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This work focuses on the characterization and the modeling of the complex dynamical behavior of a butadiene rubber filled with carbon black. This material is used in helicopter rotors and submitted to severe operating conditions. In particular the effects of the environmental temperature, of the amplitudes and frequencies of cyclic loading are studied. A new constitutive model that takes into account the Payne effect, the frequency, temperature and pre-loading dependencies is proposed. A specific material parameter fitting strategy is also introduced.

Introduction

The architecture of modern helicopter rotors is based on several critical rubber parts. These parts are designed to transmit or to damp complex loadings and a precise knowledge of their behavior is required for an accurate simulation aided design of the structure. Operating conditions of these parts can be severe: a large range of ambient temperatures (-50 o C to +70 o C), mechanical loadings can be multiaxial and multifrequencies with varying amplitudes. Obviously depending on the part design, rubber materials can vary in composition (matrix and fillers) or in grade (fillers and additives ratio). Therefore to cover a wide range of applications a general constitutive modeling of filled rubbers that can take into account complex loadings with an accurate response is needed.

In this paper, a butadiene rubber filled with carbon black is considered. The mechanical properties of the present material are very closed to materials used in the aforementioned applications. As many filled-rubber materials it exhibits typical phenomena (among others):

(a) Mullins effect: a softening phenomenon that occurs when the amplitude of loading is higher than the maximum previously seen amplitude. (b) Self heating: filled rubber exhibits a strong self heating phenomenon when they are submitted to mechanical loadings. (c) Thermal softening: far from the glass-transition temperature, an increase of the environmental temperature leads to a dynamical softening of the material behavior. A contrario, regarding only the response of the rubber gum (with a very low filler ratio or for small deformation rates) an increase of temperature (far from the glass-transition) leads to a stiffening behavior which is a fundamental characteristic of the entropic elasticity behavior of rubbers. Furthermore, the competition of this entropic elasticity and the thermal dilatation leads to the well known effect of thermal inversion.

(d) Frequency dependency: when submitted to harmonic loadings with increasing frequency, the dissipated energy and the dynamical stiffness usually increase (nonlinear effect). (e) Amplitude dependency or Payne effect: when submitted to harmonic loadings with increasing amplitude, the dissipated energy increases and the dynamical stiffness decreases (softening effect). (f) Mean stress or static/dynamic effect: the dynamical stiffness can exhibit a nonlinear dependency on the pre-stress (preload) or mean-stress value.

In the present paper, we focus on the last four points. The Mullins effect and the self-heating phenomena are not considered for the modeling part. Concerning Mullins effect, experimental characterization has been done by applying a preconditioning to samples ("de-Mullinized"). Samples have been subjected to several initial cycles with an amplitude that was higher than the maximum amplitude used for the dynamical characterization. The self heating phenomenon or other thermo-mechanical coupling effects cannot be removed by a specific experimental procedure. These effects can be taken into account in the modeling part by a coupled thermo-mechanical approach (see for instance [START_REF] Reese | Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers[END_REF]; [START_REF] Meo | Analysis of a thermoviscoelastic model in large strain[END_REF] for thermo-mechanical couplings with finite strain viscoelastic behaviors).

In the literature, many constitutive models has been proposed the last 25 years and at least three approaches can be distinguished to cover the aforementioned phenomena. The first one is the integral approach for which the viscous stress is described as a function of the whole history of strain (see for instance [START_REF] Coleman | Foundations of linear viscoelasticity[END_REF]; [START_REF] Morman | An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure[END_REF]). This approach can be used in the frequency or the time domain and gives generally very good results for covering a range of frequencies. Fractional derivatives can be introduced (see [START_REF] Wollscheid | The benefit of fractional derivatives in modelling the dynamics of filler-reinforced rubber under large strains: a comparison with the maxwell-element approach[END_REF] and reference therein) and Payne effect can also be represented (see for instance [START_REF] Lion | The payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales[END_REF]). To the authors opinion, a disadvantage of this approach is that the link with the fundamental thermodynamical principles is not straightforward and can eventually lead to non admissible models. The last two approaches share the same concept using the introduction of internal variables to describe inelastic effects. Behind these variables, the local (in time and in space) state hypothesis is used (see for instance [START_REF] Germain | Continuum thermodynamics[END_REF]) in the framework of the thermodynamics of irreversible processes. Approaches can be distinguished in the way that evolution equations are obtained. One can find micromechanically motivated models (see [START_REF] Reese | A micromechanically motivated material model for the thermo-viscoelastic material behaviour of rubber-like polymers[END_REF]; [START_REF] Linder | A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity[END_REF]), homogenization based model (see for instance [START_REF] Miehe | A micromacro approach to rubber-like materials. part ii: The micro-sphere model of finite rubber viscoelasticity[END_REF]; [START_REF] Omnès | Effective properties of carbon black filled natural rubber: Experiments and modeling[END_REF]) and purely phenomenological models (see [START_REF] Rendek | Amplitude dependence of filler-reinforced rubber: Experiments, constitutive modelling and {FEM} implementation[END_REF] for Payne effect modeling within phenomenological models or [START_REF] Martinez | Statistical approach for a hyper-visco-plastic model for filled rubber: Experimental characterization and numerical modeling[END_REF] for a statistical representation of viscosity). In these approaches the link with fundamental thermodynamical principles is straightforward so as the numerical implementation in a finite element software.

The present model belongs to the last mentioned category. It constitutes an extension of a previously published model (see [START_REF] Delattre | On the multiaxial amplitude and frequency dependent behavior of rubber: experiments and constitutive modeling[END_REF]). The starting point is to consider the rubber stress response as a sum of a nearly equilibrium response (which corresponds to the relaxed stress) and a finite number of non equilibrium ones (which correspond to a discrete spectrum of viscous stress, each one is associated to a characteristic time of viscosity). The equilibrium response is assumed to follow a classical nearly incompressible visco-plastic behavior and the non equilibrium ones are represented with an original isochoric viscous model that takes into account the dynamical softening due to Payne effect. The key points of the proposed approach are the introduction of tensorial viscosities and of damage like variables that represent the Payne effect. The tensorial viscous flow allows to take into account an effect of orientation of each viscous stresses relative to the global deformation. The characteristic times of viscosity are therefore not identical if one considers tension or shear. This approach allows a better phenomenological representation of multi-axial response and of mean stress (or preload) effect for cyclic harmonic tests (for these tests, the effect of the mean stress can be different in tension or shear). For Payne effect, it is considered isotropic internal variables which behave like damage variables. The Payne effect is commonly attributed to breakage of physically bonded filler network structure. The idea of a continuous breakage/reformation of the filler network during dynamical loading is at the origin of the so called Kraus model [START_REF] Kraus | Stress softening in carbon black reinforced vulcanizates. strain rate and temperature effects[END_REF]). The present evolution equations for damage like variables take into account characteristic times for Payne effect (dynamical softening can be found experimentally to not being instantaneous which is in contradiction with earlier approach of Kraus and co-workers) and is related to the maximal elastic strain energy seen during loading. A specific identification strategy is proposed to provide robust results with a relative cheap numerical cost. A temperature dependency of the mechanical material parameters is deduced from identification results. The present model exhibits very promising results at various temperatures, various frequencies and amplitudes of loading both in tension/compression and in simple shear.

Experimental characterization

DMA and DSC results

The studied material is a butatiene rubber filled with carbon black, however the precise chemical composition and the processing conditions are not given due to industrial confidentiality. The filler ratio in mass is near 45% of the total mass (determined with thermogravimetric analysis). Figures 1 show Differential Scanning Calorimetry and Dynamical Mechanical Analysis results. The material homogeneity of the curing process has been checked in diabolo specimen by doing DSC analysis with two parts that were extracted from two different zones inside a diabolo: in the center and near an edge. It can be seen from figure 1(a) that the material is homogeneous inside the sample (the gap between both curves can be attributed to a difference of initial referential). It can be seen that the glass-transition temperature is located near - and that the frequency dependency is almost linear (in the range 1 to 100Hz) in the linear regime of the material (i.e. for an amplitude smaller than 1%).
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Experimental setup in the non-linear regime

In the non-linear regime (for larger strain), the behavior is characterized from cyclic and monotonic (relaxation) tests that have been done on double-shear, diabolo and tension (H2) specimens. These tests have been done with electro-mechanic or hydraulic testing machines equipped with temperature controlled adiabatic chambers. Figure 2 shows the geometry and the characteristic dimensions of each specimen.

The temperature of the samples is obviously not controlled and can evolve due to thermo-mechanical couplings (the temperature of the sample is not recorded). For cyclic tests, we consider that the selfheating phenomenon does not have sufficient time to develop significantly. For all tests, the samples are "De-Mullinized" by doing 20 cycles at a small strain rate and at a larger amplitude than the maximum amplitude seen by the material during characterization. Subsequent to this, a relaxation period is observed (30 min) to remove viscous effects before characterization tests. To check the experimental repeatability, each test has been run on two different specimens.

Equilibrium hysteresis

Figures 3 show the equilibrium hysteresis in shear or tension at different temperatures. The equilibrium hysteresis (see for instance [START_REF] Lion | A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation[END_REF]) are obtained by interrupting a constant strain rate load and unload test with relaxation periods of 90 minutes. The equilibrium stresses obtained at the end of each relaxation period form an hysteresis loop. For this test, as a long relaxation period is observed it can be safely assumed that the temperature of the material at equilibrium (at the end of each relaxation) is strictly equal to the ambient temperature. If this hysteresis area is null or quasi null the behavior can be said to be perfectly viscoelastic (or perfectly thermo-elastic). A contrario, if the hysteresis area can't be neglected the material exhibits more complex dissipative phenomena (crystallization, damage, ...). For the studied material, the equilibrium hysteresis area is very small for positive temperatures and the behavior is assumed to be mainly viscoelastic. For a negative temperature the hysteresis area can't be neglected. Considering the influence of the temperature on the value of equilibrium stresses it can be remarked that both for tension and shear the stress increases upon temperature. This effect is characteristic of the entropic elasticity nature of the rubber materials.

Dynamic stabilized response and Payne effect

Typical stabilized responses for harmonic loadings in shear and tension are shown in the figures 4. These tests are run for a frequency range from 3Hz to 25Hz and an amplitude range from 0.1 to 1.0 which correspond to the operating conditions seen by rubber parts in helicopter rotors. Furthermore the influence of the mean stress is studied by applying a non-null mean strain.

To analyze the results it is proposed to focus on the evolution of the hysteresis area (in MPa) and of a dynamic modulus (in MPa) which is defined in shear by the slope of the secant line of the hysteresis and in tension by the slope of a line which starts from the mean strain point and ends in max strain point. The Payne effect is clearly observed from the curves: 5, for a given frequency the dynamic modulus decreases as the loading amplitude increases. This effect seems sensitive to the environmental temperature as it becomes stronger for negative temperatures (this is more sensitive in shear than in tension). It is well known that the Payne effect is at least partially recoverable: if one runs harmonic tests with progressive amplitudes followed by decreasing amplitudes it can be observed that the dynamic modulus respectively decreases and increases. Figures 6 show that the reversibility of the Payne effect is partial (not instantaneous) and does not seem sensitive to the frequency.

For a given frequency and a given amplitude it can be noticed a thermal softening effect (stress decreases as temperature increases), this effect is opposite to the entropic behavior observed for the equilibrium hysteresis. Figures 7 and 8 show that the material response is less sensitive to the frequency of loading (in the range 3Hz to 25Hz) than of the amplitude of loading. Furthermore the thermal softening effect seems not dependent on the frequency. The effect of the mean strain is shown in the figures 9 and 10. It can be observed that tension specimens are more sensitive to this effect than double shear specimens. Increasing mean strain leads to a softening and to a decrease of the hysteresis area. This effect is non-linear and accentuated when harmonic amplitudes are small compared to the mean strain value.

Constitutive Modeling

Preliminary

The tensorial notations and operators used in the following are summed up in the table 1. symbol definition

• simple contraction: A • B = A ij B jk : double contraction: A : B = A ij B ij T transpose operator: A T = A T ij = A ji tr trace operator: trA = A ii D deviatoric operator: A D = A D ij = A ij -1 3 A kk δ ij A a tensorial norm: A = √ A : A ⊗ tensorial product: a ⊗ b = a i b j defined by (A B) ijkl = A ik B jl
Table 1: Tensorial notations and symbols

Kinematic

The proposed constitutive model is based on the thermodynamics of irreversible processes and on the local state assumption: local both in time and in spatial position. Therefore to model irreversible effects it is introduced internal variables which depend on the current time t and the current position x(t). The initial position of a material point is noted X. The initial state is assumed to be an equilibrium free stress state. At all times there exists an unique and invertible mapping between the current and the initial position: x = X (X, t). The gradient of this mapping is called deformation gradient: F = ∂X (X, t)/∂X. Following [START_REF] Flory | Thermodynamic relations for highly elastic materials[END_REF], the deformation gradient is splited into a volumetric and an isochoric part, the isochoric transformation is also multiplicatively decomposed into a purely elastic part and an inelastic one (in the present approach inelastic deformation can be viscosity, Fv , or plasticity, Fp ):

F = (J 1/3 ) F = (J 1/3 ) Fe • Fv = (J 1/3 ) Fep • Fp (1)
Where Fe , Fep denote elastic isochoric deformation gradients associated to viscosity or plasticity respectively. It is implicitly assumed from the previous equation that no dissipative mechanisms occur for volumetric deformation. In the intend to reproduce the material behavior, we use a phenomenological approach in which n mechanisms of dissipation are combined together (multiple relaxation times or multiple behaviors). Therefore, eq (1) is generalized to the case of the n elastic and inelastic deformation gradients such that:

F = (J 1/3 ) Fi e • Fi v i = 1..n (2)

Thermodynamical framework

To proceed further, it is made the following hypotheses:

• Only isothermal conditions are considered: temperature is assumed to be homogeneous and fixed in time. Considering equilibrium hysteresis results this hypothesis seems correct as the material has sufficient time to diffuse thermal flux due to thermo-mechanical couplings. For cyclic test, it is clear that this hypothesis is strong as the temperature inside the material will evolve (due to thermomechanical couplings and due to irreversible phenomena), however we assume that these evolutions are small regarding the short duration of a dynamical test. Therefore, we consider that the temperature of the material is closed to the ambient temperature (inside the adiabatic chamber) and we neglect the thermal dilatation;

• Following [START_REF] Bergström | Large strain time-dependent behavior of filled elastomers[END_REF] among others, the Cauchy stress σ is assumed to be a sum of two contributions: σ = σ eq + σ v where σ eq is the equilibrium stress (i.e. the stress obtain after removing viscous effects) and σ v is the supplementary stress due to viscosity. The equilibrium part is phenomenologically represented by an elasto-visco-plastic behavior to take into account of very long time viscous processes and of the low mobility of polymer chains for negative temperatures. The supplementary viscous stress is assumed as a sum of a finite range of viscous stress responses, each response is associated to a characteristic time of viscosity (leading to the so-called Maxwell-generalized phenomenological approach).

• Payne effect is assumed to be irreversible: the present model don't take into account of the recovery of the Payne effect experimentally observed1 (see figure 6). The Payne effect is also assumed as isotropic and n scalar internal variables are introduced (one per characteristic viscous time).

The Helmoltz free specific energy is chosen as follows:

ψ( B, Bi e , Bep , ω i , J, Θ) = ψ eq ( B, Bep , Θ) + ψ vis ( Bi e , ω i , Θ) + ψ vol (J) i = 1..n (3) 
where

B = F • FT , Bep = Fep • FT ep and Bi e = Fi e • Fi T
e are the elastic, elasto-plastic and visco-elastic left Cauchy Green tensors, Θ is the absolute temperature (in Kelvin). The scalar internal variables ω i represent the Payne effect: they evolve from ω i (t = 0) = 1 to a positive value smaller than one depending on the applied amplitude. The energies ψ eq , ψ vol , ψ vis and ψ Θ are respectively the equilibrium, the volumic, the viscous and the thermal (heat storage term) free specific energies.

Neglecting thermal dissipation (conductivity or heat flow) and temperature evolution, the combination of the first and the second laws of thermodynamics leads to the following inequality (Clausius-Duhem form):

φ = σ : D -ρ ψ ≥ 0 ∀ D (4)
where D is the eulerian strain rate: D = 1/2(L + L T ) with L = Ḟ • F -1 and ρ is the current density. The dot symbol in eq. ( 4) or in the previous definition of the strain rate stands for the so-called material time derivative: derivative of quantity upon time holding initial position constant. The material time derivative of the free energy defined in eq. ( 3) is:

ψ = ∂ψ eq ∂ B : Ḃ + ∂ψ eq ∂ Bep : Ḃep + n i=1 ∂ψ vis ∂ Bi e : Ḃe i + n i=1 ∂ψ vis ∂ω i ωi + ∂ψ vol ∂J J (5)
Using the definition of Cauchy tensor and the relations ( 1) and ( 2), one can obtain the following relations:

Ḃ = L • B + B • L T - 2 3 (1 : D) B (6) Ḃe i = L • Bi e + Bi e • L T -2 Vi e • Do i v • Vi e - 2 3 (1 : D) Bi e , i = 1..n (7) Ḃep = L • Bep + Bep • L T -2 Vep • Do p • Vep - 2 3 (1 : D) Bep ( 8 
)
where 1 is the second order unit tensor and Vi e , Vep come from the polar decompositions: The material time derivative of the volume variation is given by:

J = J(1 : D) (9) 
In eq. ( 7) and ( 8), objective eulerian strain rates have been introduced. These rate are defined from:

Do i v = Ri e • Di v • Ri T e Do p = Rep • Dp • RT ep (10) 
Inserting ( 5) to ( 9) in (4) and after using some symmetry properties and reordering terms, the Clausius-Duhem inequality is written as:

φ = φ0   σ -2ρ B • ∂ψ eq ∂ B + Bep • ∂ψ eq ∂ Bep + n i=1 Bi e • ∂ψ vis ∂ Bi e D -ρJ ∂ψ vol ∂J 1   : D + 2ρ n i=1 Bi e • ∂ψ vis ∂ Bi e : Do i v φvis + 2ρ Bep • ∂ψ eq ∂ Bep : Do p φeq + n i=1 -ρ ∂ψ vis ∂ω i ωi φpayne ≥ 0 ∀D, Do i v , Do p , ωi (11) 
As each thermodynamical flow is independent from each other in the previous expression, we consider that the positivity of each dissipation term is independently required: φ 0 ≥ 0, φ eq ≥ 0, φ vis ≥ 0, φ payne ≥ 0. Furthermore, as it is assumed that mechanical irreversibilities are fully represented by internal variables, it is stated that φ 0 = 0. Therefore, the Clausius-Duhem inequality is satisfied if:

σ = σeq 2ρ B • ∂ψ eq ∂ B + Bep • ∂ψ eq ∂ Bep D + ρJ ∂ψ vol ∂J 1 + n i=1 σ i v 2ρ Bi e • ∂ψ vis ∂ Bi e D ( 12 
)
φ eq = 2ρ Bep • ∂ψ eq ∂ Bep : Do p ≥ 0 ( 13 
)
φ i vis = 2ρ Bi e • ∂ψ vis ∂ Bi e : Do i v ≥ 0 i = 1..n ( 14 
)
φ i payne = -ρ ∂ψ vis ∂ω i ωi ≥ 0 i = 1..n (15) 
(16)

Equilibrium contribution

It is considered the elastic domain: E = {σ p |f (σ p , Θ) ≤ 0} defined by the following yield function:

f (σ p , Θ) = σ p -χ(Θ) with σ p = 2ρ Bep • ∂ψ eq ∂ Bep D ( 17 
)
where χ is the yield parameter that depends on temperature. The plastic flow rule is defined from:

Do p = < f (σ p , Θ) > ζ(Θ) σ p σ p (18) 
where < . > denotes the Macaulay brackets 2 and ζ(Θ) is a viscosity like parameter (ζ(Θ) ≥ 0). The proof of the thermodynamical admissibility of ( 18) is straight forward: inserting (18) in (13) leads to:

φ eq = < f (σ p , Θ) > ζ(Θ) σ p : σ p σ p ≥ 0 ( 19 
)
The equilibrium and volumic free energies are chosen as follows:

ρ 0 ψ eq = C 1 (Θ) I 1 ( B) -3 + C 2 (Θ) I 2 ( B) -3 + G p (Θ)(I 1 ( Bep ) -3) ρ 0 ψ vol = k 2 (ln J) 2 (20) 
The material parameters C 1 , C 2 , G p are assumed to be dependent on temperature. Due to the lack of experimental data the bulk modulus k is assumed to be independent on the temperature. The strain invariants are defined from I 1 (X) = Tr(X) and I 2 (X) = 1/2((Tr(X)) 2 -Tr(X • X). The initial density ρ 0 is related to the current one from: ρ = J -1 ρ 0 . Using the previous definition, the equilibrium stress is written as:

σ eq = J -1 2C 1 (Θ) BD + 2C 2 (Θ)(I 1 ( B) B -B2 ) D + 2G p (Θ) BD ep + k ln J1 (21) 
Inserting ( 18) in (8) it is obtained the following flow rule:

Ḃep = L • Bep + Bep • L T - 2 3 (1 : L) Bep -2 < f (σ p , Θ) > ζ(Θ) Bep • BD ep BD ep ( 22 
)
2 Macaulay brackets are defined from: < f >= f if f ≥ 0 and < f >= 0 elsewhere.

Time dependent contribution (non isotropic viscous flows)

In the present contribution it is proposed an original approach to take into account of the influence of loading directions on the viscous flow. The original idea that has been developed in a previous paper (see [START_REF] Delattre | On the multiaxial amplitude and frequency dependent behavior of rubber: experiments and constitutive modeling[END_REF]) is to consider that viscous mechanisms may be different in tension and in shear. One can imagine that an amorphous polymers like synthetic rubbers will become more and more structured (oriented chains) submitted to monotonic loading in tension. In shear this internal reorganization should be different. Therefore we have proposed a tensorial viscosity flow rule that distinguishes tension from shear. In this paper we adopt a more general approach by considering two mechanisms of viscosity: the first one is isotropic and the second one is dependent on the global strain direction through the eigenvectors of BD . When strain principal directions are aligned with viscous stress principal directions a classical Maxwell flow rule is obtained (in tension for instance). For other cases of loading the proposed form leads to a non classical viscosity (in shear for instance) for which the relaxation times may not be the same in each material direction. It is defined first the spectral representation of BD :

BD = 3 a=1 λ a n a ⊗ n a ( 23 
)
The i th viscous stress is defined by:

σ i v = 2ρ Bi e • ∂ψ vis ∂ Bi e D (24) 
Introducing the temperature dependent parameters η i 1 (Θ, ω i ) and η i 2 (Θ, ω i ) it is proposed the following non-classical viscous flow rule:

Do i v = H 1 η i 1 (Θ, ω i ) I + 1 η i 2 (Θ, ω i ) - 1 η i 1 (Θ, ω i ) 3 a=1 n a ⊗ n a ⊗ n a ⊗ n a : σ i v i = 1..n ( 25 
)
where I is the fourth order identity tensor and η i 1 (Θ, ω i ) ≥ η i 2 (Θ, ω i ) ∀Θ, ω i . The positivity of the dissipation can be shown by introducing (25) in ( 14):

φ i vis = σ i v : H : σ i v = 1 η i 1 (Θ, ω i ) (σ i v : σ i v ) + 1 η i 2 (Θ, ω i ) - 1 η i 1 (Θ, ω i ) n a • σ i v • n a : n a • σ i v • n a ≥ 0 (26)
Obviously we have considered that η i 1 and η i 2 are positives (and η i 1 ≥ η i 2 ). The material objectivity of the relation ( 25) can be shown by considering a transformation

F * = Q • F, Fi * e = Q • Fi e • Q 1 , Fi v = Q 1 T • Fi v
where Q, Q 1 are orthogonal rotation tensors. Therefore, the direction vectors n a * are defined by n a * = Q•n a and it is obtained 3 :

Do v i * = 1 η i 1 (Θ, ω i ) I + 1 η i 2 (Θ, ω i ) - 1 η i 1 (Θ, ω i ) 3 a=1 (n a * ) ⊗ (n a * ) ⊗ (n a * ) ⊗ (n a * ) : (σ i * v ) = 1 η i 1 (Θ, ω i ) I + 1 η i 2 (Θ, ω i ) - 1 η i 1 (Θ, ω i ) 3 a=1 (Q • n a ) ⊗ (Q • n a ) ⊗ (Q • n a ) ⊗ (Q • n a ) : (Q • σ i v • Q T ) = 1 η i 1 (Θ, ω i ) Q Q + 1 η i 2 (Θ, ω i ) - 1 η i 1 (Θ, ω i ) 3 a=1 (Q • n a ) ⊗ (Q • n a ) ⊗ n a ⊗ n a : σ i v = (Q Q) : 1 η i 1 (Θ, ω i ) I + 1 η i 2 (Θ, ω i ) - 1 η i 1 (Θ, ω i ) 3 a=1 n a ⊗ n a ⊗ n a ⊗ n a : σ i v = (Q Q) : Do i v = Q • Do i v Q T ( 27 
)
3 One can easily show that

σ i * v = Q • σ i v • Q T as Bi * e = Fi * e • Fi T * e = Q • Fi e • Q 1 • Q 1 T • Fi T e • Q T = Q • Bi e • Q T
which shows the demonstration of the objectivity of the chosen viscous flow. The isotropy can easily be shown as n a are invariants by rotation of the referential. The viscous free energy is chosen as:

ρ 0 ψ vis = n i=1 G i (Θ, ω i )(I 1 ( Bi e ) -3) (28)
Therefore, the i th viscous stress is written as:

σ i v = 2J -1 G i (Θ, ω i ) Bi e D i = 1..n, ω i ∈]0, 1] (29) 
Inserting ( 25) in ( 7) it is obtained:

Ḃe i = L • Bi e + Bi e • L T - 2 3 (1 : L) Bi e - 1 Jτ i 1 Bi e • Bi e D - 1 Jτ i 2 - 1 Jτ i 1 3 a=1 ( Vi e • n a ) ⊗ ( Vi e • n a )(n a • Bi e D • n a ), Bi e (t = 0) = 1 i = 1..n (30) 
where

τ i 1 = η i 1 (Θ, ω i )/4G i (Θ, ω i ) and τ 2 = η 2 (Θ, ω i )/4G i (Θ, ω i
) are the two characteristic times of viscosity linked to the i th viscous stress. It is assumed that τ i 1 and τ i 2 do not depend on temperature (therefore shear modulus and viscosity have the same dependance in ω i and Θ). Furthermore, as ω i is a decreasing variable which takes one for initial value, it is chosen the following parametrization:

G i (Θ, ω i ) = ω i (g l i Θ + g c i ) i = 1..n (31) 
In the previous equation a linear temperature dependency of the neoHookean parameters is assumed (g l i and g c i are material parameters to be identified). It has to be noticed that if τ i 1 = τ i 2 in eq. ( 30) a classical Maxwell flow rule is recovered. Furthermore for loading cases that do not involve material rotations (tension for instance), classical Maxwell viscosity is also recovered (τ i 2 and τ i 1 play the same role). In contrast to this situation, shear for instance, leads to a non classical viscosity.

Modeling of Payne effect

Payne effect is macroscopically characterized by a dynamical softening. From macroscopic experiments, it is well known that this effect is strongly related to the micro-structure of the material (see [START_REF] Payne | A note on the existence of a yield point in the dynamic modulus of loaded vulcanizates[END_REF]). [START_REF] Fröhlich | The effect of fillerfiller and fillerelastomer interaction on rubber reinforcement[END_REF], among others, studied the influence of various parameters such as the filler ratio, the surface area, the filler structure, the surface activity, etc. These parameters control the micro structure and have a direct impact on the Payne effect. An interesting discussion on the microscopic origin of the Payne effect can be found in [START_REF] Klüppel | The role of disorder in filler reinforcement of elastomers on various length scales[END_REF]. Earlier approaches due to Kraus and co-workers [START_REF] Kraus | Stress softening in carbon black reinforced vulcanizates. strain rate and temperature effects[END_REF]) were formulated with the idea that Payne effect is mainly a consequence of a breakage/reformation of filler to filler interaction. This model has been later enriched by many authors (see for instance [START_REF] Ulmer | Strain dependence of dynamic mechanical properties of carbon black-filled rubber compounds[END_REF]). As for the Mullins effect, there are no experimental evidences in the literature that can fully explain the origin (at the scale of the micro-structure) of the Payne effect. To the authors opinion Payne effect is a consequence of a complex micro-structural and multi-physical re-organization in aggregates of fillers due to (thermo-)mechanical loadings. In the unloaded state aggregates of fillers disseminated in rubber matrix are constituted by a filler network (physical interaction between fillers) which is surrounded by a bound rubber that could be vitreous at room temperature (see [START_REF] Heinrich | Reinforcement of elastomers[END_REF]; [START_REF] Fritzsche | Structural dynamics and interfacial properties of filler-reinforced elastomers[END_REF]). Under dynamical mechanical loading, the physical interaction between fillers becomes weaker (as for monotonic loading) and the local temperature can increase (due to the entropic nature of rubber elasticity) leading to a rubbery state of the bound rubber. With this local softening of bound rubber and filler network breakage, occluded rubber can be released leading to a supplementary softening effect as the apparent filler ratio will decrease. If the mechanical loading decreases or stops, a new filler network can be formed with occluded rubber. A decrease of the local temperature leads to a reformation of a rigid (vitreous) bound rubber around filler agglomerates. This scenario is one possibility among others, however it could explain the partial recovery of the Payne effect and the influence of the macroscopic temperature.

From a phenomenological point of view, Payne effect is inversely proportional to the applied amplitude and exhibits an intrinsic time (few cycles are needed to stabilize the material response when loading amplitude is increased or decreased). It can be viewed as a local damage/reforming mechanism. In the proposed model, only the damage aspect is taken into account. Furthermore it is assumed that this effect does not depends on the applied strain rate (see figure 6) the effect of the temperature is neglected (figures 5 suggest that the temperature plays a role in shear but not in tension). Using eqs. ( 28) and ( 31) in ( 15), it is obtained: 32) which is equivalent to ωi ≤ 0. It is proposed the following evolution law that fulfills the previous thermodynamical requirement:

φ i payne = -J -1 (g l i Θ + g c i )(I 1 ( Bi e ) -3) ωi ≥ 0 i = 1..n ( 
ωi = - 1 h i ω i - 3 I 1 ( B) ri , ω i (t = 0) = 1 i = 1..n ( 33 
)
where r i and h i are material parameters, h i is homogeneous to a characteristic time for the Payne effect. In the previous expression it is made use of the previously defined Macaulay brackets. It is also assumed that these parameters do not depend on the temperature (however the apparent shear modulus is temperature dependent).

Material Parameters Identification and numerical results

Semi-analytical solutions for simple shear and tension

It is assumed that the deformation gradients (and the stress solution) are homogeneous and purely incompressible in the central zone of each specimen. The deformation gradients are, then, written as4 :

F tension (t) =    λ(t) 0 0 0 1 √ λ(t) 0 0 0 1 √ λ(t)    F shear (t) =   1 γ(t) 0 0 1 0 0 0 1   ( 34 
)
As J = 1, the constitutive relation of eq. ( 12) must be rewritten as5 :

σ = 2ρ B • ∂ψ eq ∂ B + Bep • ∂ψ eq ∂ Bep D + p1 + n i=1 2ρ Bi e • ∂ψ vis ∂ Bi e D ( 35 
)
Where p is a Lagrange multiplier (to enforce incompressibility). For simple shear, this constitutive relation can be directly used and we obtain:

σ shear 12 (t) = 2C 1 (Θ)γ(t) + 2C 2 (Θ)γ(t) + 2G p (Θ) Bep12 (t) + n i=1 2G i (Θ)ω i (t) Bi e12 (t) (36)
For uni-axial tension, the Lagrange multiplier, p, can be easily eliminated using equilibrium equation (that shows that p is homogeneous) and boundary conditions (σ 22 = σ 33 = 0). It is obtained the following expression:

σ tension 11 (t) = 2C 1 (Θ) λ(t) 2 - 1 λ(t) + 2C 2 (Θ) λ(t) - 1 λ(t) 2 + 2G p (Θ)( Bep11 (t) -Bep22 (t)) + n i=1 2G i (Θ)ω i (t)( Bi e11 (t) -Bi e22 (t)) (37) 
To compute expressions ( 36) and ( 37), it is required to integrate evolutions equations ( 22), ( 30) and ( 33). One can hardly obtain general analytical solutions to these evolution equations, therefore a numerical procedure is needed.

Numerical treatment of evolution equations

The numerical treatment of evolution equations is done numerically with the help of the NDSolve function of Mathematica (Wolfram Research (2014)). Knowing the iscochoric left Cauchy Green tensor as a function of time, the integration of the differential eq. ( 33) does not present any difficulty (the Macaulay brackets are replaced by the UnitStep function of Mathematica). Concerning eq. ( 30) the initial i th differential equation is replaced by the following i th differential-algebraic equations (DAE):

Ḃe i = L • Bi e + Bi e • L T - 2 3 (1 : L) Bi e - 1 Jτ i 1 Bi e • Bi e D - 1 Jτ i 2 - 1 Jτ i 1 3 a=1 ( Vi e • n a ) ⊗ ( Vi e • n a )(n a • Bi e D • n a ) Bi e = Vi e • Vi e Bi e (t = 0) = 1, Vi e (t = 0) = 1 (38) 
It is therefore considered that Bi e and Vi e are two independent variables to be integrated which are linked with an algebraic relation. Furthermore it is considered that the viscoelastic Cauchy Green tensor and left pure deformation tensors take the following form (for shear or tension load cases):

Bi e (t) =   Bi e11 (t) Bi e12 (t) 0 Bi e12 (t) Bi e22 (t) 0 0 0 1/( Bi e11 (t) Bi e22 (t))   , Vi e (t) =   V i e11 (t) V i e12 (t) 0 V i e12 (t) V i e22 (t) 0 0 0 1/( V i e11 (t) V i e22 (t))   (39) 
For shear and tension, the principal directions of the isochoric left Cauchy Green tensor (n a (t)) can be analytically expressed as functions of time and the tensorial DAE, eq (38), is replaced by a DAE system with 6 unknowns ( Bi

e11 (t), Bi e22 (t), Bi e12 (t), V i e11 (t), V i e22 (t), V i e12 (t)).
It can be remarked that the DAE system depends only on the material parameters τ i 1 and τ i 2 . If this material parameters are known (a priori), the differential system can be integrated independently from other material parameters.

The integration of eq. ( 22), is based on the same analytical form for Bep :

Bep (t) =   Bep 11 (t) Bep 12 (t) 0 Bep 12 (t) Bep 22 (t) 0 0 0 1/( Bep 11 (t) Bep 22 (t))   (40) 
Introducing (40) in eq. ( 22), it is obtained a system of differential equations with three unknowns ( Bep 11 (t), Bep 22 (t), Bep 12 (t)). As previously, the Macaulay brackets are replaced by the UnitStep function of Mathematica.

1. Equilibrium contribution, minimize Err eq (C 1 , C 2 , G p , χ, ζ) such that:

Err eq = Ntemperature j=1   ( 1 N tension points ) N tension points i=1 (σ i,j exp11 -σ i,j eq11 ) 2 M ax(σ i,j exp11 ) 2 + ( 1 N shear points ) N shear points i=1 (σ i,j exp12 -σ i,j eq12 ) 2 M ax(σ i,j exp12 ) 2  
where σ i,j exp11 , σ i,j exp12 and σ i,j eq11 , σ i,j eq12 denote the components of respectively the experimental and the model equilibrium Cauchy stress obtained in tension or shear for a strain amplitude i and at a temperature Θ j . The aforementioned minimization is done under the constraints:

C 1 (Θ) ≥ 0, C 2 (Θ) ≥ 0, G p (Θ) ≥ 0, χ(Θ) ≥ 0, ζ(Θ) ≥ 0 ∀Θ ∈ [230K, 350K].
For this step, we use the experimental data presented in figures 3(c) and 3(d) 2. Fixing a range of characteristic times τ i 1 , τ i 2 and Payne parameters h i , r i with the constraint τ i 1 ≥ τ i 2 . Typically with τ 1 , τ 2 ∈ [10 -4 , 10 -3 , 10 -2 , 10 -1 , 1, 10, 10 2 , 10 3 ], h ∈ [10 -1 ], r ∈ [1, 10] there are 72 admissible combinations (this set was used for the present identification). 3. Pre-computing the solution of viscous flow (eq. ( 30)) and Payne evolution (eq. ( 33)) for each temperature and each combination of frequency and amplitude of cyclic dynamical experiments in shear and tension and each of the 72 admissible combinations of material parameters. 4. For each temperature (independently from each other), minimize Err neq (G 1 , G 2 , .., G n ) such that:

Err neq (G 1 , G 2 , .., G n ) = N cyclictests j=1 (R j exp -R j ) 2 R j exp 2 + N cyclictests j=1 (D j exp -D j ) 2 D j exp 2
where R j exp and R j are respectively the experimental and the model dynamical stiffness (slope of the median of the hysteresis), D j exp and D j denotes respectively the experimental and the model hysteresis area (for a stabilized cycle). As evolution equations has been pre-determined at step 3, the D j and R j are only dependent on G i . Mathematica is used to obtain an analytic expression of these functions and the minimization becomes a simple constrained minimization problems (the conditions G i ≥ 0 ∀i are imposed). In this step, the experimental data from dynamical shear tests (f=3Hz,6Hz,12Hz,25Hz and A=100%,50%,25%,10%) and from dynamical tension tests (f=3Hz,12Hz and A=25%,10%) are used. 5. Selecting the most significant characteristic times. For each temperature it can be selected the most significant parameters (τ i 1 , τ i 2 , h i , r i ) by computing Err neq with previously obtained G i excepted the k th combination for which G k is imposed to be null. If Err neq is not sensitive to the removal of the k th combination, this combination is removed from the initial list. A common (to each temperature) reduced list of characteristic times is then obtained. 6. The final identification is run by minimizing Err(g l 1 , g c 1 , g l 2 , g c 2 , .., g l n , g c n ), where:

Err(g l 1 , g c 1 , g l 2 , g c 2 , .., g l n , g c n ) = Ntemperature j=1 Err neq (g l 1 Θ j + g c 1 , .., g l n Θ j + g c n )
As for the first step this minimization is done under the constraints

g l i Θ j + g c i ≥ 0 ∀i, Θ ∈ [230K, 350K
]. The same experimental data than for the step 4, are used in this final step. 

Identification of material parameters

The material parameters identification shares the same concepts as those exposed in [START_REF] Delattre | On the multiaxial amplitude and frequency dependent behavior of rubber: experiments and constitutive modeling[END_REF]. Basically, the identification is done at each temperature separately to determine the evolution of the material parameters upon temperature. Once this evolution is chosen (linear for this model) material parameters are re-identified taking into account all the temperatures simultaneously. The material identification procedure can be decomposed in six steps: first the equilibrium contribution is determined (parameters C 1 , C 2 , G p , χ, ζ) and the obtained parameters are kept fixed. For this step, it is used the experimental data obtained from relaxation tests (figures 3(c) and 3(d)) and the objective function is based on a classical square root distance of experimental and semi-analytical values.

In a second step, a set of characteristic times (τ 1 1 ,τ 1 2 , τ 2 1 ,τ 2 2 , .., τ n 1 ,τ n 2 ) and Payne parameters (h 1 , r 1 , h 2 , r 2 , .., h n , r n ) are arbitrarily fixed. This allows to integrate each evolution equation for each test case separately and it can be obtained a semi-analytical expression of the identification error. The associated shear moduli (G 1 , G 2 , .., G n ) are then identified in a fourth step for each temperature separately. In this paper, we consider an original identification error: rather than a classical error measure (mean square distance between the experimental points and model predictions), the present error is based on the difference between the hysteresis area and the dynamic modulus obtained from experiments and model. The arbitrary set of characteristic times and Payne parameters is eventually redefined in a fifth step to keep only the more significant G i (and therefore to eliminate non significant characteristic times). Finally in the last step, the temperature evolution of the shear modulus G i is obtained. The procedure allows to let the minimization process determine the number of characteristic times that are needed to represent the behavior. The identification procedure is summed up in the table 2.

Obviously, the identification procedure is sensitive to the a priori chosen set of characteristic times and Payne parameters. Nevertheless, this strategy exhibits a total computational cost which is several order of magnitude lower com Pared to a frontal identification strategy for which only the number of viscous phenomena is given and all the material parameters are unknown a priori. This is due to the fact that nonlinear complex flow rules (viscosity and Payne) can be pre-integrated for each test case (temperature, frequency, amplitude). Furthermore, the final number of characteristic times, n, is optimized by the procedure.

Finally the results obtained at the end of the identification process are given in the table 3. It is interesting to note that the result of the identification is a priori compatible with the hypothesis of an entropic elasticity like response of the equilibrium part of the model (parameters C 1 , C 2 , G p ). Concerning the viscous contribution, the identification process gives less clear results as the temperature dependency can be either increasing or decreasing. Furthermore, starting from 72 possible combinations of viscous parameters, the identification process has retained in the end only 7 contributions. Looking at the parameters τ i 1 and τ i 2 there are only 2 contributions for which the response is selected by the identification process as purely isotropic (i.e τ 1 = τ 2 ).

Identification results: comparison of experimental and model responses

In this section, we focus only on the identification results and the capacity of the model to correctly describe the experimental data that were used for the identification process. Figures 11 show a comparison between the model and experimental response for the equilibrium hysteresis at different temperatures. It can

C 1 (MPa) C 2 (MPa) G p (MPa) χ (MPa) ζ (MPa.s) 0.
9.6e -4 θ + 3.8e -2 5.3e -4 θ + 2.8e -1 4.1e

-3 θ + 1.9e -1 4.0e 3 θ + 1.4e 6 τ i 1 (s) τ i 2 (s) h i (s) r i G i (MPa) 1.e -2
1.e -4 1.5e -1 1.

2.7e -3 θ + 1.7e -1 1.

1.e -2 1.5e -1 1.

-1.2e -3 θ + 8.6e -2 1.

1. 1.5e -1 1.

-2.7e -3 θ + 2.6e -1 1.e 2

1.e -2 1.5e -1 1.

3.0e -4 θ + 1.3e -2 1.e 3

1.e -2 1.5e -1 1.

3.3e -4 θ + 1.1e -1 1.e 3

1.e -1 1.5e -1 1.

-2.6e -5 θ + 1.4e -1 1.e 3

1.e 3 1.5e -1 10.

-4.9e -5 θ + 1.8e -1

Table 3: Final identification results (it has been used the notation: θ = Θ -273)

be seen that both responses are in good accordance even if the non linearity in shear for large deformation is not well captured by the model. Thermal stiffening (entropic behavior) and hysteresis area decreasing upon temperature increase are correctly described.

The dynamic response without preload (null mean stress) is illustrated at figures 12 and 13. First it can be remarked that the Payne effect is well captured by the model: small and large hysteresis are correctly described both in tension and shear. Furthermore the temperature dependance of the Payne effect is also well described even if the material parameters that control the evolution of the ω i are not temperature dependent. As for the equilibrium hysteresis the non-linearity of the dynamic response in shear for large strain is not perfectly represented (particularly for θ = -40 o C). Focusing on the frequency dependency, the results are in very good agreement in the range 3Hz to 12Hz both for shear and tension and for each temperature (idem for 25Hz in shear, see figures 14). If one look at a smaller rate of loading (not used in the identification), the results illustrate that the model has a faster decrease of the hysteresis area and therefore the long time viscosity is not fully described (see figures 15). It can also be remarked that this long time viscosity is not embedded in the equilibrium hysteresis response which is here correctly described.

Preliminary validation: influence of the preload

As a preliminary validation of the model, we propose to compare model and experimental results in the case of dynamical tests with preload at different temperatures (both in shear and tension). These tests were not used in the identification process. made of the Tension/Compression at θ = -40C) between experimental and numerical data. The influence of the preload on the Payne effect seems correctly described for shear. As observed experimentally, the preload has a stronger influence in uniaxial tension than in simple shear. Therefore, the induced anisotropic viscous flows allow to capture this asymmetric behavior, which could have a strong influence in practical applications (i.e., for more complex loading). 

Conclusion

In this work, we have proposed a new constitutive model for finite rubber viscoelasticity which takes into account of specific phenomena exhibited by filled rubber submitted to dynamical loading at various temperatures. First the introduction of directional viscous flows has permitted to correctly represent the multi-axial behavior and particularly the specific dependency of the dynamical response on preload. We have adopted the classical idea of a representation of a continuum spectrum of relaxation with a combination of discrete viscous stresses. The number of viscous stresses is automatically determined by a specific developed material fitting procedure. In the present case 7 viscous stresses are needed to represent the behavior in a range of frequency and temperatures that corresponds to the industrial application. To describe the Payne effect, we have proposed a new model based on the introduction of internal variables that affect the apparent modulus of each viscous stresses. The evolution equations, associated to these variables, take into account of the maximum strain energy seen by the material through the first invariant of the left Cauchy Green tensor. The introduction of both a characteristic time for Payne effect and a yield function in the evolution equation allows to cover a wide range of dynamical amplitudes (from 5% to 150%).

Com Pared to previous approaches the present model seems very promising as it seems valuable to cover a wide range of dynamical frequencies, amplitudes and in a multi-axial context. Nevertheless this work needs to be completed with the introduction of new mechanisms to describe the partial recoverability of the Payne effect.

To proceed further and to validate the proposed model, we need to do a rigorous comparison of model and experimental responses in non homogeneous and multi-axial test cases. This will require a finite element implementation and a consistent linearization. This work has been done and will be presented in a future publication. Concerning multi-axial experiments, we will provide validation of the model on tension/torsion or compression /torsion tests on the diabolo specimen but we will also propose a comparison on dynamical shear test on laminated bearing under static compression (see figure 17). Digital image correlation results will permit to provide a local comparison of finite elements and experimental data. 

  Scanning Calorimetry. DSC has been performed on samples that are extracted from different locations of a diabolo specimen: in the center and on an edge.

  Mechanical Analysis: frequency scanning (T=25 o C). The discontinuity of the modulus and of tan(δ) near 25Hz is artificial and due to the experimental setup.
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 1 Figure 1: DSC and DMA analysis of the studied material.

Figure 2 :

 2 Figure 2: Specimens, left from right: H2, diabolo and double-shear.

Figure 3 :

 3 Figure 3: Equilibrium hysteresis: each point is obtained by taking the equilibrium stress of a relaxation test
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 56 Figure 5: Dynamic modulus at various amplitudes and various temperature for a frequency of 3Hz: influence of the Payne effect

  Figure 7: Dynamic modulus and hysteresis area at various frequencies and various temperatures in simple shear (γ = ±1)

Figure 9 :Figure 10 :

 910 Figure 9: Effect of the mean strain on the dynamical response for various amplitudes at 3Hz and 20 o C in simple shear

  Fi e = Vi e • Ri e and Fep = Vep • Rep .

-

  Figure 11: Identification results for the equilibrium hysteresis
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 12131416 Figure 12: Identification results for cyclic sinusoidal dynamic test at f = 3Hz (only the stabilized response is plotted)

Figure 17 :

 17 Figure 17: laminated bearing setup for dynamical shear test with static compression.

Table 2 :

 2 Identification of material parameters

To the authors knowledge, there is a lack in the literature concerning modelization of the partial recovery of Payne effect

Depending on the geometry (diabolo vs H2), the deformation gradient is written in Cartesian or Cylindrical coordinates.

For a purely incompressible transformation, F = F
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