs−t1
(t1 < τ∂)

]

= APx(s < τ∂).
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Proof of Lemma 4.1. For all t < Tε0 , we define Yt = ρ∂M (Xt). In both
situations S1 and S2, we have

dYt = σtdBt + btdt,

where B is a standard Brownian motion, where σt ∈ [σ, σ̄] and |bt| ≤ b̄ are
adapted continuous processes, with 0 < σ, σ̄, b̄ < ∞. Using Dubins-Schwarz
Theorem, there exists a differentiable function c(s) such that c(0) = 0 and

Ws :=

∫ c(s)

0
σtdBt

is a Brownian motion and c′(s) ∈ [σ̄−2, σ−2]. In addition,
∫ c(s)

0
bt dt ≥ −b̄c(s) ≥ −b̄σ−2s.

As a consequence, setting Zs = Y0 + Ws − b̄σ−2s, we have almost surely
Zs ≤ Yc(s) for all s such that c(s) ≤ Tε0 .

Setting a = b̄σ−2, the function

f(x) =
e2ax − 1

2a

is a scale function for the drifted Brownian motion Z. The diffusion pro-
cess defined by Nt = f(Zt) is a martingale and its speed measure is given
by s(dv) = dv

(1+2av)2
. The Green function for one-dimensional diffusion pro-

cesses [11, Lemma 23.10] entails, for ε = f(ε0) and all u ∈ (0, ε/2) (in the
following lines, PN

u denotes the probability with respect to N with initial
position N0 = u),

P
N
u (t < TN

0 ∧ TN
ε/2) ≤

E
N
u (TN

0 ∧ TN
ε/2)

t
=

2

t

∫ ε/2

0

(

1− u ∨ v

ε/2

)

(u ∧ v)s(dv)

≤ 2

t

∫ ε/2

0
(u ∧ v)

dv

(1 + 2av)2

≤ u
Cε

t
, where Cε = 2

∫ ε/2

0

dv

(1 + 2av)2
, (4.5)

where we set TN
ε = inf{t ≥ 0, Nt = ε}. Let us fix t2 = εCε. Since N is a

martingale, we have, for all u ∈ (0, ε/2),

u = E
N
u (Nt2∧TN

ε/2
∧TN

0
) ≤ ε

2
P
N
u (TN

ε/2 < t2 ∧ TN
0 ) +

ε

2
P
N
u (t2 < TN

ε/2 ∧ TN
0 )

≤ ε

2
P
N
u (TN

ε/2 < t2 ∧ TN
0 ) +

u

2
,
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where the last inequality comes from (4.5). Reducing ε0 (and hence ε) if
necessary, we can assume without loss of generality that t2 = εCε ≤ σ2t1.
Hence there exists a constant C > 0 only depending on ε0 such that

P
N
u (TN

ε/2 < σ2t1 ∧ TN
0 ) ≥ C u.

Hence, setting ε1 = f−1(ε/2), for all x ∈ M \Mε1 ,

Px(T
Z
ε1 < σ2t1 ∧ TZ

0 ) ≥ C f(ρ∂M (x)) ≥ C ρ∂M (x).

Now, using the fact that the derivative of the time change cs belongs to
[σ, σ̄], it follows that for all x ∈ M \Mε1 ,

Px(T
Y
ε1 < t1 ∧ T Y

0 ) ≥ Px(c(T
Z
ε1) ≤ c(σ2t1) ∧ c(TZ

0 ))

= Px(T
Z
ε1 < σ2t1 ∧ TZ

0 )

≥ Cρ∂M (x).

Therefore,

Px(T
Y
ε1 ≤ t1 ≤ T Y

0 ) ≥ Ex

[1TY
ε1

≤t1∧TY
0
PX

TY
ε1

(t1 < τ∂)

]

≥ Px(T
Y
ε1 ≤ t1 ∧ T Y

0 ) inf
y∈Mε1

Py(t1 < τ∂)

≥ C ′ρ∂M (x),

where we used that infy∈Mε1
Py(t1 < τ∂) > 0. Finally, since Tε1 = 0 under

Px for all x ∈ Mε1 , replacing C ′ by C ′ ∧ diam(M)−1 entails (4.3) for all
x ∈ M .

4.2 Dobrushin coefficient for the fixed time horizon condi-

tioned distribution

For all x, y ∈ M and t > 0, let µt
x,y be the infimum measure of δxPt and

δyPt, i.e. for all measurable A ⊂ M ,

µt
x,y(A) := inf

A1∪A2=A
(δxPt1A1 + δyPt1A2 ).

For all z ∈ M and r0 > 0, we define for all x ∈ M

fz,r0(x) = (r0 − ρ(x, z))+,

where a+ = a ∨ 0. For all t > 0 and r0 > 0, we define

Et,r0 :=
{

(x, y, z) ∈ M3 : ∀r > r0, µt
x,y(fz,r) > 0

}

14



and
Er0 :=

⋂

t∈(1,2]

Et,r0 .

Our first goal is to prove the next lemma.

Lemma 4.2. For all t > 0, (x, y) 7→ µt
x,y(M) is continuous on M2. In

addition, Er0 = M3 for all r0 > 0.

Proof. By (3.3), for all positive measurable f on M bounded by 1, for all
x, y ∈ M and for all t ∈ (1, 2]

|Ptf(x)− Ptf(y)| ≤
cρ(x, y)

1 ∧
√
t
≤ cρ(x, y). (4.6)

This implies the uniform Lipschtiz-continuity of Ptf for all f bounded by 1.
In particular, we deduce that

µt
x,y(M) = inf

A1∪A2=M
(Pt1A1 (x) + Pt1A2 (y))

is continuous w.r.t. (x, y) ∈ M2 (and even Lipschitz).
We now prove the second statement of Lemma 4.2. Fix r0 > 0 and

x ∈ M . Since the drift is uniformly bounded and the diffusion is uniformly
elliptic, it is clear using local charts that

Px(Xt ∈ B(x, r0/2), ∀t ∈ [0, 2]) > 0.

In particular
inf

t∈(1,2]
Ex(fx,r0(Xt)) > 0, (4.7)

and thus (x, x, x) ∈ Er0 for all x ∈ M .
Now, for all A1 and A2 measurable such that A1 ∪A2 = M , the map

(x, y, z) 7→ Pt(fz,r01A1 )(x) + Pt(fz,r01A2 )(y)

is uniformly Lipschitz on M3 by (4.6) and since ‖fz,r0 − fz′,r0‖∞ ≤ ρ(z, z′).
Therefore,

(x, y, z) 7→ inf
t∈(1,2]

µt
x,y(fz,r0) = inf

t∈(1,2]
inf

A1∪A2=M
(Pt(fz,r01A1 )(x)+Pt(fz,r01A2 )(y))

is Lipschitz on M3. Hence, it follows from (4.7) that Er0 contains an open
ball. In particular, the interior int(Er0) is non-empty. Let us prove that
int(Er0) is closed, which will imply by connexity that Er0 ⊃ int(Er0) = M3.
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Let (x0, y0, z0) be an accumulation point of int(Er0). Fix r > r0. Then
there exist (x, y, z) ∈ Er0 such that ρ(z, z0) ≤ (r − r0)/2, and r̂ ∈ (0, (r −
r0)/2) such that the closed ball centered at (x, y, z) and of radius r̂ is included
in Er0 . Moreover, since M is connected, the diffusion is uniformly elliptic
and the drift is bounded, for all s > 0,

Px0(Xs ∈ B(x, r̂)) =: cx0
s > 0 and Py0(Xs ∈ B(y, r̂)) =: cy0s > 0.

It then follows that, for all t0 ∈ (1, 2], defining η = (t0 − 1)/2 ∈ (0, 12 ],

µt0
x0,y0(fz0,r) = inf

A1∪A2=M
[δx0P1+2η(fz0,r1A1 ) + δy0P1+2η(fz0,r1A2 )]

≥ cx0
η ∧ cy0η

× inf
A1∪A2=M

(

inf
x̂∈B(x,r̂)

δx̂P1+η(fz0,r1A1 ) + inf
ŷ∈B(x,r̂)

δŷP1+η(fz0,r1A2 )

)

≥ cx0
η ∧ cy0η inf

x̂∈B(x,r̂), ŷ∈B(y,r̂)
µ1+η
x̂,ŷ (fz0,r)

≥ cx0
η ∧ cy0η inf

x̂∈B(x,r̂), ŷ∈B(y,r̂)
µ1+η
x̂,ŷ (fz,(r+r0)/2),

where we used in the last line the inequality

fz0,r(x) = (r − ρ(x, z0))+ ≥ (r − ρ(z, z0)− ρ(x, z))+ ≥ f
z0,

r+r0
2

(x).

Since (x̂, ŷ, z) ∈ Er0 for all x̂ ∈ B(x, r̂) and ŷ ∈ B(y, r̂), and since (x, y) 7→
µ1+η
x,y (f

z0,
r+r0

2

) is continuous and positive on Er0 (since r+r0
2 > r0), we deduce

that µt0
x0,y0(fz0,r) > 0 for all r > r0 and t0 ∈ (1, 2]. and hence (x0, y0, z0) ∈

Er0 . This concludes the proof of Lemma 4.2.

Recall the constant ε2 introduced in (4.1). Fix s ≥ t1 and t ∈ (1, 2]. We
have, for all x, z′ ∈ E,

δxPt+sf ≥
∫

M
1z∈Mε2

Ptf(z) δxPs(dz)

≥
∫

M
1z∈Mε2

µt
z,z′(f) δxPs(dz).

Integrating both sides over z′ ∈ Mε2 with respect to δyPs(dz
′)/δyPs1M , we

deduce that

δxPt+sf ≥
∫

M×M
1z,z′∈Mε2

µt
z,z′(f) δxPs(dz)

δyPs(dz
′)

δyPs1M .
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But δxPt+s1M ≤ δxPs1M , hence

δxPt+sf

δxPt+s1M ≥
∫

Mε2×Mε2

µt
z,z′(f)

δxPs(dz)

δxPs1M δyPs(dz
′)

δyPs1M .

Since t ∈ (1, 2], it follows from Lemma 4.2 that

mt = inf
z,z′∈Mε2

µt
z,z′(M) > 0,

and therefore, since s ≥ t1,

mx,y
t :=

∫

Mε2×Mε2

µt
z,z′(M)

δxPs(dz)

δxPs1M δyPs(dz
′)

δyPs1M
≥ mt

∫

Mε2×Mε2

δxPs(dz)

δxPs1M δyPs(dz
′)

δyPs1M
≥ A2mt, (4.8)

by (4.1). Therefore, defining the probability measure

νs,tx,y(·) =
1

mx,y
t

∫

Mε2×Mε2

µt
z,z′(·)

δxPs(dz)

δxPs1M δyPs(dz
′)

δyPs1M , (4.9)

we obtain that

δxPt+sf

δxPt+s1M ≥ mx,y
t νs,tx,y(f) ≥ A2mtν

s,t
x,y(f).

Hence we have proved Condition (A1) for t0 = t1 + 2 (choosing s = t1 and
t = 2 and defining νx,y = νt1,2x,y ).

4.3 Balance condition on the absorption probabilities

Our goal is now to prove Condition (A2). We first show that the first step
of our proof (where we show (4.1)) implies the following stronger version of
the gradient estimates (3.3), but only for f = 1M .

Proposition 4.3. There exists a constant c′ > 0 such that, for all t > 0,

‖∇Pt1M ‖∞ ≤ c′√
t ∧ 1

‖Pt1M ‖∞. (4.10)
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Proof. This follows directly from the following computation: for all t ≥ t0 =
t1 + 2,

Pt1M (x) ≥ Px(Xt−2 ∈ Mε2) inf
y∈Mε2

Py(2 < τ∂)

≥ APx(t− 2 < τ∂) cε2 ,

by (4.1) and where cε2 := infy∈Mε2
Py(2 < τ∂). Hence,

‖Pt1M ‖∞ ≥ cε2A‖Pt−21M ‖∞.

Hence it follows from (3.3) that, for all t > t0,

‖∇Pt1M ‖∞ = ‖∇P2(Pt−21M )‖∞
≤ c√

2
‖Pt−2(1M )‖∞

≤ c√
2cεA

‖Pt1M ‖∞.

Since in addition ‖Pt1M ‖∞ ≥ ‖Pt01M ‖∞ for all t ≤ t0, we also deduce
from (3.3) that

‖∇Pt1M ‖∞ ≤ c√
t ∧ 1

≤ c

(
√
t ∧ 1)‖Pt01M ‖∞

‖Pt1M ‖∞.

This proposition implies that the function

x 7→ Pt1M (x)

‖Pt1M ‖∞
(4.11)

is c′-Lipschitz for all t ≥ 1. Since this functions vanishes on ∂M and its
maximum over M is 1, we deduce that, for all t ≥ 1, the argmax of this
function, denoted by zt, exists in M . Moreover,

Pt1M (x)

‖Pt1M ‖∞
≥ fzt,r0(x)

r0
(4.12)

for all x ∈ M , with r0 := 1/c′. In particular, this implies that there exists
ε′ > 0 such that zt ∈ Mε′ for all t ≥ 1. Without loss of generality, we assume
that ε′ ∈ (0, ε2), where the constant ε2 is taken from (4.1).

Therefore, for all x, y ∈ M and for all t ≥ 1,

P
ν
t1,2
x,y

(t < τ∂) ≥
‖Pt1M ‖∞

r0
νt1,2x,y (fzt,r0)

=
‖Pt1M ‖∞
r0m

x,y
2

∫

Mε′×Mε′

µ2
z,z′(fzt,r0)

δxPt1(dz)

δxPt11M δyPt1(dz
′)

δyPt11M ,
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where we used the definition (4.9) of the measure νt1,2x,y . Now, it follows from
the proof of Lemma 4.2 that (x, y, z) 7→ µ2

x,y(fz,r0) is positive and continuous
onM3. Hence, using thatmx,y

2 ≤ 1 and defining c′′ := inf(x,y,z)M3
ε′
µ2
x,y(fz,r0) >

0, we obtain

P
ν
t1,2
x,y

(t < τ∂) ≥
c′′‖Pt1M ‖∞

r0

∫

Mε2×Mε2

δxPt1(dz)

δxPt11M δyPt1(dz
′)

δyPt11M
≥ c′′A2

r0
‖Pt1M ‖∞,

where the last inequality follows from (4.1).
This entails Condition (A2) for all t ≥ 1. For t ≤ 1, we make use of the

following direct consequence of the proof Lemma 4.2:

c′′′ := inf
(x,y)∈M2

ε

µ2
x,y(Mε) > 0.

We deduce from (4.9) that νt1,2x,y (Mε2) ≥ c′′′/mx,y
2 and hence, for all t ≤ 1,

P
ν
t1,2
x,y

(t < τ∂) ≥
c′′′

mx,y
2

inf
z∈Mε2

Pz(t < τ∂) ≥
c′′′

mx,y
2

inf
z∈Mε2

Pz(1 < τ∂)

≥ c′′′

mx,y
2

inf
z∈Mε2

Pz(1 < τ∂) sup
z∈M

Pz(t < τ∂) > 0.

This ends the proof of (A2) and hence of (1.1).

4.4 Contraction in total variation norm

Our aim is now to conclude the proof of Theorem 3.1 by proving (3.4). In
order to complete this step, we make use of (2.6). Hence, we need to prove
that for all probability measure µ on M ,

c(µ) = inf
t≥0

Pµ(t < τ∂)

Pzt(t < τ∂)
≥ cµ(ρ∂M ) (4.13)

for some constant c > 0, where we recall that zt is defined as the argmax
of (4.11).

Enlarging t0 and reducing c1 and c2, one can assume without loss of
generality that ν = νx,y does not depend on x, y in (A) (this follows from
the equivalence between (A), (A’) and (A”) proved in [4, Theorem 2.1]).
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Then, using (4.12) and (A1), we deduce that for all t ≥ t0 + 1,

Pµ(t < τ∂) = µ(Pt0Pt−t01M )

≥ ‖Pt−t01M ‖∞
r0

µ(Pt0fzt−t0 ,r0
)

≥ ‖Pt1M ‖∞
r0

µ(Pt0fzt−t0 ,r0
)

≥ Pzt(t < τ∂)

r0
µ(Pt0fzt−t0 ,r0

)

≥ c1
Pzt(t < τ∂)ν(fzt−t0 ,r0

)

r0
Pµ(t0 < τ∂). (4.14)

Now, Lemma 4.1 implies the existence of a constants C ′(t0), ε1(t0) > 0 such
that, for all x ∈ M \Mε1(t0),

Px(t0 ∧ Tε1(t0) < τ∂) ≥ Px(Tε1(t0) < t0 < τ∂) ≥ C ′(t0)ρ∂M (x).

Now, by Markov’s property,

Px(t0 < τ∂) ≥ Px(t0 ∧ Tε1(t0) < τ∂) inf
y∈∂Mε1(t0)

Py(t0 < τ∂).

Since infy∈Mε2(t0)
Py(t0 < τ∂) > 0, we deduce that there exists a constant

c > 0 such that, for all x ∈ M ,

Px(t0 < τ∂) ≥ cρ∂M (x).

Integrating the last inequality with respect to µ, we deduce from (4.14) that,
for all t ≥ t0 + 1,

Pµ(t < τ∂) ≥ c
ν(fzt−t0 ,r0

)

r0
µ(ρ∂M )Pzt(t < τ∂).

Since we have when t < t0 + 1

Pµ(t < τ∂) ≥ Pµ(t0 + 1 < τ∂) ≥ c
Pzt0+1(t0 + 1 < τ∂)ν(fz1,r0)

r0
µ(ρ∂M )

≥ c
Pzt0+1(t0 + 1 < τ∂)ν(fz1,r0)

r0
µ(ρ∂M )Pzt(t < τ∂),

the proof of (4.13) is completed. This ends the proof of Theorem 3.1.
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