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A NOTE ON CERTAIN REPRESENTATIONS IN CHARACTERISTIC p AND

ASSOCIATED FUNCTIONS

F. PELLARIN

1. Introduction

In [6], the author has introduced some special functions related to the arithmetic of function fields of
positive characteristic (and more precisely, to the arithmetic of the ring A = Fq[θ] with θ an indeterminate),
namely, L-values and vector valued modular forms (the vectors having entries in certain ultrametric Banach
algebras). The purpose of [6] was to produce a new class of functional identities for L-values, and only
very particular examples of these new special functions were required, in order to obtain the results in that
paper. The theory was later developed along several axes (see for example [1], which also contains quite a
detailed bibliography).

The aim of this note is to highlight the connection that these special functions have with representations
of algebras, groups etc. associated to A, and to present families of examples which can be the object
of further studies. In particular, we are interested in certain irreducible representations of SL2(Fq[θ]) or
GL2(Fq[θ]). We also provide a few explicit examples and properties of such representations.

The plan of the note is the following. In §2, we shall discuss of algebra representations of A and we will
consider their associated ω-values and L-values. In §3, we present a class of irreducible representations ρI

sitting inside symmetric powers in the case q = p. In §4, We apply the results of §3 to show that certain
tensor products ρII are irreducible. In §5 series we use these results to show that the entries of certain
vectorial Poincaré series generalizing those introduced in [6] are linearly independent and we present a
conjecture on the rank of a certain module of vectorial modular forms.

In all the following, q = pe with p a prime number and e > 0 we set

Γ = GL2(Fq[θ]),

where θ is an indeterminate over Fq and q = pe for some prime number p and an integer e > 0. We
shall write A = Fq[θ] (so that Γ = GL2(A)). All along the paper, if a = a0 + a1θ + · · · + arθ

r is an
element of A with a0, . . . , ar ∈ Fq and if t is an element of an Fq-algebra B, then a(t) denotes the element
a0 + a1t+ · · ·+ art

r ∈ B. Also, we set K = Fq(θ).

2. Algebra representations

In this section, we consider an integral, commutative Fq-algebra A and we denote by K its fraction field.
We choose an injective algebra representation

(1) A
σ
−→ Matd×d(K),

which is completely determined by the choice of the image ϑ := σ(θ). Note that σ is not injective if and
only if ϑ has all its eigenvalues in Fac

q , algebraic closure of Fq (In all the following, if L is a field, Lac denotes
an algebraic closure of L). We have:

Lemma 1. The representation σ is irreducible over K if and only if ϑ has d distinct eigenvalues in an
algebraic closure K

ac of K, which are pairwise conjugated.
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Proof. From the Jordan canonical form of ϑ over K
ac, there is a decomposition (Kac)d = ⊕iVi where Vi

is a vector space over K
ac such that the left multiplication by ϑ is equal to the left multiplication by a

Jordan block associated to an eigenvalue λi of this left multiplication by ϑ. The set {Vi} is Aut(Kac/K)-
invariant. If there exists i such that dimKac (Vi) > 1 then, there exists a proper sub-vector space over K

which is left invariant so that the induced representation is a direct sum of conjugate right lower corner
sub-representations, and σ cannot be irreducible over K. Hence, if σ is irreducible (over K), the spaces
Vi are one-dimensional over K

ac and pairwise conjugate; in this case, the eigenvalues are distinct and
pairwise conjugated. Reciprocally, if the eigenvalues of ϑ are distinct and pairwise conjugated, then σ is
irreducible over K. Indeed, assuming the converse, there would exist a proper sub-vector space V ⊂ (Kac)d

defined over K invariant under the left multiplication by ϑ. Then, with Vi one-dimensional, we would have
V = ⊕i∈IVi with ∅ 6= I ( {1, . . . , d}. But then, V would not be Aut(Kac/K)-invariant. �

2.1. An example. We consider here θ as an indeterminate over K. More generally, we can suppose that
K is the fraction field of a commutative integral Fq-algebra A. We denote by A[θ]+ the set of polynomials
which are monic in θ. Let P be a polynomial in A[θ]+, let d be the degree of P in θ. The euclidean division
in A[θ] by P defines for all a ∈ A[θ], in an unique way, a matrix σP (a) ∈ Matd×d(A) such that

aw ≡ σP (a)w (mod PA[θ]),

where w is the column vector with entries 1, θ, . . . , θd−1. Explicitly, if P = θd + Pd−1θ
d−1 + · · · + P0 with

Pi ∈ A, then

σP (θ) =




0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−P0 −P1 · · · −Pd−1




.

Hence, the map σP defines an algebra homomorphism

A → End(Ad)

and provides a representation of the monoid A∗ = A\{0} in Matd×d(A)∗. The representation σP is faithful
if P has no roots in Fac

q and is irreducible if and only if P is irreducible over K.

2.2. L-values and ω-values of algebra representations and semi-characters. We continue with
the settings of the beginning of this section. Here, we shall give a few elementary properties of certain
basic objects that can be associated to representations such as in (1). Since the proofs are in fact obvious
generalizations of the arguments of [6, 1], we will only sketch our proofs.

For a ring R, we denote by R∗ the set R with the underlying multiplicative monoid. We recall that A+

denotes the subset of A of monic polynomials; it is a multiplicative monoid. Let M be an Fq-algebra (e.g.
M = Matd×d(Ks)).

Definition 2. A monoid homomorphism

σ : A+ → M
∗

is a semi-character if there exist pairwise commuting Fq-algebra homomorphisms

σ1, . . . , σs : A → M

such that, for a ∈ A+,

σ(a) = σ1(a) · · ·σs(a).

The trivial map σ(a) = 1 for all a is a semi-character, according to the convention that an empty product is
equal to one. If, for all i = 1, . . . , s, ϑi = σi(θ) has a well defined minimal polynomial over Ks, we say that
the semi-character σ is of Dirichlet type. For example, if M = Matd×d(Ks), then every element ϑ ∈ M

has a minimal polynomial over Ks. The conductor of a semi-character of Dirichlet type is the product of
all the pairwise distinct minimal polynomials of the elements ϑ1, . . . , ϑs.
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Example. If we choose M = Fac
q , then a semi-character σ : A+ → Fac

q is always of Dirichlet type, and

our definition coincides in fact with the usual notion of a Dirichlet-Goss character A+ → Fac
q . There

are non-pairwise conjugated elements ζ1, . . . , ζs ∈ Fac
q , of minimal polynomials P1, . . . , Ps ∈ A, such that

σ(a) = a(ζ1)
n1 · · · a(ζs)

ns for all a ∈ A, with 0 < ni < qdi − 1 for all i, with di the degree of Pi. The
conductor is the product P1 · · ·Ps.

Non-example. We set M = Fq[x] and we consider the map σ : A+ → M defined by a 7→ xdegθ(a). Then, σ is
a monoid homomorphism which is not a semi-character. Indeed, assuming the converse, then σ = σ1 · · ·σs

for algebra homomorphisms σi : A → M . But since σ(θ) = σ1(θ) · · ·σs(θ) = t, we get s = 1 and σ would
be an algebra homomorphism, which is certainly false.

From now on, we suppose, for commodity, that M = Matd×d(Ks) (but some of the arguments also hold
with M any Fq-algebra).

2.2.1. ω-values of an algebra representation. We consider a d-dimensional representation as in (1), in M =

Matd×d(Ks). Let λθ be a root (−θ)
1

q−1 ∈ Kac of −θ. We consider the following element of λθK∞⊗̂Fq
M ⊂

C∞⊗̂Fq
M , the topological product ⊗̂Fq

being considered with respect to the trivial norm over M , and

where K∞ is the local field Fq((1/θ)). We can quite easily view the ring K∞⊗̂Fq
M : it is the ring of the

formal series f =
∑

i≥i0
ciθ

−i, with ci ∈ M ; in other words, it is equal to the ring Matd×d(Ks((θ
−1))). We

denote by Πσ the convergent product

Πσ =
∏

i≥0

(Id − σ(θ)θ−qi)−1 ∈ GL(K∞⊗̂Fq
M)

(where Id denotes the identity matrix). Let C∞ be the completion K̂ac
∞ , where Kac

∞ denotes an algebraic
closure of K∞. The ω-value associated to σ is the product ωσ = λθΠσ ∈ λθK∞⊗̂Fq

M . We have, on the

other hand, an algebra endomorphism τ of C∞⊗̂Fq
M uniquely defined by setting τ (λ⊗ µ) = λq ⊗ µ.

Lemma 3. The element ωσ is a generator of the free M -submodule of rank one of C∞⊗̂Fq
M of the

solutions of the τ -difference equation

τ (X) = (σ(θ)− θId)X.

Proof. (Sketch.) It is easy to verify that ωσ is a solution of the above equation. If ω′ is another solution,
then Y = ω′ω−1

σ is solution of τ (Y ) = Y ; it is then straightforward to check that the solutions of the latter
difference equation are precisely the elements of M , hence, Y ∈ M . �

Remark 4. It is also easy to prove that, for σ as in (1), det(ωσ) = ωα, where α ∈ Ks[θ] is −1 times the
characteristic polynomial of σ(θ) and ωα is the function defined in [1, §6].

Let T be another indeterminate. The ring C∞⊗̂Fq
M is endowed with a structure of A[T ]-module in two

ways. The first structure is that in which the multiplication by θ is given by the usual diagonal multiplica-
tion, and the multiplication by T is given by the left multiplication by σ(θ); this defines indeed, uniquely, a
module structure. The second structure, called Carlitz module structure, denoted by C(C∞⊗̂Fq

M), has the
same multiplication by T and has the multiplication Cθ by θ independent of the choice of σ, and defined
as follows. If m ∈ C(C∞⊗̂Fq

M), then Cθ(m) = θm + τ (m). Note that both structures depend in fact on
the choice of σ, and that the dependence is limited in the multiplication by T .

We have the exponential map

expC : C∞⊗̂Fq
M → C(C∞⊗̂Fq

M)

defined by expC(f) =
∑

i≥0 D
−1
i τ i(f), where Di is the product of the monic polynomials of A of degree

i. It is quite standard to check that this is a continuous, open, surjective A[T ]-module homomorphism, of
kernel π̃A⊗Fq M .

Lemma 5. We have ωσ = expC

(
π̃(θId − ρ(θ))−1

)
.
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Proof. We set f = expC

(
π̃(θId − ρ(θ))−1

)
. Since (Cθ − ρ(θ))(f) = 0 in C(C∞⊗̂Fq

M), the lemma follows
from Lemma 3. �

2.2.2. L-values associated to a semi-character. Let σ be a semi-character A+ → M , with M an Fq-algebra.
To fix our ideas, we again suppose that M = Matd×d(Ks), with Ks as in the previous sections. Let n be
a positive integer. The n-th L-value associated to σ is the following element of GL(K∞⊗̂Fq

M):

Lσ(n) =
∏

P

(
Id − σ(P )P−n

)−1
=
∑

a∈A+

σ(a)a−n.

Remark 6. We write σ = σ1 · · ·σs for Fq-algebra homomorphisms σi : A → M . The elements Lσ(n) and
ωσ1

· · ·ωσs commute each other. Further, if λi,1, . . . , λi,d ∈ K
ac
s are the eigenvalues of σi(θ) for i = 1, . . . , s

(considered with multiplicities), then we have the formula

det(Lσ(n)) =
s∏

j=1

d∏

i=1

L(χt, n)|t=λi,j
∈ K∞⊗̂Fq

Ks,

where L(χt, n) =
∑

a∈A+ a−na(t).

We study in some more detail the case of n = 1. We write σ = σ1 · · ·σs as above. Since for all a ∈ A+,
Ca(ωσi

) = σi(a) ∈ M , we have the convergent series identity
∑

a∈A+

a−1Ca(ωσ1
) · · ·Ca(ωσs) = Lσ(1)ωσ1

· · ·ωσs ∈ C∞⊗̂Fq
M .

2.2.3. A Simple application of a result of Anglès et al. We now invoke the result of B. Anglès, F. Tavares
Ribeiro and the author [1, Theorem 8.2] (note that in the statement, we can set Z = 1). For completeness,
we mention the following result, which is a very easy consequence of ibid.:

Proposition 7. For every semi-character σ : A+ → M with σ = σ1 · · ·σs as above,

(ωσ1
· · ·ωσs)

−1 expC(ωσ1
· · ·ωσsLσ(1)) = Sσ ∈ A⊗Fq M .

Further, if s ≡ 1 (mod q − 1) the matrix with polynomial entries Sσ is zero. In particular, in this case, if
s > 1 and s ≡ 1 (mod q − 1),

Lσ(1) = π̃(ωσ1
· · ·ωσs)

−1Bσ,

where Bσ is a matrix with polynomial entries of A⊗Fq M .

Hence, Lσ(1) is some kind of Taelman unit, in the sense of [9]. If σ : A → M is an algebra homomorphism,
we have the simple explicit formula

Lσ(1) = ω−1
σ (Idθ − σ(θ))−1π̃

which can be proved in a way very similar to that of [6, §4]. We are going to see, in §5.2.1 how Lσ(n) is
related to certain vectorial Eisenstein series, when n ≡ s (mod q − 1).

2.3. Representations of Γ associated to an algebra representation. Let σ be a d-dimensional rep-
resentation as in (1). We associate to it, canonically, a representation of Γ = GL2(A) in GL2d(K).

We consider the map Γ
ρσ−−→ Mat2d×2d(K), defined by

ρσ

((
a b
c d

))
=

(
σ(a) σ(b)
σ(c) σ(d)

)
.

Then, ρσ determines a representation Γ → GL2d(K). Indeed, σ(a), σ(b) commute each other, for a, b ∈ A.
Furthermore, we have:

Lemma 8. ρσ is irreducible if and only if σ is irreducible.
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Proof. It is easy to see that if σ is reducible, then ρσ is reducible. We suppose now that σ is irreducible.
Then, by Lemma 1, ϑ = σ(θ) has distinct eigenvalues λ1, . . . , λd ∈ K

ac which are conjugate over K, and,

over K
ac, σ splits as a direct sum of one-dimensional representations σ = σ1 ⊕ · · · ⊕ σd with (Kac)d =

V1 ⊕ · · · ⊕ Vd and σi : A → EndKac (Vi) for all i. This shows that ρσ splits as a direct sum ρ1 ⊕ · · · ⊕ ρd
with ρi : Γ → GL(Wi) irreducible, (Kac)2d = W1 ⊕ · · · ⊕ Wd, and Wi

∼= Vi ⊕ Vi. Let us suppose by

contradiction that there exists a proper, non-trivial subvector space V ⊂ K
2d such that ρσ(γ)(V ) ⊂ V for

all γ ∈ Γ. Then, for all i, ρσ(γ)((V ⊗K
ac)∩Wi) ⊂ (V ⊗K

ac)∩Wi. Now, reasoning on the dimension, we
see that there exists i such that (V ⊗K

ac)∩Wi 6= {0}. This vector space cannot have dimension 1 because
the representation ρi is irreducible. Hence, V ⊗ K

ac contains Wi but the Wi’s are all Galois-conjugate
because the Vi’s are so, due to the fact that σ is irreducible. Hence, V ⊗ K

ac contains Wi for all i and
V ⊗K

ac = (Kac)2d which is again impossible. �

Example. We can construct, in particular, the representation ρP = ρσP
: Γ → GL2d(A) which is irreducible

if and only if P is irreducible.

3. Symmetric powers

In the first part of this section, we suppose that q is a prime number; p = q. Let B be an Fp-algebra.
We denote by ρ the tautological representation GL2(B) → GL2(B). We consider the representation

ρr = Symr(ρ) : GL2(B) → GLr+1(B),

where Symr denotes the r-th symmetric power realized in the space of polynomials homogeneous of degree
r + 1 with coefficients in B. If γ = ( a b

c d ) ∈ GL2(B), then

ρr(γ)(X
r−iY i) = (aX + cY )r−i(bX + dY )i, i = 0, . . . , r.

Associated to an integer l ≥ 0 with p-expansion l = l0 + l1p+ · · ·+ lsp
s (0 ≤ li ≤ p− 1), we also consider

the representations

ρIl = ρl0 ⊗ ρ
(1)
l1

⊗ · · · ⊗ ρ
(s)
ls

,

where, for a matrix M with entries in B, M (i) denotes the the matrix obtained from M raising all its entries
to the power pi. The dimension of ρIl is equal to

φp(l) =
∏

i

(li + 1).

Remark 9. We notice the following algorithm to construct the sequence of dimensions (φp(l))l≥1. Define
a0 = (1), a1 = (1, 2, . . . , p) (equal to the concatenation [a0, 2a0, . . . , pa0]) and then, inductively,

an = [an−1, 2an−1, . . . , pan−1].

Since it is clear that for all n, an−1 is a prefix of an, there is a well defined inductive limit a∞ of the
sequence (an)n≥0 which is easily seen to be equal to the sequence (φp(l))l≥1.

Lemma 10. The representation ρIl is isomorphic to a sub-representation of ρl.

Proof. We actually construct the sub-representation explicitly; the Lemma will follow easily. We consider,
for γ ∈ GL2(B), the matrix ρ⋆l (γ) which is the square matrix extracted from

ρl(γ) = (ρi,j)1≤i,j≤l+1

in the following way. If 0 ≤ r ≤ l is such that
(
l

r

)
≡ 0 (mod p), we drop the (r+1)-th row and the (r+1)-th

column. In other words, one uses the row matrix

Dl =

((
l

l

)
, . . . ,

(
l

r

)
, . . . ,

(
l

0

))

and discards rows and columns of ρl according with the vanishing of the corresponding entry of Dl and
what is left precisely defines the matrix ρ⋆l . By Lucas formula, ρ⋆l has dimension φp(l) and it is easy to see,
by induction on the number of digits of the p-expansion of l, that ρ⋆l ∼= ρIl . �
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Example. If l = 1 + p, we have

DI
l = (1, 1, 1, 1) =

((
l

0

)
,

(
l

1

)
,

(
l

p

)
,

(
l

l

))
.

In this case, we find, for γ = ( a b
c d ),

ρ⋆l (γ) =




ap+1 apb abp bp+1

apc apd bpc bpd
acp bcp adp bdp

cp+1 cpd cdp dp+1


 .

3.1. Representations of SL2(Fq′). Let us set q′ = pf with f > 0. Then, B = Fq′ is an Fp-algebra and

we can construct the representations ρl and ρ⋆l ∼= ρIL of the beginning of this section. We denote by ρl the
representation ρIl with B = Fq′ restricted to SL2(B). By using the fact that any non-zero stable subspace
in a representation of a p-group over a vector space has a non-zero fixed vector, it is easy to show and in
fact well known that, for all l ≥ 0, ρl is an irreducible representation if and only if l < q′. By Schur’s
theory, one shows that the representations ρl with l < q′ exhaust all the conjugacy classes of irreducible
representations of SL2(Fq′) over Fac

p . Indeed, counting conjugacy classes of SL2(Fq′) is an easy task and
we know that their number coincides with the number of conjugacy classes of irreducible representations so
it suffices to check that the representations above are mutually inequivalent which is an elementary task.
This explicit description first appears in the paper [2] of Brauer and Nesbitt.

3.2. Some representations of GL2(A). We now set q = pe with e > 0. We also set K := Fp(t) for a
variable t all along this subsection. We consider the algebra homomorphism χt : A → Fq[t] defined by
χt(a) = a(t) = a0 + a1t + · · · + adt

d for a = a0 + a1θ + · · · + adθ
d ∈ A, with coefficients ai ∈ Fq. We

extend our notations by setting, for a matrix M with entries in A, χt(M) the matrix obtained applying χt

entry-wise. We denote by ρt, ρt,l, ρ
I
t,l the representations χt ◦ ρ,χt ◦ ρl, χt ◦ ρI over K-vector spaces with

the appropriate dimension, of the group Γ = GL2(A) when B = A.

Lemma 11. For all l as above, the representation ρIt,l is irreducible.

Proof. It suffices to show that the restriction to SL2(Fp[θ]) ⊂ Γ is irreducible. Let us consider an element

ζ ∈ Fac
q of degree f and let us denote by Fq′ with q′ = pf the subfield Fp(ζ) of F

ac
p . The group homomorphism

evζ : SL2(Fp[θ]) → GL2(Fq′)

defined by the entry-wise evaluation evζ of θ by ζ has image SL2(Fq′). Indeed, the evaluation map evζ :
Fp[θ] → Fq′ is surjective, the image of SL2(Fp[θ]) by evζ clearly contains the subgroup of unipotent upper
and lower matrices with coefficients in Fq′ , which are known to generate SL2(Fq′) (

1).

We set N = φp(l). Let V be a non-zero K-subvector space of KN which is stable under the action of
the restriction of ρIt,l to SL2(Fp[θ]). Let us fix a basis b of V . We choose f big enough so that q′ > l, q and

the image b′ of b in FN
q′ by the evaluation at t = ζ is well defined and non-zero. Then, the Fq′ -span of b′ is

a non-trivial sub-vector space of FN
q′ which is left invariant under the action of ρl, which is impossible. �

Remark 12. Let m be a class of Z/(q − 1)Z and let us consider the representation

ρIt,l,m : Γ → GLφp(l)(K)

defined by

ρIt,l,m := ρIt,l ⊗ det−m .

By Lemma 11, it is irreducible. However, the representations ρIt,l,m do not cover all the irreducible repre-
sentations of Γ in GLN (K) for some N . Due to the fact that we evaluate the functor GLN on a ring which

1If p is odd and q′ 6= 9, to generate SL2(Fq′ ) one only needs two unipotent elements, thanks to Dickson’s Theorem.
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is not a field (here, the ring A), we may well have irreducible representations which, after specialization at
roots of unity, do not deliver irreducible representations of SL2(Fq′).

Remark 13. The group S(p) of p-adic digit permutations of Zp discussed by Goss in [3] acts on the positive
integers l by means of their expansions in base p. This defines an action of the group S(p) on the set of

representations ρIl by ν(ρIl ) = ρIν(l), for ν ∈ S(p). It is easy to show that ν(ρIl ) ∼= ρIl′ if and only if ν(l) = l′.

Remark 14. We are thankful to Pietro Corvaja for having noticed the following property: Let k be a
perfect field. Then, for all γ ∈ SL2(k

ac) there exists a morphism φ : A1 → SL2 defined over k and α ∈ kac,
such that φ(α) = γ.

4. Products of representations

Let t1, . . . , ts be independent variables. We denote by ts the set of variables (t1, . . . , ts) and we set
Ks = Fq(ts). If s = 1, we write t = t1 and we have Ks = K, the field of §3.2. We also consider
l = (l1, . . . , ls) an s-tuple with entries in Z which are ≥ 1.

Theorem 15. the representation

ρIIt,l := ρIt1,l1 ⊗ · · · ⊗ ρIts,ls : Γ → GLφp(l1)···φp(ls)(Ks)

is irreducible.

Proof. We set N = φp(l1) · · · φp(ls). Let us suppose that the statement is false. Then, there exists a Ks-
sub-vector space V 6= {0} ⊂ K

N
s such that for all γ ∈ Γ, ρIIt,l(γ)(V ) ⊂ V . Let us fix a basis v = (v1, . . . , vr) of

V . For integers 0 ≤ k1 ≤ · · · ≤ ks, we denote by ev the map Fq[ts] → Fq[t] which sends a(t1, . . . , ts) ∈ Fq[ts]

to a(tk1 , . . . , tks) ∈ Fq[t]. This map is a ring homomorphism whose kernel is the prime ideal P generated by

the polynomials tj − tq
kj−kj−1

j−1 , j = 2, . . . , s. We consider the associated multiplicative set S = Fq[ts] \ P .

Then, the evaluation map ev extends to S−1Fq[ts] which is Zariski dense in Ks = Fq(ts). We now extend
ev coefficient-wise on every matrix, vector, etc. with entries in S−1Fq[ts]. In particular, if k1 is big enough,
ev(v) is well defined and non-zero.

We can in fact choose k1, . . . , ks so that we also have ev(ρIIt,l) = ρIt,l for some l ≥ 0. Indeed, if we write
the p-expansions li = li,0 + li,1p+ · · ·+ li,rp

r (i = 1, . . . , s) for some r ≥ 0, then we can choose k1, . . . , ks so
that there is no carry over in the p-expansion of the sum l = l1q

k1 + l2q
k2 + · · ·+ lsq

ks ; for such a choice
of k1, . . . , ks, ev(ρ

II
t,l) is thus irreducible.

We now set W to be the K-span of ev(v) (well defined, non-zero, and proper in K
N), where we write

K = Fq(t). Let w be in W . We can write w = a1 ev(v1) + · · ·+ ar ev(vr) for elements ai ∈ K. Then,

ρIt,l(γ)(w) = a1ρ
I
t,l(γ)(ev(v1)) + · · ·+ arρ

I
t,l(γ)(ev(vr)) = a1 ev(ρ

II
t,l(γ)(v1)) + · · ·+ ar ev(ρ

II
t,l(γ)(vr))

is a vector of W , hence contradicting the irreducibility of ρIt,l. �

5. Applications to Poincaré series

Definition 16. We say that a representation Γ
ρ
−→ GLN (K) is normal to the depth L ∈ {1, . . . , N} if for

all γ ∈ H = {( ∗ ∗
0 1 )} ⊂ Γ, we have that ρ(γ) = ( ∗ ∗

0 IL ), where IL denotes the identity matrix of size L.

A representation as above which is normal to the depth N has finite image. If, for some ring R, we have
that M ∈ MatN×N (R) = ( ∗ ∗

X Y ) with Y ∈ MatL×L, we set ML = (X,Y ) ∈ MatL×N(R). In other words,
ML is the matrix constituted by the last L lines of M .

We denote by Ω = C∞ \K∞ the Drinfeld ”upper-half plane” of C∞. We recall the following notation
from [6]. we also choose m a non-negative integer, an integer w ∈ Z>0, and, for δ ∈ Γ and z ∈ Ω, we
set µw,m(δ, z) = det(δ)−mJw

γ (z), where Jγ(z) is the usual ”Drinfeldian” factor of automorphy defined, for
γ = ( a b

c d ) ∈ Γ by Jγ(z) = cz + d. We also denote by u(z) the uniformizer at infinity of Ω, that is, the
function u(z) = 1

eC (z)
with eC the exponential function C∞ → C∞ with lattice period A ⊂ C∞.
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We consider a representation Γ
ρ
−→ GLN (K), normal to the depth L. Following [6, §2.4], we set, for

δ ∈ Γ,

fδ = µw,m(δ, z)−1um(δ(z))ρ(δ)L : Ω → MatL×N (C),

where C := ̂Frac(C∞ ⊗Fq K).
Endowing K with the trivial norm, it is easy to show that the series

Ew,m,ρ(z) =
∑

δ∈H\Γ

fδ,

the sum being over the representatives of the cosets of Γ modulo the left action of H = {( ∗ ∗
0 1 )}, converges

to a holomorphic function

Ew,m,ρ : Ω → MatL×N (C),

in the sense of [7].

Remark 17. For convenience of the reader, we recall here the definition of an holomorphic function Ω → C.
For z ∈ Ω, we set |z|ℑ := infλ∈K∞

|z − λ|, which is non-zero. We also define, on Ω, a Stein-like structure
by considering the affinoids Un = {z ∈ Ω; |z| ≤ qn and |z|ℑ ≥ q−n}, so that Ω = ∪n∈NUn. For n fixed, a
function f : Un → C is holomorphic if it is a uniform limit of a converging sequence of rational functions
Un → C, without poles in Un. A function f : Un → C is holomorphic if, for all n ≥ 0, the restriction of f
to Un is holomorphic.

Following and readapting the proof of [6, Proposition 22], we obtain:

Proposition 18. The following properties hold, for w ∈ Z>0, m ∈ Z≥0 and ρ a representation Γ →
GLN (K):

(1) For all γ ∈ Γ, we have

Ew,m,ρ(γ(z)) = det(γ)−mJγ(z)
wEw,m,ρ(z) · ρ(γ)

−1,

(2) Ew,m,ρ(z) is tempered (2); there exists h ∈ Z such that

u(z)hEw,m,ρ(z) → 0 ∈ MatL×N (C)

as u(z) → 0.

The proposition means that the L columns of the transposed of Ew,m,ρ are vectorial modular forms of
weight w and type m with respect to the contragredient representation of ρ. In the next two subsections,
we analyze two particular classes of representations.

5.1. Vectorial Poincaré series associated to representations ρσ. Let us consider an irreducible,

faithful algebra representation A
σ
−→ Matd×d(K), and the associated representation Γ

ρσ−−→ GLN (K) with
N = 2d, which is easily seen to be normal to the depth L = d.

Proposition 19. The following properties hold, with ρ = ρσ.

(1) If w − 1 6≡ 2m (mod q − 1), then Ew,m,ρ = 0, identically.
(2) If w− 1 ≡ 2m (mod q− 1) and w ≥ (q+1)m+1, then, the rank of the matrix function Ew,m,ρ 6= 0

is d.
(3) In the second case, each row of the matrix function Ew,m,ρ has the entries which are C-linearly

independent.

Proof. Since σ is irreducible and faithful, the matrix ϑ = σ(θ) has distinct conjugate eigenvalues λ1, . . . , λd ∈
K

ac none of which lies in Fac
q . We consider a corresponding basis v1, . . . , vd ∈ (Kac)d of eigenvectors

(considered as column matrices) which are then common eigenvectors for all the elements of the image of
σ. In (Kac)2d = (Kac)N we consider the basis w1, . . . , w2d defined by wi = vi ⊕ 0 and wd+i = 0 ⊕ vi for

2In the sense of [6].
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i = 1, . . . , d. We also denote by M ∈ GLN (Kac) the matrix whose columns are the wi’s for i = 1, . . . , 2d.
then, for δ = ( a b

c d ) ∈ Γ, we have

M · ρ(δ)L = (v1, . . . , vd) ∗ δ(t) := (c(λ1)v1, . . . , c(λd)vd, d(λ1)v1, . . . , d(λd)vd).

Hence, we have, with the same significance of the product ∗, that

M · Ew,m,ρ = (v1, . . . , vd) ∗ Ew,m,χt ,

where Ew,m,χt : Ω → Mat1×2(C) (where C = ̂Frac(C∞ ⊗Fq Fq(t))) is the function defined by

Ew,m,χt (z) =
∑

δ=( a b
c d )∈H\Γ

µw,m(δ, z)−1um(δ(z))(c(t), d(t)).

This matrix function is the deformation of vectorial Poincaré series Ew,m(z, t) considered in [6, Proposition
22] and we know the following:

• If w − 1 6≡ 2m (mod q − 1), then Ew,m,χt is identically zero.
• If w − 1 ≡ 2m (mod q − 1) and w ≥ (q + 1)m+ 1, then all the entries of Ew,m,χt are non-zero.

We now observe that if C is a complete field containing A and if f(t) =
∑

i≥0 fit
i ∈ C[[t]] is a non-zero

formal power series, with fi → 0 for i → ∞ (an element of the Tate algebra of formal series with coefficients
in C in the variable t) then, for λ ∈ K

ac \ Fac
q , we have that f(λ) =

∑
i≥0 fiλ

i converges in the complete

field C
♯ := ̂Frac(C ⊗Fq K

ac) (with K
ac carrying the trivial norm) to a non-zero element.

Since M is invertible, Ew,m,ρ is identically zero if and only if Ew,m,χt is identically zero (we have supposed
that ϑ has no eigenvalues in Fac

q ) and in the case of non-vanishing, the rank is maximal equal to d. Properties
1) and 2) of our proposition hence follow from Proposition 22 of loc. cit.

It remains to show the part 3), but this is a standard statement which follows from Lemma 8. Indeed,
assuming that w− 1 ≡ 2m (mod q− 1) and w ≥ (q+1)m+ 1, let i be an index between 1 and d; we know
that it is non-zero. Let us assume, by contradiction, that the entries of E are linearly dependent; then, the
vector space V whose elements are the vectors v ∈ (C♯)N such that E(z) · v = 0 for all z ∈ Ω, is non-trivial.

Let v be in V . For all γ ∈ Γ, we have

0 = E(γ(z)) · v = det(γ)−mJγ(z)
wE(z) · ρ(γ)−1 · v.

This means that ρ(γ)−1 · v ∈ V so that ρ(γ)(V ) ⊂ V for all γ ∈ Γ. Since ρ is irreducible, we thus have that
V = (C♯)N but E is non-zero, whence a contradiction. �

5.2. Vectorial Poincaré series associated to the representations ρIIt,l. We now consider the settings
of §4 and we return to independent variables ts and to the fieldKs = Fq(ts). We also consider l = (l1, . . . , ls)

an s-tuple with entries in Z which are ≥ 1 and we note that the representation ρ = ρIIt,l of Theorem 15 is
normal to the depth L = 1.

Proposition 20. We have the following properties, for w > 0 and m ≥ 0, and with ρ the above considered
representation.

(1) The function

Ew,m,ρ : Ω → Mat1×N (C),

with N = φp(l1) · · ·φp(ls) is well defined, holomorphic, tempered, and satisfies

Ew,m,ρ(γ(z)) = det(γ)−mJγ(z)
wEw,m,ρ(z) · ρ(γ)

−1, γ ∈ Γ.

(2) If w′ := w − l1 − · · · − ls 6≡ 2m+ 1 (mod q − 1), then Ew,m,ρ ≡ 0.
(3) With w′ defined as above, if w′ ≡ 2m+ 1 and w′ ≥ (q + 1)m+ 1, then Ew,m,ρ 6= 0.
(4) If m = 0 and w′ ≡ 1 (mod q − 1), then Ew,m,ρ 6= 0.
(5) In all cases in which Ew,m,ρ 6= 0, its entries are linearly independent over C.
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Proof. The first two properties and the last one are simple variants of the corresponding parts of Proposition
19 so we skip on the details of the proofs. For the third property, we consider the matrix function Fl : Ω →
MatN×1(C∞) with N = φp(l1) · · ·φp(ls), defined by

Fl(z) = Syml1,0(F )⊗ · · · ⊗ Syml1,r1 (F (r1))⊗ · · · ⊗ Symls,0(F )⊗ · · · ⊗ Symls,rs (F (rs)),

with F (z) =
(
z

1

)
and where we have used the expansions in base p of l1, . . . , ls: li = li,0+ li,1p+ · · ·+ li,rip

ri

with ri 6= 0 for i = 1, . . . , s. Then, as in [6], we note that

(Ew,m,ρ · Fl)ti=θ = Pw′ ,m

the Poincaré series of weight w′ and type m so that we can conclude with [4, Proposition 10.5.2]. The
property 3) is not enough to show the property 4), but we can proceed more directly by noticing that in
this case,

Ew,0,ρ =
∑

δ∈H\Γ

J−w
γ ρ(γ)1.

Hence, if we suppose that u(z) → ∞, then Ew,0,ρ → (0, . . . , 0, 1). �

The transposed of the matrix functions Ew,m,ρ are thus vectorial modular forms of weight w, type m
associated to the representations tρ in the sense of [6].

5.2.1. Eisenstein series. We consider Fq-algebra representations σ1, . . . , σs : A → Matd×d(K). Let σ be
the semi-character σ1 · · ·σs. We set:

Gw,σ(z) =
∑′

(a,b)∈A2

(az + b)−w(σ1(a), σ1(b))⊗ · · · ⊗ (σs(a), σs(b))

(the dash ′ denotes a sum which avoids the couple (0, 0)). This defines a holomorphic function

Gw,σ : Ω → Matds×2ds (C).

Let, on the other side, ρ be the representation ρ : Γ → Mat2ds×2ds (K) defined by ρ = ρσ1
⊗ · · · ⊗ ρσs . The

following lemma is easy to verify.

Lemma 21. We have the identity Gw,σ = Lσ(w)Ew,0,ρ.

The matrix Lσ(w) is the L-value associated to the semi-character σ as defined in §2.2.2. This and
Proposition 7 suggest that the Eisenstein series Gw,σ should be some kind of Taelman units. Of course,
this is quite speculative, because at the moment, we do not have at our disposal any kind of metric over
the spaces of vectorial modular forms that we consider, allowing us to define an appropriate notion of unit
group of Taelman in this setting. However, this seems to suggest the following conjecture.

Conjecture 22. The C-module of the vectorial modular forms of weight one and type 0 associated to
a representation ρσ1

⊗ · · · ⊗ ρσs with σ1, . . . , σs algebra representations A → Matd×d(K) is of rank one,
generated by the Eisenstein series Gw,σ, where σ = σ1 · · ·σs.

6. Other representations of Γ

Let K be a field containing a fixed base field k of positive characteristic (e.g. k = Fq) and let us consider
a group representation ρ : G → GLN (K). The essential dimension (over k) of ρ is the transcendence degree
over k of the field generated by the entries of the image of ρ. If G is finite, then the essential dimension of
ρ is zero. In this paper, we have studied several examples in the case k = Fq and G = Γ. For instance, the
essential dimension of the tautological representation Γ → GL2(A) is one, and the essential dimension of a
representation ρIIt,l as in Theorem 15 is s, the number of variables in ts.

As a conclusion of the present note, we would like to point out that there are irreducible, finite dimen-
sional representations of GL2(k[t]) with infinite essential dimension. Indeed, for any field k, a Theorem of
Nagao (see [5, Theorem 2] and Serre, [8, II.1.6]) asserts that

(2) GL2(k[t]) ∼= GL2(k) ∗B(k) B(k[t]),
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where, for a commutative ring R, B(R) denotes the group of upper triangular matrices with entries in R
with invertible determinant and where ∗B(k) stands for the amalgamated product along B(k). Therefore,
we have the following:

Proposition 23. Any automorphism φ of GL2(k) extends to a group isomorphism between GL2(k[t]) and

the subgroup Φ∞ of GL2(k[x1, x2, . . .]) generated by GL2(k) and the matrices
(
λ xi
0 µ

)
, where x1, x2, . . . are

independent indeterminates over k and λ, µ ∈ k×.

Proof. By (2), we see that the association
(

λ ti

0 µ

)
7→
(
λ xi
0 µ

)
extends to give the above group isomorphism.

�

The above proposition exhibits representations GL2(k[t]) → GL2(K) which have infinite essential di-
mension over Fq.

Remark 24. The group SL2(Z) has uncountably many conjugacy classes of irreducible complex repre-
sentations and their explicit classification is not yet understood. A similar question arises with the group
GL2(A) and its representations in a complete algebraically closed field of characteristic p. The complete
classification for SL2(Z) is however accessible if we impose a bound on the dimension. In [10], Tuba and
Wenzl obtained a complete classification of irreducible representations of the braid group B3 of dimension
≤ 5 yelding a similar result for irreducible complex representations of SL2(Z); it turns out that these fam-
ilies algebraically depend on finitely many parameters (eigenvalues, characters etc.). It would be nice to
have a similar result at hand for GL2(A).
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