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A NOTE ON CERTAIN REPRESENTATIONS IN CHARACTERISTIC p AND ASSOCIATED FUNCTIONS

The aim of this note is to describe basic properties of the representations of GL2 (Fq[θ]) associated to certain vectorial modular forms with values in Tate algebras and Banach algebras introduced by the author. We discuss how certain L-values occur as limits values of these functions. We also present families of examples which can be the object of further studies. σ -→ Mat d×d (K),

Introduction

In [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF], the author has introduced some special functions related to the arithmetic of function fields of positive characteristic (and more precisely, to the arithmetic of the ring Fq[θ] with θ an indeterminate), namely, L-values and vector valued modular forms (the vectors having entries in certain ultrametric Banach algebras). The purpose of [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF] was to produce a new class of functional identities for L-values, and only very particular examples of these new special functions were required, in order to obtain the results in that paper. The theory was later developed along several axes (see for example [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], which also contains quite a detailed bibliography).

The aim of this note is to highlight the connection that these special functions have with representations of algebras, groups etc. associated to A, and to present families of examples which can be the object of further studies. In particular, we are interested in certain irreducible representations of SL2(Fq[θ]) or GL2 (Fq[θ]). We also provide a few explicit examples and properties of such representations.

The plan of the note is the following. In §2, we discuss algebra representations of A and we will consider their associated ω-values and L-values. In §3, we present a class of irreducible representations ρ I inside symmetric powers in the case q = p. In §4, we apply the results of §3 to show that certain tensor products ρ II are irreducible. In §5 we use these results to show that the entries of certain vectorial Poincaré series generalizing those introduced in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF] are linearly independent and we present a conjecture on the rank of a certain module of vectorial modular forms.

In all the following, q = p e with p a prime number and e > 0. we set Γ = GL2(Fq[θ]), where q = p e for some prime number p and an integer e > 0. We shall write A = Fq[θ] (so that Γ = GL2(A)). All along the paper, if a = a0 + a1θ + • • • + arθ r is an element of A with a0, . . . , ar ∈ Fq and if t is an element of an Fq-algebra B, then a(t) denotes the element a0 + a1t + • • • + art r ∈ B. Also, we set K = Fq(θ).

Algebra representations

In this section, we consider an integral, commutative Fq-algebra A and we denote by K its fraction field. We denote by Matn×m(R), with R a commutative ring, the R-module of the matrices with n rows and m columns, and with entries in R. If n = m, this R-module is equipped with the structure of an R-algebra. We choose an injective algebra representation [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF] A which is completely determined by the choice of the image ϑ := σ(θ). Note that σ is not injective if and only if ϑ has all its eigenvalues in F ac q , algebraic closure of Fq (In all the following, if L is a field, L ac denotes an algebraic closure of L). Further, we have that σ is irreducible if and only if its characteristic polynomial is irreducible over K.

2.1. An example. We denote by A[θ] + the multiplicative monoid of polynomials which are monic in θ. Let P be a polynomial in A[θ] + , let d be the degree of P in θ. The euclidean division in A[θ] by P defines for all a ∈ A[θ], in an unique way, a matrix σP (a) ∈ Mat d×d (A) such that aw ≡ σP (a)w (mod

P A[θ]),
where w is the column vector with entries 1, θ, . . . , θ d-1 . Explicitly, if

P = θ d + P d-1 θ d-1 + • • • + P0 with Pi ∈ A, then σP (θ) =        0 1 • • • 0 0 0 • • • 0 . . . . . . . . . 0 0 • • • 1 -P0 -P1 • • • -P d-1        .
Hence, the map σP defines an algebra representation

A σ P --→ End(A d ).
The representation σP is faithful if P has not all its roots in F ac q and is irreducible if and only if P is irreducible over K.

L-values

and ω-values of algebra representations and semi-characters. We give a few elementary properties of certain basic objects that can be associated to representations such as in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF]. Since the proofs are in fact obvious generalizations of the arguments of [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF][START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], we will only sketch them.

For a ring R, we denote by R * the underlying multiplicative monoid of R (if we forget the addition of R we are left with the monoid R * ). We recall that A + denotes the multiplicative monoid of monic polynomials of A. Let M be an Fq-algebra (for example, M = Mat d×d (K) for some integer d).

Definition 1. A monoid homomorphism

σ : A + → M *
is a semi-character if there exist pairwise commuting Fq-algebra homomorphisms σ1, . . . , σs

: A → M such that, for a ∈ A + , σ(a) = σ1(a) • • • σs(a).
The trivial map σ(a) = 1M for all a is a semi-character, according to the convention that an empty product is equal to one. If, for all i = 1, . . . , s, ϑi = σi(θ) has a well defined minimal polynomial over K, we say that the semi-character σ is of Dirichlet type. This happens if, for example, M = Mat d×d (K). The conductor of a semi-character of Dirichlet type is the product of all the pairwise distinct minimal polynomials of the elements ϑ1, . . . , ϑs.

Example. If we choose M = F ac q , then a semi-character σ : A + → F ac q is always of Dirichlet type, and our definition coincides in fact with the usual notion of a Dirichlet-Goss character A + → F ac q . There are non-pairwise conjugated elements ζ1, . . . , ζs ∈ F ac q , of minimal polynomials P1, . . . , Ps ∈ A, such that σ(a) = a(ζ1) n 1 • • • a(ζs) ns for all a ∈ A, with 0 < ni < q d i -1 for all i, with di the degree of Pi. The conductor is the product P1 • • • Ps.

Non-example. We set M = Fq[x] and we consider the map σ : A + → M defined by a → x deg θ (a) . Then, σ is a monoid homomorphism which is not a semi-character. Indeed, assuming the converse, then σ = σ1 • • • σs for algebra homomorphisms σi : A → M . But since σ(θ) = σ1(θ) • • • σs(θ) = x, we get s = 1 and σ would be an algebra homomorphism, which is certainly false.

From now on, we suppose, for commodity, that M = Mat d×d (Ks) with Ks = Fq(t1, . . . , ts) (but some of the arguments also hold with M any Fq-algebra). Let K∞ be the completion of K = Fq(θ) at the infinity place. Then, K∞ = Fq((θ -1 )), with the norm | • | defined by |θ| = q (associated to the valuation v∞ such that v∞(θ) = -1). Let C∞ be the completion K ac ∞ , where K ac ∞ denotes an algebraic closure of K∞. We denote by Ks the completion of the field C∞(t1, . . . , ts) for the Gauss valuation extending the valuation of K∞, so that the valuation induced on F ac q (t1, . . . , ts) ⊂ C∞(t1, . . . , ts) is the trivial one. Also, we denote by Ks,∞ the completion of K(t1, . . . , ts) in Ks; we have Ks,∞ = Ks((θ -1 )). We have that K∞ = K0,∞, and K0 = C∞.

2.2.1. ω-values of an algebra representation. We consider a d-dimensional representation as in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], in M = Mat d×d (Ks). We consider the following element of K∞ ⊗ Fq M = Matn×n(Ks,∞) ⊂ C∞ ⊗ Fq M = Matn×n(Ks), the topological product ⊗ Fq being considered with respect to the trivial norm over M . We denote by Πσ the convergent product

Πσ = i≥0 (I d -σ(θ)θ -q i ) -1 ∈ GL d (Ks,∞)
(where I d denotes the identity matrix). Let λ θ be a root (-θ)

1 q-1 ∈ K ac of -θ. The ω-value associated to σ is the product ωσ = λ θ Πσ ∈ GL d (Ks,∞(λ θ )).
We have, on the other hand, a continuous Ks-algebra automorphism τ of Ks uniquely defined by setting τ (θ) = θ q . By using an ultrametric version of Mittag-Leffler decomposition, it is easy to show that K τ =1 s , the subfield of Ks of the τ -invariant elements, is equal to Ks. We denote by τ the algebra endomorphism of Mat d×d (Ks) defined by applying τ entry-wise.

Lemma 2. The element ωσ is a generator of the free M -submodule of rank one of Mat d×d (Ks) of the solutions of the τ -difference equation τ (X) = (σ(θ) -θI d )X.

Proof. (Sketch.) It is easy to verify that ωσ is a solution of the above equation.

If ω ′ is another solution, then Y = ω ′ ω -1 σ is solution of τ (Y ) = Y in Mat d×d (Ks), hence, Y ∈ M .
Remark 3. It is also easy to prove that, for σ as in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], det(ωσ) = ωα, where α ∈ Ks[θ] is -1 times the characteristic polynomial of σ(θ) and ωα is the function defined in [1, §6].

Let T be another indeterminate. The algebra Mat d×d (Ks) is endowed with a structure of A[T ]-module in two ways. The first structure is that in which the multiplication by θ is given by the usual diagonal multiplication, and the multiplication by T is given by the left multiplication by σ(θ); this defines indeed, uniquely, a module structure. The second structure, called Carlitz module structure, denoted by C(Mat d×d (Ks)), has the same multiplication by T and has the multiplication C θ by θ independent of the choice of σ, and defined as follows.

If m ∈ C(Mat d×d (Ks)), then C θ (m) = θm + τ (m).
We have the exponential map

exp C : Mat d×d (Ks) → C(Mat d×d (Ks)) defined by exp C (f ) = i≥0 D -1 i τ i (f ),
where Di is the product of the monic polynomials of A of degree i. It is quite standard to check that this is a continuous, open, surjective A[T ]-module homomorphism, of kernel π Mat d×d (Ks[θ]), where

π := θλ θ i>0 (1 -θ 1-q i ) -1 ∈ λ θ K∞ ⊂ C∞ is a fundamental period of Carlitz's exponential exp C : C∞ → C∞. Lemma 4. We have ωσ = exp C π(θI d -σ(θ)) -1 . Proof. We set f = exp C π(θI d -σ(θ)) -1 . Since (C θ -σ(θ))(f ) = 0 in C(Mat d×d (Ks))
, Lemma 2 tells us that f belongs to the free M -submodule of rank one of Mat d×d (Ks) of the solutions of the homogeneous linear difference equation described in that statement. Now, observe that

ωσ = θλ θ (θI d -σ(θ)) -1 + M1, f = θλ θ (θI d -σ(θ)) -1 + M2,
where M1, M2 are matrices with coefficients in Ks,∞ whose entries have Gauss norms < |λ θ | = q 1 q-1 . Hence ωσ = f . 2.2.2. L-values associated to a semi-character. we again suppose that M = Mat d×d (Ks), with Ks as in the previous sections. Let σ be a semi-character A + → M Let n be a positive integer. The n-th L-value associated to σ is the following element of GL d (Ks,∞):

Lσ(n) = P I d -σ(P )P -n -1 = a∈A + σ(a)a -n = I d + • • • ,
the product running over the irreducible elements of A + . 2.2.3. Determinant. We write σ = σ1 • • • σs for injective Fq-algebra homomorphisms σi : A → M with σi(θ), σj (θ) commuting each other. The elements Lσ(n) and ωσ 1 • • • ωσ s commute each other. Further we denote by λi,1, . . . , λ i,d ∈ K ac s the eigenvalues of σi(θ) for i = 1, . . . , s (considered with multiplicities). For simplicity, we suppose that none of these eigenvalues belong to F ac q . On the other hand, we consider variables x1, . . . , xs and the L-value: Proof. We note that, for every polynomial

Ls(n) := P (1 -ψs(P )P -n ) -1 , where ψ : A + → Fq[x1, . . . , xs] * is the semi-character defined by a → a(x1) • • • a(xs),
P ∈ A + , det((I d -σ(P )P -n ) -1 ) = P dn det(I d P n -σ(P )) -1 .
By the well known properties of the characteristic polynomial of an endomorphism, we have that

det(P n -σ(P )) = d i=1 (X -µi,P )X=P n ,
where µi,P ∈ K ac s are the eigenvalues of the left multiplication by σ(P ). Now, observe that

σ(P ) = s j=1 σj (P ) = s j=1 P (σj(θ))
(the elements σj (θ) commute each other). Hence, µi,P = s j=1 P (λi,j) for all i = 1, . . . , d. Thus, det(I d -σ(P )P -n ) -1 = P dn s j=1

I d P n - s j=1 P (λi,j) -1
, and the lemma follows.

2.2.4. The case n = 1. We write σ = σ1 • • • σs as above. Since for all a ∈ A + , Ca(ωσ i ) = σi(a)ωσ i ∈ M , we have the convergent series identity

a∈A + a -1 Ca(ωσ 1 ) • • • Ca(ωσ s ) = Lσ(1)ωσ 1 • • • ωσ s ∈ Mat d×d (Ks,∞(λ θ ))
(in fact, the series converges to an invertible matrix).

2.2.5. A Simple application of Anderson's log-algebraic Theorem. We now invoke the result of B. Anglès, F. Tavares Ribeiro and the author [1, Theorem 8.2] (note that in the statement, we can set Z = 1). For completeness, we mention the following result, which is a very easy consequence of ibid.: Proposition 6. For every semi-character σ :

A + → M with σ = σ1 • • • σs as above, (ωσ 1 • • • ωσ s ) -1 exp C (ωσ 1 • • • ωσ s Lσ(1)) =: Sσ ∈ Mat d×d (Ks[θ]).
Further, if s ≡ 1 (mod q -1) and if s > 1, the matrix with polynomial entries Sσ is zero. In particular, in this case,

Lσ(1) = π(ωσ 1 • • • ωσ s ) -1 Bσ,
where Bσ is a matrix with polynomial entries in Ks[θ].

Hence, Lσ(1) is a "Taelman unit", in the sense of [START_REF] Taelman | Special L-values of Drinfeld modules[END_REF]. If s = 1, we have a more explicit property. In this case, σ extends to an algebra homomorphism σ : A → M , and we have the simple explicit formula

Lσ(1) = ω -1 σ (I d θ -σ(θ)
) -1 π which can be proved in a way very similar to that of [7, §4]. We are going to see, in §5.2.1 that Lσ(n) is related to certain vectorial Eisenstein series, when n ≡ s (mod q -1).

2.3.

Representations of Γ associated to an algebra representation. Let K be any commutative field extension of Fq. Let σ be a d-dimensional representation as in [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF]. We associate to it, canonically, a representation of Γ = GL2(A) in GL 2d (K).

We consider the map Γ Then, ρσ determines a representation Γ → GL 2d (K). Indeed, σ(a), σ(b) commute each other, for a, b ∈ A. Furthermore, we have:

Lemma 7. ρσ is irreducible if and only if σ is irreducible.

Proof. Let V be a non-trivial sub-vector space of Mat d×1 (K) such that σ(a

)(V ) ⊂ V . Then, if γ = ( a b c d ) ∈ Γ, we have ρσ(γ) = σ(a) σ(b) σ(c) σ(d) (V ⊕ V ) ⊂ V ⊕ V
and σ not irreducible implies ρσ not irreducible. Now, let us assume that σ is irreducible and let us consider V a non-zero sub-vector space of Mat 2d×1 (K) which is ρσ-invariant. We observe that

V ∩ ∆ = {0}, with ∆ = { v v : v ∈ Mat d×1 (K)}. Indeed, ρσ(( 0 1 1 0 )) = ( 0 I d I d 0 ) and ρσ(( 1 0 0 -1 )) = ( I d 0 0 -I d ). If x y is a non-zero vector of V with x = -y, we have x y +ρσ(( 0 1 1 0 )) x y = x+y x+y ∈ ∆\{0}. If x = -y, then ρσ(( 1 0 0 -1 )) x y ∈ ∆\{0}. Let v v be non-zero in V ∩∆. Since for all a ∈ A, ρσ(( 1 a 0 1 )) v v = ( I d σ(a) 0 I d ) v v = σ(a ′ )v v with a ′ = a + 1 we have { σ(a)(v) v : a ∈ A} ⊂ V . Let W be the K-sub-vector space of Mat d×1 (K) generated by the set {σ(a)(v) : a ∈ A}. Then, W is σ-invariant: if w = i ciσ(ai)(v) ∈ W (ci ∈ K, ai ∈ A), we have that σ(a)(w) = i ciσ(aai)(v) ∈ W.
By hypothesis, W is non-zero, so that W = Mat d×1 (K). We have proved that V ⊃ Mat d×1 (K) ⊕ {v}. Translating, this means that V ⊃ Mat d×1 (K) ⊕ {0}. Applying ρσ(( 0 1 1 0 )) we see that V ⊃ {0} ⊕ Mat d×1 (K) and V = Mat 2d×1 (K).

Example. We can construct, in particular, the representation ρP = ρσ P : Γ → GL 2d (A) which is irreducible if and only if P is irreducible.

Symmetric powers

In the first part of this section, we suppose that q is a prime number; p = q. Let B be an Fp-algebra. We denote by ρ the tautological representation GL2(B) → GL2(B). We consider the representation

ρr = Sym r (ρ) : GL2(B) → GLr+1(B),
where Sym r denotes the r-th symmetric power realized in the space of polynomials homogeneous of degree r + 1 with coefficients in

B. If γ = ( a b c d ) ∈ GL2(B), then ρr(γ)(X r-i Y i ) = (aX + cY ) r-i (bX + dY ) i , i = 0, . . . , r.
Associated to an integer l ≥ 0 with p-expansion l = l0 + l1p + • • • + lsp s (0 ≤ li ≤ p -1), we also consider the representations

ρ I l = ρ l 0 ⊗ ρ (1) 
l 1 ⊗ • • • ⊗ ρ (s)
ls , where, for a matrix M with entries in B, M (i) denotes the matrix obtained from M raising all its entries to the power p i . The dimension of ρ I l is equal to

φp(l) = i (li + 1).
Lemma 8. The representation ρ I l is isomorphic to a sub-representation of ρ l .

Proof. We actually construct the sub-representation explicitly; the Lemma will follow easily. We consider, for γ ∈ GL2(B), the matrix ρ ⋆ l (γ) which is the square matrix extracted from ρ l (γ) = (ρi,j) 1≤i,j≤l+1

in the following way. If 0 ≤ r ≤ l is such that l r ≡ 0 (mod p), we drop the (r + 1)-th row and the (r + 1)-th column. In other words, one uses the row matrix

D l = l l , . . . , l r , . . . , l 0 
and discards rows and columns of ρ l according with the vanishing of the corresponding entry of D l and what is left precisely defines the matrix ρ ⋆ l . By Lucas formula, ρ ⋆ l has dimension φp(l) and it is easy to see, by induction on the number of digits of the p-expansion of l, that ρ ⋆ l ∼ = ρ I l .

Example. If l = 1 + p, we have

D I l = (1, 1, 1, 1) = l 0 , l 1 , l p , l l .
In this case, we find, for γ = ( a b c d ),

ρ ⋆ l (γ) =     a p+1 a p b ab p b p+1 a p c a p d b p c b p d ac p bc p ad p bd p c p+1 c p d cd p d p+1     .
Remark 9. We notice the following algorithm to construct the sequence of dimensions (φp(l)) l≥1 . Define a0 = (1), a1 = (1, 2, . . . , p) (equal to the concatenation [a0, 2a0, . . . , pa0]) and then, inductively, an = [an-1, 2an-1, . . . , pan-1].

Since it is clear that for all n, an-1 is a prefix of an, there is a well defined inductive limit a∞ of the sequence (an) n≥0 which is easily seen to be equal to the sequence (φp(l)) l≥1 .

3.1. Representations of SL2(F q ′ ). Let us set q ′ = p f with f > 0. Then, B = F q ′ is an Fp-algebra and we can construct the representations ρ l and ρ ⋆ l ∼ = ρ I L of the beginning of this section. We denote by ρ l the representation ρ I l with B = F q ′ restricted to SL2(B). By using the fact that any non-zero stable subspace in a representation of a p-group over a vector space has a non-zero fixed vector, it is easy to show and in fact well known that, for all l ≥ 0, ρ l is an irreducible representation if and only if l < q ′ . By Schur's theory, one shows that the representations ρ l with l < q ′ exhaust all the isomorphism classes of irreducible representations of SL2(F q ′ ) over F ac p . Indeed, counting isomorphism classes of SL2(F q ′ ) is an easy task and we know that their number coincides with the number of isomorphism classes of irreducible representations so it suffices to check that the representations above are mutually inequivalent which is an elementary task. This explicit description first appears in the paper [START_REF] Brauer | On the modular character of groups[END_REF] of Brauer and Nesbitt. Steinberg tensor product theorem [START_REF] Malle | Linear algebraic groups and finite groups of Lie type[END_REF]Theorem 16.12] provides such a description when, at the place of G = SL2, we have, much more generally, a semisimple algebraic group of simply connected type, defined over an algebraically closed field B of positive characteristic. This also implies Lemma 8. The author is thankful to Gebhard Böckle for having drawn his attention to this result and reference.

Some representations of GL2(A)

. We now set q = p e with e > 0. We also set K := Fq(t) for a variable t all along this subsection. We consider the algebra homomorphism χt :

A → Fq[t] ⊂ K defined by χt(a) = a(t) = a0 + a1t + • • • + a d t d for a = a0 + a1θ + • • • + a d θ d ∈ A,
with coefficients ai ∈ Fq. We extend our notations by setting, for a matrix M with entries in A, χt(M ) the matrix obtained applying χt entry-wise. We denote by ρt, ρ t,l , ρ I t,l the representations χt • ρ1, χt • ρ l , χt • ρ I l over K-vector spaces with the appropriate dimensions, of the group Γ = GL2(A).

Lemma 10. For all l as above, the representation ρ I t,l is irreducible. Proof. It suffices to show that the restriction to SL2(Fp[θ]) ⊂ Γ is irreducible. Let us consider an element ζ ∈ F ac q of degree f and let us denote by F q ′ with q ′ = p f the subfield Fp(ζ) of F ac p . The group homomorphism ev ζ : SL2(Fp[θ]) → GL2(F q ′ ) defined by the entry-wise evaluation ev ζ of θ by ζ has image SL2(F q ′ ). Indeed, the evaluation map ev ζ : Fp[θ] → F q ′ is surjective, the image of SL2(Fp[θ]) by ev ζ clearly contains the subgroup of triangular upper and lower matrices with coefficients in F q ′ , which are known to generate SL2(F q ′ ) We set N = φp(l). Let V be a non-zero K-subvector space of K N which is stable under the action of the representation of SL2(Fp[θ]) induced by ρ I t,l . Let us fix a basis b of V . We choose f big enough so that q ′ > l, q and the image b ′ of b in F N q ′ by the evaluation at t = ζ is well defined and non-zero. Then, the F q ′ -span of b ′ is a non-trivial sub-vector space of F N q ′ which is left invariant under the action of ρ l , which is impossible.

Remark 11. Let m be a class of Z/(q -1)Z and let us consider the representation ρ I t,l,m : Γ → GL φp(l) (K) defined by ρ I t,l,m := ρ I t,l ⊗ det -m . By Lemma 10, it is irreducible. However, the representations ρ I t,l,m do not cover all the irreducible representations of Γ in GLN (K) for some N . Due to the fact that we evaluate the functor GLN on a ring which is not a field (here, the ring A), there are irreducible representations which, after specialization at roots of unity, do not give irreducible representations of SL2(F q ′ ).

Remark 12. The group S (p) of p-adic digit permutations of Zp discussed by Goss in [START_REF] Goss | ζ-phenomenology[END_REF] acts on the positive integers l by means of their expansions in base p. This defines an action of the group S (p) on the set of representations ρ I l by ν(ρ I l ) = ρ I ν(l) , for ν ∈ S (p) . Note that the dimensions of these representations are S (p) -invariants. It is easy to show that ν(ρ I l ) ∼ = ρ I l ′ if and only if ν(l) = l ′ . Remark 13. We are thankful to Pietro Corvaja for having pointed out the following property. Let k be a perfect field. Then, for all γ ∈ SL2(k ac ) there exists a morphism φ : A 1 → SL2 defined over k and α ∈ k ac , such that φ(α) = γ.

Products of representations

Let t1, . . . , ts be independent variables. We denote by t s the set of variables (t1, . . . , ts) and we set Ks = Fq(t s ). If s = 1, we write t = t1 and we have Ks = K, the field of §3.2. We also consider l = (l1, . . . , ls) an s-tuple with entries in Z which are ≥ 1.

Theorem 14. the representation

ρ II t,l := ρ I t 1 ,l 1 ⊗ • • • ⊗ ρ I ts,ls : Γ → GL φp(l 1 )•••φp(ls) (Ks) is irreducible.
Proof. We set N = φp(l1) • • • φp(ls). Let us suppose by contradiction that the statement is false. Then, there exists a Ks-sub-vector space V = {0} ⊂ K N s such that for all γ ∈ Γ, ρ II t,l (γ)(V ) ⊂ V . Let us fix a basis v = (v1, . . . , vr) of V . For integers 0 ≤ k1 ≤ • • • ≤ ks, we denote by ev the map Fq[t s ] → Fq[t] which sends a(t1, . . . , ts) ∈ Fq[t s ] to a(t k 1 , . . . , t ks ) ∈ Fq[t]. This map is a ring homomorphism whose kernel is the prime ideal P generated by the polynomials tj -t q k j -k j-1 j-1 , j = 2, . . . , s. We consider the associated multiplicative set S = Fq[t s ] \ P. Then, the evaluation map ev extends to S -1 Fq[t s ] which is Zariski dense in Ks = Fq(t s ). We now extend ev coefficient-wise on every matrix, vector, etc. with entries in S -1 Fq[t s ]. If k1 is big enough, ev(v) is well defined and non-zero.

We can in fact choose k1, . . . , ks so that we also have at once, ev(ρ II t,l ) = ρ I t,l for some l ≥ 0. Indeed, if we write the p-expansions li = li,0 + li,1p + • • • + li,rp r (i = 1, . . . , s) for some r ≥ 0, then we can choose k1, . . . , ks so that there is no carry over in the p-expansion of the sum l = l1q k 1 + l2q k 2 + • • • + lsq ks ; for such a choice of k1, . . . , ks, ev(ρ II t,l ) is thus irreducible. We now set W to be the K-span of ev(v), well defined and non-trivial in K N (we recall that K = Fq(t)). Let w be in W . We can write w = a1 ev(v1) + • • • + ar ev(vr) for elements ai ∈ K. Then,

ρ I t,l (γ)(w) = a1ρ I t,l (γ)(ev(v1)) + • • • + arρ I t,l (γ)(ev(vr)) = a1 ev(ρ II t,l (γ)(v1)) + • • • + ar ev(ρ II t,l (γ)(vr)
) is a vector of W , hence contradicting the irreducibility of ρ I t,l .

Applications to Poincaré series

Definition 15. We say that a representation Γ ρ -→ GLN (K) is normal to the depth L ∈ {1, . . . , N } if for all γ ∈ H = {( * * 0 1 )} ⊂ Γ, we have that ρ(γ) = ( * * 0 I L ), where IL denotes the identity matrix of size L. A representation as above which is normal to the depth N has finite image. To see this, note that ρ((

* * 0 * )) = (( * 0 0 * )) is finite. Hence, ρ * 0 * * = ρ 0 1 1 0 * * 0 * 0 1 1 0 = = ρ 0 1 1 0 ρ * * 0 * ρ 0 1 1 0 = ρ 0 1 1 0 ρ * 0 0 * ρ 0 1 1 0 = ρ 0 1 1 0 * 0 0 * 0 1 1 0 = ρ * 0 0 * .
We thus have ρ( * 0 * * ) = ρ( * * 0 * ) finite, and

ρ(Γ) = ρ(( * * 0 * )( * 0 * * )) = ρ( * 0 0 * ) is finite. The representation Γ ρσ --→ GLN (K) with N = 2d associated to an algebra representation A σ -→ Mat d×d (K) is normal to the depth L = d.
If, for some ring R, we have that M ∈ MatN×N (R) = ( * * X Y ) with Y ∈ MatL×L, we set ML = (X, Y ) ∈ MatL×N (R). In other words, ML is the matrix constituted by the last L lines of M .

We denote by Ω = C∞ \ K∞ the Drinfeld "upper-half plane" of C∞. We choose m a non-negative integer, an integer w ∈ Z>0, and, for δ ∈ Γ and z ∈ Ω, we set µw,m(δ, z) = det(δ) -m J δ (z) w , where Jγ (z) is the usual "Drinfeldian" factor of automorphy defined, for γ = ( a b c d ) ∈ Γ by Jγ (z) = cz + d. We also denote by u(z) the uniformizer at infinity of Ω, that is, the function u(z) = 1 e C (z) with eC the exponential function C∞ → C∞ with lattice period A ⊂ C∞.

We consider a representation Γ Ew,m,ρ : Ω → MatL×N (K), in the sense of [START_REF] Pellarin | On certain generating functions in positive characteristic[END_REF].

Remark 16. For convenience of the reader, we recall here the definition of an holomorphic function Ω → K. For z ∈ Ω, we set |z| ℑ := inf λ∈K∞ |z -λ|, which is non-zero. We also define, on Ω, a Stein-like structure by considering the affinoids Un = {z ∈ Ω; |z| ≤ q n and |z| ℑ ≥ q -n }, so that Ω = ∪ n∈N Un. For n fixed, a function f : Un → K is holomorphic if it is a uniform limit of a converging sequence of rational functions Un → K, without poles in Un. A function f : Ω → K is holomorphic if, for all n ≥ 0, the restriction of f to Un is holomorphic.

Following and readapting the proof of [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF]Proposition 22], we obtain: Proposition 17. The following properties hold, for w ∈ Z>0, m ∈ Z ≥0 and ρ a representation Γ → GLN (K):

(1) For all γ ∈ Γ, we have

Ew,m,ρ(γ(z)) = det(γ) -m Jγ (z) w Ew,m,ρ(z) • ρ(γ) -1 , (2) 
There exists h ∈ Z such that

u(z) h Ew,m,ρ(z) → 0 ∈ MatL×N (K)
as u(z) → 0.

The last condition means that Ew,m,ρ(z) is tempered in the sense of [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF]. The proposition means that the L columns of the transposed of Ew,m,ρ are vectorial modular forms of weight w and type m with respect to the contragredient representation of ρ. In the next two subsections, we analyze Poincaré series associated with two particular classes of representations. (1) If w -1 ≡ 2m (mod q -1), then Ew,m,ρ = 0, identically.

(2) If w -1 ≡ 2m (mod q -1) and w ≥ (q + 1)m + 1, then, the rank of the matrix function Ew,m,ρ = 0 is d. (3) In the second case, each row of the matrix function Ew,m,ρ has the entries which are K-linearly independent.

Proof. The hypotheses on σ imply that the matrix ϑ = σ(θ) has distinct conjugate eigenvalues λ1, . . . , λ d ∈ K ac none of which lies in F ac q . We consider a corresponding basis v1, . . . , v d ∈ (K ac ) d of eigenvectors (considered as column matrices) which are then common eigenvectors for all the elements of the image of σ. In (K ac ) 2d = (K ac ) N we consider the basis w1, . . . , w 2d defined by wi = vi ⊕ 0 and w d+i = 0 ⊕ vi for i = 1, . . . , d. We also denote by M ∈ GLN (K ac ) the matrix whose columns are the wi's for i = 1, . . . , 2d. then, for δ = ( a b c d ) ∈ Γ, we have

ρ(δ)LM = δ(t) * (v1, . . . , v d ) := (c(λ1)v1, . . . , c(λ d )v d , d(λ1)v1, . . . , d(λ d )v d ) ∈ Mat d×2d (K 2d ).
Hence we have, with the same significance of the product * extended linearly, that

M • Ew,m,ρ = Ew,m,χ t * (v1, . . . , v d ),
where Ew,m,χ t : Ω → Mat1×2(K) is the function defined by

Ew,m,χ t (z) = δ=( a b c d )∈H\Γ µw,m(δ, z) -1 u m (δ(z))(c(t), d(t)).
This matrix function is the deformation of vectorial Poincaré series Ew,m(z, t) considered in [7, Proposition 22] and we know the following:

• If w -1 ≡ 2m (mod q -1), then Ew,m,χ t is identically zero.

• If w -1 ≡ 2m (mod q -1) and w ≥ (q + 1)m + 1, then all the entries of Ew,m,χ t are non-zero.

We now observe that if C is a complete field containing A and if

f (t) = i≥0 fit i ∈ C[[t]
] is a non-zero formal power series, with fi → 0 for i → ∞ (an element of the Tate algebra of formal series with coefficients in C in the variable t) then, for λ ∈ K ac \ F ac q , we have that f (λ) = i≥0 fiλ i converges in the complete field K ♯ := Frac(C ⊗ Fq K ac ) (with K ac carrying the trivial norm) to a non-zero element.

Since M is invertible, Ew,m,ρ is identically zero if and only if Ew,m,χ t is identically zero (we have supposed that ϑ has no eigenvalues in F ac q ) and in the case of non-vanishing, the rank is maximal equal to d. Properties 1) and 2) of our proposition hence follow from Proposition 22 of [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF].

It remains to show the part 3); this follows from Lemma 7. Indeed, assuming that w-1 ≡ 2m (mod q-1) and w ≥ (q + 1)m + 1, let i be an index between 1 and d; we know that it is non-zero. Let us assume, by contradiction, that the entries of E are linearly dependent; then, the vector space V whose elements are the vectors v ∈ (K ♯ ) N such that E (z) • v = 0 for all z ∈ Ω, is non-trivial.

Let v be in V . For all γ ∈ Γ, we have

0 = E (γ(z)) • v = det(γ) -m Jγ (z) w E (z) • ρ(γ) -1 • v.
This means that ρ(γ) -1 • v ∈ V so that ρ(γ)(V ) ⊂ V for all γ ∈ Γ. Since ρ is irreducible, we thus have that V = (K ♯ ) N but E is non-zero, whence a contradiction.

5.2.

Vectorial Poincaré series associated to the representations ρ II t,l . We now consider the settings of §4 and we return to independent variables t s and to the field Ks = Fq(t s ). We also consider l = (l1, . . . , ls) an s-tuple with entries in Z which are ≥ 1 and we note that the representation ρ = ρ II t,l of Theorem 14 is normal to the depth L = 1.

Proposition 19. We have the following properties, for w > 0 and m ≥ 0, and with ρ the above considered representation.

(1) The function Ew,m,ρ : Ω → Mat1×N (K),

Other representations of Γ

Let K be a field containing a fixed base field k of positive characteristic (e.g. k = Fq) and let us consider a group representation ρ : G → GLN (K). The essential dimension (over k) of ρ is the transcendence degree over k of the field generated by the entries of the image of ρ. If G is finite, then the essential dimension of ρ is zero. In this paper, we have studied several examples in the case k = Fq and G = Γ. For instance, the essential dimension of the tautological representation Γ → GL2(A) is one, and the essential dimension of a representation ρ II t,l as in Theorem 14 is s, the number of variables in t s . As a conclusion of the present note, we would like to point out that there are irreducible, finite dimensional representations of GL2(k[t]) with infinite essential dimension. Indeed, for any field k, a Theorem of Nagao (see [START_REF] Nagao | On GL(2, K[x[END_REF]Theorem 2] and Serre, [9, II.1.6]) asserts that Remark 23. The group SL2(Z) has uncountably many isomorphism classes of irreducible complex representations and their explicit classification is not yet understood. A similar question arises with the group GL2(A) and its representations in a complete algebraically closed field of characteristic p. The complete classification for SL2(Z) is however accessible if we impose an upper bound on the dimension. In [START_REF] Tuba | Representations of the braid group B3 and of SL(2, Z)[END_REF], Tuba and Wenzl obtained a complete classification of irreducible representations of the braid group B3 of dimension ≤ 5 yelding a similar result for irreducible complex representations of SL2(Z); it turns out that these families algebraically depend on finitely many parameters (eigenvalues, characters etc.). It would be nice to have a similar result for GL2(A).

Lemma 5 .

 5 and the series converges in the completion of K[x1, . . . , xs] for the Gauss norm extending | • |. We have the formula det(Lσ(n)) = Ls(n) x j =λ i,j j=1,...,s ∈ Ks,∞.

  ρσ --→ Mat 2d×2d (K), defined by ρσ a b c d = σ(a) σ(b) σ(c) σ(d) .

ρ-→

  GLN (K), normal to the depth L. Following [7, §2.4], we set, for δ ∈ Γ,f δ = µw,m(δ, z) -1 u m (δ(z))ρ(δ)L : Ω → MatL×N (K), where we recall that K = K1 is the completion of C∞(t) for the Gauss norm. It is easy to show that the series Ew,m,ρ(z) = δ∈H\Γ f δ , the sum being over the representatives of the cosets of Γ modulo the left action of H = {( * * 0 1 )}, converges to a holomorphic function

5. 1 .

 1 Vectorial Poincaré series associated to representations ρσ. Let us consider an irreducible, faithful algebra representation A σ -→ Mat d×d (K), and the associated representation Γ ρσ --→ GLN (K) with N = 2d, which is normal to the depth L = d. We additionally suppose that the characteristic polynomial of ϑ = σ(θ), irreducible, is also separable. Proposition 18. The following properties hold, with ρ = ρσ.

( 2 )

 2 GL2(k[t]) ∼ = GL2(k) * B(k) B(k[t]),where, for a commutative ring R, B(R) denotes the group of upper triangular matrices with entries in R with invertible determinant and where * B(k) stands for the amalgamated product along B(k). Therefore, we have the following: Proposition 22. Any automorphism φ of GL2(k) extends to a group isomorphism between GL2(k[t]) and the subgroup Φ ∞ of GL2(k[x1, x2, . . .]) generated by GL2(k) and the matrices λ x i 0 µ , where x1, x2, . . . are independent indeterminates over k and λ, µ ∈ k × . Proof. By (2), we see that the association λ t i 0 µ → λ x i 0 µ extends to give the above group isomorphism.The above proposition exhibits representations GL2(k[t]) → GL2(K∞) where K∞ = k(x1, x2, . . .), which have infinite essential dimension over Fq.
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with N = φp(l1) • • • φp(ls) is well defined, holomorphic, tempered, and satisfies Ew,m,ρ(γ(z)) = det(γ) -m Jγ (z) w Ew,m,ρ(z) • ρ(γ) -1 , γ ∈ Γ.

(2) If w ′ := w -l1 -• • • -ls ≡ 2m + 1 (mod q -1), then Ew,m,ρ ≡ 0.

(3) With w ′ defined as above, if w ′ ≡ 2m + 1 and w ′ ≥ (q + 1)m + 1, then Ew,m,ρ = 0. (4) If m = 0 and w ′ ≡ 1 (mod q -1), then Ew,m,ρ = 0.

(5) In all cases in which Ew,m,ρ = 0, its entries are linearly independent over K.

Proof. The first two properties and the last one are simple variants of the corresponding parts of Proposition 18. For the third property, we consider the matrix function

1 and where we have used the expansions in base p of l1, . . . , ls: li = li,0 + li,1p + • • • + li,r i p r i with ri = 0 for i = 1, . . . , s. Then, as in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF], we note that

the Poincaré series of weight w ′ and type m so that we can conclude with [4, Proposition 10.5.2]. The property 3) is not enough to show the property 4), but we can proceed more directly by noticing that in this case,

Hence, if we suppose that u(z) → ∞, then Ew,0,ρ → (0, . . . , 0, 1).

The transposed of the matrix functions Ew,m,ρ are thus vectorial modular forms of weight w, type m associated to the representations t ρ in the sense of [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF]. (the dash ′ denotes a sum which avoids the couple (0, 0)). This defines a holomorphic function

Let, on the other side, ρ be the representation ρ : Γ → Mat 2d s ×2d s (K) defined by ρ = ρσ 1 ⊗ • • • ⊗ ρσ s . The following lemma is easy to verify.

Lemma 20. We have the identity Gw,σ = Lσ(w)Ew,0,ρ.

The matrix Lσ(w) is the L-value associated to the semi-character σ as defined in §2.2.2. This and Proposition 6 suggest that the Eisenstein series Gw,σ could be also related to Taelman units. Of course, this is quite speculative, because at the moment, we do not have at our disposal any kind of metric over the spaces of vectorial modular forms that we consider, allowing us to define an appropriate notion of unit group of Taelman in this setting. However, this seems to suggest the following conjecture.