
HAL Id: hal-01293563
https://hal.science/hal-01293563v2

Submitted on 14 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelisms and Lie connections
David Blázquez-Sanz, Guy Casale

To cite this version:
David Blázquez-Sanz, Guy Casale. Parallelisms and Lie connections. Symmetry, Integrability and
Geometry : Methods and Applications, 2017, 13 (article 087), �10.3842/SIGMA.2017.086�. �hal-
01293563v2�

https://hal.science/hal-01293563v2
https://hal.archives-ouvertes.fr


PARALLELISMS & LIE CONNECTIONS

DAVID BLÁZQUEZ-SANZ & GUY CASALE

Abstract: The aim of this article is to study rational parallelisms of algebraic varieties by means
of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois
group built from the Picard-Vessiot theory of principal connections.
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Introduction

The aim of this article is to study rational parallelisms of algebraic varieties by means of the
transcendence of their symmetries. Our original motivation is to understand the obstructions to a
third Lie theorem for simply transitive algebraic Lie pseudogroups. This obstruction should appear
in the Galois group of certain connection associated to a Lie algebroid. However, this article is
purely written in the language of regular and rational parallelisms of algebraic varieties and their
symmetries. A theorem of P. Deligne says that any Lie algebra can be realized as a parallelism of
an algebraic variety. This is a sort of algebraic version of the third Lie theorem. The main problem
is the following, given an algebraic variety with a parallelism, how far is it from being an algebraic
group? It is possible to conjugate this parallelism with the canonical parallelism of invariant vector
fields on an algebraic group?

In the analytic context [9], Wang proved that parallelized compact complex manifolds are bi-
holomorphic to quotients of complex Lie groups by discrete cocompact subgroups. This result has
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PARALLELISMS & LIE CONNECTIONS 2

been extended by Winkelmann in [10, 11] for some open complex manifolds. Such a classification
seems impossible in the algebraic category but we prove a criterion to ensure that a parallelized
algebraic variety is isogeneous to an algebraic group. Summarizing, our main ideas are as follows.
Infinitesimal symmetries of a rational parallelism are horizontal sections of a connection that we
call the reciprocal Lie connection. This connection has a Galois group which is represented as a
group of internal automorphisms of a Lie algebra. The obstruction to the algebraic conjugation to
an algebraic group, under some assumptions, appear in the Lie algebra of this Galois group.

In Section 1 we introduce the basic definitions; several examples of parallelisms are given here.
In Section 2 we study the properties of connections on the tangent bundle whose horizontal sections
form a Lie algebra of vector fields. We call them Lie connections. They always come by pairs,
and are characterized by having vanishing curvature and constant torsion (Proposition 1). We see
that each rational parallelism has an attached pair of Lie connections, one of them having trivial
Galois group. We compute the Galois groups of some parallelisms given in examples (Proposition
4), and prove that any algebraic subgroup of SL2(C) appears as the differential Galois group of a
sl2(C)-parallelism (Theorem 1). Section 3 is devoted to the construction of the isogeny between a
g-parallelized variety and an algebraic group G whose Lie algebra is g. In order to do this, we in-
troduce the Darboux-Cartan connection, a G-connection whose horizontal sections are parallelism
conjugations. We prove that if g is centerless then the Darboux-Cartan connection and the recip-
rocal Lie connection have isogenous Galois groups. We prove that the only centerless Lie algebras
g such that there exists a g-parallelism with a trivial Galois group are algebraic Lie algebras. In
particular it allows us to give a criterion for a parallelized variety to be isogenous to an algebraic
group. The vanishing of the Lie algebra of the Galois group of the reciprocal connection is a
necessary and sufficient condition on a parallelized variety to be isogenous to an algebraic group
(Theorem 2). A corollary to this theorem (Corollary 3.3) says that any algebraic variety with
two commuting rational g-parallelisms (with centerless g) is isogenous to an algebraic group. This
can be seen as an algebraic version of Wang’s theorem. Appendix A is devoted to a geometrical
presentation of Picard-Vessiot theory for linear and principal connections. Finally, Appendix B
contains a detailed proof of Deligne’s theorem of the realization of a regular parallelism modeled
over any finite dimensional Lie algebra. This includes also a computation of the Galois group that
turns out to be, for this particular construction, an algebraic torus.

Acknowledgment: The authors thank the ECOS-Nord program C12M01, the ANR program
“IsoGalois”. They would thank “Universidad Nacional de Colombia” and “l’Université de Rennes
1” for supporting this reseach.

1. Parallelisms

Let M be a smooth connected affine variety over C of dimension r. We denote by C[M ] its ring
of regular functions and by C(M) its field of rational functions. Analogously, we denote by X[M ]
and X(M) respectively the Lie algebras of regular and rational vector fields in M , and so on.

Let g be a Lie algebra of dimension r. We fix a basis A1, . . . , Ar of g and the following notation
for the associated structure constants [Ai, Aj ] =

∑
k λ

k
ijAk.

A parallelism of type g of M is a realization of the Lie algebra g as a Lie algebra of pointwise
linearly independent vector fields in M . More precisely:

Definition. A regular parallelism of type g in M is a Lie algebra morphism, ρ : g → X[M ] such
that ρA1(x), . . . , ρAr(x) form a basis of TxM for any point x of M .

Example 1. Let G be a linear algebraic group and g be its Lie algebra of left invariant vector
fields. Then the natural inclusion g ⊂ X[G] is a regular parallelism of G. The Lie algebra grec

of right invariant vector fields is another regular parallelism of the same type. Left invariant and
right invariant vector fields commute, hence, an algebraic group is naturally endowed with a pair
of commuting parallelisms of the same type.

From Example 1 it is clear that any algebraic Lie algebra is realized as a parallelism of some
algebraic variety. On the other hand, Theorem 7 due to P. Deligne and published in [6] ensures
that any Lie algebra is realized as a regular parallelism of an algebraic variety. Analogously, we
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have the definitions of rational and local analytic parallelism. Note that a rational parallelism in
M is a regular parallelism in a Zariski open subset M⋆ ⊆M .

There is an equivalent notion of coparallelism with a dual definition. It is more suitable for
calculations.

Definition. A regular parallelism form (or coparallelism) of type g in M is a g-valued 1-form
ω ∈ Ω1[M ]⊗C g such that:

(1) For any x ∈M , ωx : TxM → g is a linear isomorphism.
(2) If A and B are in g and X, Y are vector fields such that ω(X) = A and ω(Y ) = B then

ω[X,Y ] = [A,B].

Analogously, we define local analytic and rational coparallelism of type g in M . It is clear that
each coparallelism induces a parallelism and reciprocally by the relation ω(ρ(A)) = A. Thus, there
is a natural equivalence between the notions of parallelism and coparallelism. From now on we fix
ρ and ω equivalent parallelism and coparallelism of type g in M .

The Lie algebra structure of g forces ω to satisfy Maurer-Cartan structure equations,

dω +
1

2
[ω, ω] = 0.

Taking components: ω =
∑

i ωiAi we have:

dωi +

r∑

j,k=1

1

2
λijkωj ∧ ωk = 0.

Example 2. Let G be an algebraic group and g be the Lie algebra of left invariant vector fields in
G. Then the structure form ω is a the coparallelism corresponding to the parallelism of Example 1.

Example 3. Let g = 〈A1, A2〉 the 2-dimensional Lie algebra with commutation relation:

[A1, A2] = A1.

The vector fields:

X1 =
∂

∂x
, X2 = x

∂

∂x
+

∂

∂y
,

define a regular parallelism via ρ(Ai) = Xi of C
2. The associated parallelism form is:

ω = A1dx+ (A2 − xA1)dy.

Example 4 (Malgrange). Let g = 〈A1, A2, A3〉 the 3-dimensional Lie algebra with commuting
relations:

[A1, A2] = αA2 [A1, A3] = βA3.

With α, β, non zero complex numbers. In particular, if α/β is not rational then g is a not the Lie
algebra of an algebraic group. The vector fields:

X1 =
∂

∂x
+ αy

∂

∂y
+ βz

∂

∂z
, X2 =

∂

∂y
, X3 =

∂

∂z
,

define a regular parallelism via ρ(Ai) = Xi of C
3. The associated parallelism form is:

ω = (A1 −A2αy −A3βz)dx+A2dy +A3dz.

Definition. Let (M,ω) and (N, θ) be algebraic manifolds with coparallelisms of type g. We say
that they are isogenous if there is an algebraic manifold (P, η) with a coparallelism of type g and
dominant maps f : P →M and g : P → N such that f∗(ω) = g∗(θ) = η.

Clearly, the notion of isogeny of parallelized varieties extends that of isogeny of algebraic groups.

Example 5. Let f : M 99K G be a dominant rational map with values in an algebraic group with
dimCM = dimCG. Then θ = f∗(ω) is a rational parallelism form in M .

Example 6. Let H be a finite subgroup of the algebraic group G and

π : G→M = H \G = {Hg : g ∈ G}

be the quotient by the action of H on the left side. The structure form ω in G is left-invariant and
then it is projectable by π. Then, θ = π∗(ω) is a regular parallelism form in M .
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Example 7. Combining Examples 5 and 6, let H ⊂ G be a finite subgroup and f : M → H \ G
be a dominant rational map between manifolds of the same dimension. Then θ = f∗(π∗(ω)) is a
rational parallelism of M .

Example 8. By application of Example 7 to the case of the multiplicative group we obtain the
logarithmic forms in CP1,

p
q
df
f

where f ∈ C(z). Thus, the logarithmic forms in CP1 are the

rational parallelisms isogenous to the multiplicative group.

Example 9. By application of Example 7 to the case of the additive group we obtain the exact
forms in CP1, dF where F ∈ C(z). Thus, the exact forms in CP1 are the rational parallelisms
isogenous to the additive group.

Example 10. Let H be a subgroup of the algebraic group G, with Lie algebra h ⊂ g. Let us assume
that h admits a supplementary Lie algebra, h′:

g = h⊕ h′ (as vector spaces)

We consider the left quotient M = H \G of G by the action of H and the quotient map π : G→M .
It turns out that h′ is a Lie algebra of vector fields in G projectable by π, and thus π∗|h′ : h′ → X[M ]
gives a parallelism of M that is regular in the open subset

{Hg ∈M : Adjg(h) ∩ h′ = {0}}.

It turns out to be regular in M if H ⊳ G. Examples 3 and 4 are particular cases in wich G is
Aff(2,C) and Aff(3,C) respectively.

Remark 1. We can see also Example 10 as a coparallelism. Let π′ : G → h′ be the projection
given by the vector space decomposition g = h ⊕ h′. Since π′ ◦ ω is left invariant form in G, it is
projectable by π. Hence, there is a form ω′ in M such that π∗ω′ = π′ ◦ ω. This form ω′ is the
corresponding coparallelism.

2. Associated Lie connection

2.1. Reciprocal connections. Let ∇ be a linear connection (rational or regular) on TM . The
reciprocal connection is defined as:

∇rec
~X
~Y = ∇~Y

~X + [ ~X, ~Y ].

From this definition it is clear that the difference ∇−∇rec = Tor∇ is the torsion tensor, Tor∇ =
−Tor∇rec and (∇rec)rec = ∇.

2.2. Connections and parallelisms. Let ω be a coparallelism of type g inM and ρ its equivalent

parallelism. Denote by ~Xi the basis of vector fields in M such that ω( ~Xi) = Ai is a basis of g.

Definition. The associated connection ∇ to the parallelism ω is the only linear connection in M
for wich ω is a ∇-horizontal form.

Clearly ∇ is a flat connection and the basis { ~Xi} is a basis of the space of ∇-horizontal vector
fields. In this basis ∇ has vanishing Christoffel symbols:

∇ ~Xi

~Xj = 0.

Let us compute infinitesimal symmetries of ω. A vector field ~Y is an infinitesimal symmetry of
ω if Lie~Y ω = 0, or equivalenty, if it commutes with all the vector fields of the parallelism:

[ ~Xi, ~Y ] = 0, i = 1, . . . , r.

Lemma 1. Let ∇ be the associated connection to the parallelism ω. Then for any vector field ~Y
and any j = 1, . . . , r,

[ ~Xj, ~Y ] = ∇rec
~Xj

~Y .

Thus, ~Y is an infinitesimal symmetry of ω if and only if it is a horizontal vector field for the
reciprocal connection ∇rec.
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Proof. – A direct computation yields the result. Take ~Y =
∑r

k=1 fk
~Xk, for each j we have:

∇rec
~Xj

~Y =

r∑

k=1

(
( ~Xjfk) ~Xk + fk[ ~Xj , ~Xk]

)
= [ ~Xj , ~Y ].

�

The above considerations also give us the Christoffel symbols for ∇rec in the basis { ~Xi}:

∇rec
~Xi

~Xj = [ ~Xi, ~Xj ] =

r∑

k=1

λkij ~Xk,

i.e. the Christoffel symbols of ∇rec are the structure constants of the Lie algebra g.

Lemma 2. Let ∇ be the associated connection to a coparallelism in M . Then, ∇rec is flat, and
the Lie bracket of two ∇rec-horizontal vector fields is a ∇rec-horizontal vector field.

Proof. – The flatness and the preservation of the Lie bracket by ∇rec are direct consequences
of the Jacobi identity. Let us compute the curvature:

R( ~Xi, ~Xj , ~Xk) = ∇rec
~Xi

(∇rec
~Xj
Xk)−∇rec

~Xj
(∇rec

~Xi

~Xk)−∇rec

[ ~Xi, ~Xj ]
~Xk =

ρ([Ai, [Aj , Ak]]− [Aj , [Ai, Ak]]− [[Ai, Aj ], Ak]) = 0.

Let us compute the Lie bracket for ~Y and ~Z ∇rec-horizontal vector fields:

∇rec
~Xi

[~Y , ~Z] = [ ~Xi, [~Y , ~Z]] = [[ ~Xi, ~Y ], ~Z] + [~Y , [ ~Xi, ~Z]] = [∇rec
~Xi

~Y , ~Z] + [~Y ,∇rec
~Xi

~Z] = 0.

�

Lemma 3. Let x ∈ M be a regular point of the parallelism form ω. The space of germs at x

of horizontal vector fields for ∇rec is a Lie algebra isomorphic to g. Moreover, let ~Y1, . . . , ~Yr be

horizontal vector fields with initial conditions ~Yi(x) = ~Xi(x), then [~Yi, ~Yj ] = −
∑r

k=1 λ
k
ij
~Yk, where

the λi,j are the structure constants of the Lie algebra generated by the ~Xi.

Proof. – We can write the vector fields ~Yi as a linear combination of the basic vector fields
~Xi, ~Yi =

∑r
j=1 aji

~Xj . The matrix (aij) satisfies the differential equation:

~Xkaij = −

r∑

α=1

λikαaαj , aij(x) = δij .

On the other hand, we have [~Yi, ~Yj ](x) =
∑r

k=1 λ̂
k
ij
~Yk(x), for certain unknown structure constants

λ̂kij . Let us check that λ̂kij = λkji = −λkij .

[~Yi, ~Yj ] =




r∑

α=1

aαi ~Xα,

r∑

β=1

aβj ~Xβ


 =

=

r∑

α,β,γ=1

−aαiλ
β
αγaγj ~Xβ +

r∑

α,β,γ=1

aβjλ
α
βγaγi ~Xα +

r∑

α,β,γ=1

aβjaαiλ
γ
αβ
~Xγ .

Taking values at x, we obtain

[~Yi, ~Yj ](x) =

r∑

β=1

−λβij
~Yβ(x) +

r∑

α=1

λαji
~Yα(x) +

r∑

γ=1

λγij
~Yγ(x) =

r∑

α=1

λkji
~Yk(x).

�
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Example 11. Let G be an algebraic group with Lie algebra g. As seen in example 2 the Maurer-
Cartan structure form ω is a coparallelism in G. Let ∇ be the connection associated to this co-
parallelism. There is another canonical coparallelism, the right invariant Maurer-Cartan structure
form ωrec, let us consider i : G→ G the inversion map,

ωrec = −i∗(ω).

As may be expected, the connection associated to the coparallelism ωrec is ∇rec. Right invariant
vector fields in G are infinitesimal symmetries of left invariant vector fields and vice versa. In this
case, the horizontal vector fields of ∇ and ∇rec are regular vector fields.

In general symmetries of a rational parallelism are not rational vector fields as is shown in the
next two examples.

Example 12. Let us consider the Lie algebra g and the coparallelism ω = A1dx+ (A2 − xA1)dy,
of example 3. Let ∇ be its associated connection. In cartesian coordinates, the only non-vanishing
Christoffel symbol of the reciprocal connection is Γ1

21 = −1. A basis of ∇rec-horizontal vector fields
is:

~Y1 = ey
∂

∂x
, ~Y2 =

∂

∂y
.

Note that they coincide with ~X1, ~X2 at the origin point and [~Y1, ~Y2] = −Y1.

Example 13. Let us consider the Lie algebra g and the coparallelism ω = (A1−αxA2−βzA3)dx+
A2dy + A3dz of example 4. Let ∇ be its associated connection. In cartesian coordinates, the only
non-vanishing Christoffel symbols of the reciprocal connection are:

Γ2
11 = −α, Γ3

11 = −β.

A basis of ∇rec-horizontal vector fields is:

~Y1 =
∂

∂x
, ~Y2 = eαx

∂

∂y
, ~Y3 = eβx

∂

∂z
.

Note that they coincide with ~X1, ~X2, ~X3 at the origin point and:

[~Y1, ~Y2] = −αY2, [~Y1, ~Y3] = −β~Y3.

2.3. Lie connections. The connections ∇ and ∇rec associated to a coparallelism ω of type g are
particular cases of the following definition.

Definition. A Lie connection (regular or rational) in M is a flat connection ∇ in TM such that
the Lie bracket of any two horizontal vector fields is a horizontal vector field.

Given a Lie connection ∇ in M , there is a r-dimensional Lie algebra g such that the space of
germs of horizontal vector fields at a regular point x is a Lie algebra isomorphic to g. We will say
that ∇ is a Lie connection of type g. The following result gives several algebraic characterizations
of Lie connections:

Proposition 1. Let ∇ be a linear connection in TM , the following statements are equivalent:

(1) ∇ is a Lie connection.
(2) ∇rec is a Lie connection.
(3) ∇ is flat and has constant torsion, ∇Tor∇ = 0.
(4) ∇ and ∇rec are flat.

.

Proof. – Let us first see (1)⇔(2). Let ∇ be a Lie-connection. Around each point of the domain
of ∇ there is a parallelism, by possibly transcendental vector fields, such that ∇ is its associated
connection. Then, Lemma 2 states (1)⇒(2). Taking into account that (∇rec)rec = ∇ we have the
desired equivalence.

Let us see now that (1)⇔(3). Let us assume that ∇ is a flat connection. For any three vector
fields X,Y, Z in M we have:

(∇XTor∇)(Y, Z) = −Tor∇(∇XY, Z)− Tor∇(Y,∇XZ) +∇XTor∇(Y, Z)
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Let us assume that Y and Z are ∇-horizontal vector fields. Then, we have

Tor∇(Y, Z) = ∇Y Z −∇ZY − [Y, Z] = −[Y, Z]

and the previous equality yields:

(∇XTor∇)(Y, Z) = −∇X [Y, Z].

Thus, we have that ∇Tor∇ vanishes if and only if the Lie bracket of any two ∇-horizontal vector
fields is also ∇-horizontal. This proves (1)⇔(3).

Finally, let us see (1)⇔(4). It is clear that (1) implies (4) so we only need to see (4)⇒(1).

Assume ∇ and ∇rec are flat. Then, locally there exist a basis of ∇-horizontal vector fields { ~Xi}

and {~Yi} of ∇rec-horizontal vector fields. By the definition of the reciprocal connection, we have

that a vector field ~X is ∇-horizontal if and only if it satisfies [ ~X, ~Yi] = 0 for i = 1, . . . , r. By the
Jacobi identity we have:

[[ ~Xi, ~Xj ], ~Yk] = 0.

The Lie brackets [ ~Xi, ~Xj ] are also ∇-horizontal and ∇ is a Lie connection. �

Lemma 4. Let ∇ be a Lie connection in M . Let x be a regular point and ~X1, . . . , ~Xr and ~Y1, . . . , ~Yr
be basis of horizontal vector field germs in M for ∇ and ∇rec respectively with same initial condi-

tions ~Xi(x) = ~Yi(x). Then,

[ ~Xi, ~Xj](x) = −[~Yi, ~Yj ](x).

It follows that ∇ and ∇rec are of the same type g.

Proof. – By definition ∇ is the associated connection of the local analytic parallelism given

by the basis { ~Xi} of horizontal vector fields. Then we apply Lemma 3 and conclude. �

2.4. Some results on Lie connections by means of Picard-Vessiot theory. Definitions and
general results concerning the Picard Vessiot theory of connections are given in Appendix A.

Proposition 2. Let ∇ be a rational Lie connection in TM . The ∇-horizontal vector fields are the
symmetries of a rational parallelism of M if and only if Gal(∇rec) = {1}.

Proof. – This is a consequence of basic properties of the Galois group. It is reduced to the
identity if and only if there exists a basis of rational ∇rec- horizontal sections. These sections give
the desired parallelism. �

Proposition 3. For any Lie connection ∇, Gal(∇) ⊆ Aut(g).

Proof. – Let us choose a point m ∈ M regular for ∇ and a basis A1, . . . , Ar of g. If σ is an

isomorphism from g to TmM then one defines Hk
i,j(σ) to be

[Xi,Xj ]∧X1∧...X̂k...∧Xr

Xk∧X1∧...X̂k...∧Xr

where Xi = σAi.

This function is a regular function of TM ⊗ g∗ and is ∇⊗ 1-invariant, thus H is invariant under
the action of the Galois group, i.e., the Galois group preserves the Lie bracket. �

Proposition 4. Let h′ be a Lie algebra in the Lie algebra of some algebraic group and let G be its
algebraic envelope. Assume the existence of an algebraic subgroup H of G whose Lie algebra h is
supplementary to h′ in g, g = h⊕ h′. Let us consider the following objects:

(a) The quotient map π : G → M where M is the variety of cosets H \ G, and ∇ the Lie
connection associated to the parallelism π∗ : h

′ → X[M ] in M (as given in Example 10).
(b) Its reciprocal Lie connection ∇rec on M .
(c) The Lie algebras of right invariant vector fields:

grec = i∗(g), h′rec = i∗(h
′)

where i is the inverse map on G.

Then, the following statements are true:

(i) h′ is an ideal of g (equivalently h′rec is an ideal of grec).
(ii) h is commutative (equivalently H is virtually abelian).
(iii) The adjoint action of G on g preserves h′rec and thus gives, by restriction, a morphism

Adj: G→ Aut(h′rec).
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(iv) The Galois group of the connection ∇rec is Adj(H) ⊆ Aut(h′rec) and thus virtually abelian.

Proof. – We have that g is the algebraic hull of h′. By Lemma 9 in Appendix B we obtain
[g, g] ⊆ h′. Statement (i) follows straighforwardly. Let us consider A and B in h. Then [A,B]
is in h and also in h′ by the previous argument. Thus, [A,B] = 0 and this finishes the proof of
statement (ii). Let us denote by H ′ the subgroup of G image of spanned by the image of h′ by
the exponential map. For each element h ∈ H ′, the adjoint action of h preserves the Lie algebra
h′. By continuity of the adjoint action in the Zariski topology, we have that that h′ is preserved
by the adjoint action of all elements of G. This proves statement (iii). In order to prove the last
statement in the proposition we have to construct a Picard-Vessiot extension for the connection
∇rec. Let us consider a basis {A1, . . . , Am} of h and let Āi be the projection π∗(Ai). We have an
extension of differential fields:

(C(M), D̄) ⊆ (C(G),D),

where D̄ stands for the C(M)-vector space of derivations spanned by Ā1, . . . , Ām and D stands for
the C(G)-vector space of derivations spanned by A1, . . . , Am (see Appendix A for our conventions
on differential fields).

The projection π is a principal H-bundle. Any rational first integral of {A1, . . . , Am} is constant
along H ′ and thus it is necesariously a complex number. Thus, the above extension has no new
constants and it is strongly normal in the sense of Kolchin with Galois group H . Note that the
differential field automorphism corresponding to an element h ∈ H is the pullback of functions by
the left translation L−1

h , that is, (hf)(g) = f(h−1g).
The horizontal sections for the connection ∇rec are characterized by the differential equations,

(1) [Āi, X ] = 0.

Let us consider {B1, . . . , Bm} a basis of h′rec. From the Zariski closedness of H in G it follows
that there are regular functions fij ∈ C[G] such that Bi =

∑m
j=1 fijAj . Thus let us define B̄i =∑m

j=1 fijĀj . Those objects are vector fields in M with coefficients in C[G], and clearly satisfy

equation (1). Thus, the Picard-Vessiot extension of ∇rec is spanned by the functions fij and it is
embedded, as a differential field, in C(G). Let us denote such extension by L. We have a chain of
extensions:

C(M) ⊆ L ⊆ C(G).

By Galois correspondence, the Galois group of ∇rec is a quotient H/K where K is the subgrop of
elements of H that fix, by left translation, the functions fij . In order to prove statement (iv) we

need to check that this group K is the kernel of the morphism Adj.
Let us note that the adjoint action by g ∈ G of an element B ∈ h′ is given by the left translation,

Adj(g)(B) = Lg∗(B). This transformation makes sense for any derivation in G, and thus we have

an action of G on X(G). Let us take h in the kernel of Adj, thus, Adj(h)(Bj) = Bj for any index j.
Applying the transformation Lh∗ to the expresion of Bi as linear combination of the left invariant
vector fields Aj we obtain Bi =

∑m
j=1 Lh∗(fijAj) =

∑m
j=1 h(fij)Aj . The coefficients of Bi as linear

combination of the Aj are unique, and thus, h(fij) = fij we conclude that h is an automorphism
that fix L. On the other hand, let us take h ∈ H fixing L. Then Lh∗ (

∑
fijAj) =

∑
fijAj thus

Adj(h)(Bi) = Bi and then h is in the kernel of Adj. �

2.5. Some examples of sl2-parallelisms. We will construct some parallelized varieties as sub-
varieties of the arcs space of the affine line A1

C
. This family of example will realized any subgroups

of SL2(C) as the Galois group of the reciprocal Lie connection.

2.5.1. The arcs space of the affine line and its Cartan 1-form. In our special case, the arcs space

of the affine line A
1
C

with affine coordinate z, is the space of all formal power series ẑ =
∑
zi

xi

i! .
It will be denoted by L , its ring of regular functions is C[L ] = C[z, z1, z2, . . .]. For a U ⊂ C one
denotes by LU the set of coordinate ẑ with z ∈ U .

A biholomorphism f : U → V between open sets of C can be lift to a biholomorphism L f :
LU → L V by composition: ẑ → f ◦ ẑ.

Let χ̂ be the Lie algebra of formal vector fields C[[x]] ∂
∂x

. One can build a rational form ω :

TL → χ̂ in following way (see [3, §2]). Let v =
∑
ai

∂
∂zi

be a tangent vector at the formal

coordinate p̂, i.e. an arc in the Zariski open subset {z1 6= 0}. The local coordinate p̂ can be used to
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have local coordinates p, p1, p2 . . ., on L and v can be written v =
∑
bi

∂
∂pi

. The form ω is defined

by ω(v) =
∑
bi

xi

i!
∂
∂x

. This form is rational and is an isomorphism between TpL and χ̂ satisfying

dω = − 1
2 [ω, ω] and (L f)∗ω = ω for any biholomorphism f .

This means that ω provides an action of χ̂ commuting with the lift of biholomorphisms. This
form seems to be a coparallelism but it is not compatible with the natural structure of pro-variety
of L and χ̂ : ω−1( ∂

∂x
) =

∑
i≥1 zi+1

∂
∂zi

is a derivation of degree +1 with respect to the pro-variety
structure of L . The total derivation above will be denoted by E and it gives a differential structure
to the ring C[L ].

2.5.2. The parallelized varieties. Let ν ∈ C(z) be a rational function, f be the rational function
on the arcs space given by

f(z, z1, z2, z3) = 2
z3
z1

− 3

(
z2
z1

)2

+ ν(z)(z1)
2,

and I ⊂ C[L ] be the E-invariant ideal generated by p(z)z21f(z, z1, z2, z3) where p is a minimal
denominator of ν.

Lemma 5. The zero set V of I is a dimension 3 subvariety of L and ω(TV ) = sl2(C) ⊂ χ̂. This
provides a sl2-parallelism on V .

Proof. – One can compute explicitely this parallelism using z, z1 and z2 as étale coordinates on
a Zariski open subset of V . Let us first compute the sl2 action on L . The standard inclusion of sl2
in χ̂ is given by E = ∂

∂x
H = x ∂

∂x
and F = x2 ∂

∂x
. Their actions on L are given by E =

∑
zi+1

∂
∂zi

,

H =
∑
izi

∂
∂zi

and F =
∑
i(i − 1)zi−1

∂
∂zi

. The ideal I is generated by the functions En · f . By
definition E · f ∈ I , a direct computation gives that H · f = 2f ∈ I F · f = 0 ∈ I. The relations in
sl2 give that E · I ⊂ I, H · I ⊂ I and F · I ⊂ I i.e. the vector fields E, H and F are tangent to V .

�

Now parameterizing V by z, z1 and z2 one gets:

E|C3 = z1
∂
∂z

+ z2
∂

∂z1
+
(

−1
2 ν(z)(z1)

3 + 3
2
(z2)

2

z1

)
∂

∂z2
,

H |C3 = z1
∂

∂z1
+ 2z2

∂
∂z2

,

F |C3 = 2z1
∂

∂z2
.

They form a rational sl2-parallelism on C3 depending on the choice of a rational function in one
variable.

2.5.3. Symmetries and the Galois group of the reciprocal connection.

Theorem 1. Any algebraic subgroup of SL2(C) can be realized as the Galois group of the reciprocal
connection of a parallelism of C3.

Proof. – A direct computation shows that z 7→ ϕ(z) is an holomorphic function satisfying

2
ϕ′′′

ϕ′
− 3

(
ϕ′′

ϕ′

)
+ ν(ϕ)(ϕ′)2 = ν(z)

if and only if its prolongation L ϕ : ẑ 7→ ϕ(ẑ) on the space L preserves V and preserves each of
the vector fields E, H and F .

Taking infinitesimal generators of this pseudogroup, one gets for any local analytic solution of
the linear equation

(2) a′′′ + ν(z)a′ +
ν

2
a = 0

a vector field X = a(z) ∂
∂z

whose prolongation on L is

LX = a(z)
∂

∂z
+ a′(z)z1

∂

∂z1
+
(
a′′(z)(z1)

2 + a′(z)z2
) ∂

∂z2
+ . . .
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The equation (2) ensure that LX is tangent to V . The invariance of ω, (LX)∗ω = 0, ensure that
LX commute with the sl2-parallelism given above. This means that for any solution a of (2) the
vector field

a(z)
∂

∂z
+ a′(z)z1

∂

∂z1
+
(
a′′(z)(z1)

2 + a′(z)z2
) ∂

∂z2
commute with E|C3 , H |C3 and F |C3 .

Then the linear differential system of flat section for the reciprocal connection reduces to the
linear equation (2). This equation is the second symmetric power of y′′ = ν(z)y. By [4] every
algebraic subgroup of SL2(C) can be realized as the Galois group of such an equation. �

3. Darboux-Cartan connections

3.1. Connection of parallelism conjugations. Let ω be a rational coparallelism in M of type
g and G an algebraic group with Lie algebra of left invariant vector fields g and Maurer-Cartan
form θ. Denote by M⋆ the open subset of M in wich ω is regular. We will study the contruction
of conjugating maps between the parallelisms (M,ω) and (G, θ).

Let us consider the trivial principal bundle π : P = G ×M → M . In this bundle we consider
the action of G by right translations (g, x) ∗ g′ = (gg′, x). Let Θ be g-valued form Θ = θ−ω in P .

Definition. The kernel of Θ is a rational flat invariant connection in the principal bundle
π : P → M . We call it the Darboux-Cartan connection of parallelism conjugations from (M,ω)
to (G, θ).

The equation Θ = 0 defines a foliation on P transversal to the fibers at regular points of ω. The
leaves of the foliation are the graphs of analytic parallelism conjugations from (M,ω) to (G, θ).
By means of differential Galois theory the Darboux-Cartan connection has a Galois group Gal(Θ)
with Lie algebra gal(Θ). The following facts are direct consequences of the definition of the Galois
group:

(a) There is a regular covering map c : (M⋆, ω) → (U, θ) with U an open subset of G, and
c∗(θ) = ω if and only if Gal(Θ) = {1}.

(b) There is a regular covering map c : (M⋆, ω) → (U, q∗θ) with U an open subset of G/H , H
a group of finite index, and c∗(q∗θ|U ) = ω if and only if gal(Θ) = {0}.

In any case, the necessary and sufficient condition for (M,ω) and (G, θ) to be isogenous parallelized
varieties is that gal(Θ) = {0}.

3.2. Darboux-Cartan connection and Picard-Vessiot. Note that the coparallelism ω gives a
rational trivialization of TM as the trivial bundle of fiber g. In TM we have defined the connection
∇rec whose horizontal vector fields are the symmetries of the parallelism. On the other hand, G acts
in g by means of the adjoint action. The Cartan-Darboux connection induces then a connection
∇adj in the associated trivial bundle g×M of fiber g.

Proposition 5. The map,

ω̃ : (TM,∇rec) → (g×M,∇adj), Xx 7→ (ωx(Xx), x),

is a birational conjugation of the linear connections ∇rec and ∇adj.

Proof. – It is clear that the map ω̃ is birational. Let us consider {A1, . . . , Am} a basis of g.
Let ρ : g → X(M) be the parallelism associated to the parallelism ω and let us define Xi = ρ(Ai).
Then {X1, . . . , Xn} is a rational frame in M and the map ω̃ conjugates the vector field Xi with
the constant section Ai of the trivial bundle of fiber g. By definition of the reciprocal connection,

∇rec
Xi
Xj = [Xi, Xj ].

On the other hand, by definition of the adjoint action and application of the covariant derivative
as in equation (3) of appendix section A.7 we obtain:

∇adj
Xi
Aj = [Ai, Aj ].

Therefore we have that ω̃ is a rational morphism of linear connections that conjugates ∇rec with
∇adj. �
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The following facts follow directly from Proposition 5, and basic properties of the Galois group
(see section A.7).

Corollary. Let us consider the adjoint action Adj : G → GL(g) and its derivative adj : g → End(g).
The following facts hold:

(a) Gal(∇rec) ⊆ Int(g).
(b) Gal(∇rec) = Adj(Gal(Θ)).
(c) gal(∇rec) = adj(gal(Θ)).
(d) If g is centerless then gal(∇rec) is isomorphic to gal(Θ).
(e) Assume g is centerless. Then the necessary and sufficient condition for (M,ω) and (G, θ)

to be isogenous is that gal(∇rec) = {0}.

3.3. Algebraic Lie algebras. Let us consider (M,ω) a rational coparallelism of type g with g a
centerless Lie algebra. We do not assume a priori that g is an algebraic Lie algebra. The connection
∇rec is, as said in proposition 5, conjugated to the connection in g ×M induced by the adjoint
action. Note that, in order to define this connection we do not need the group operation but just
the Lie bracket in g. We have an exact sequence,

0 → g′ → g → gab → 0

where g′ is the derived algebra [g, g]. Since the Galois group acts by internal automorphisms, we
have that g′ × M is stabilized by the connection ∇rec and thus we have an exact sequence of
connections:

0 → (g′ ×M,∇′) → (g×M,∇rec) → (gab ×M,∇ab) → 0.

Lemma 6. The Galois group of ∇ab is the identity then ∇ab has a basis of rational horizontal
sections.

Proof. – By definition, the action of g in gab vanishes. Thus, the constant functions M → gab

are rational horizontal sections. �

Lemma 7. Let ω be a rational coparallelism of M of type g with g a centerless Lie algebra. If
gal(∇rec) = {0} then g is an algebraic Lie algebra.

Proof. – Let E be an algebraic envelope of g and e its Lie algebra. We may assume that
E is also centerless. Let A1, . . . , Ar be a basis of g, for i = 1, . . . , r, Xi = ω−1(Ai). Complete
with B1, . . . , Bp in such way that A1, . . . , Ar, B1, . . . , Bp is a basis of e. We consider in E ×M the
distribution spanned by the vector fields Ai +Xi. This is a E-principal connection called ∇.

Let ∇ be the induced connection via the adjoint representation on e×M then

(1) ∇ preserves g and ∇|g = ∇rec. By hypothesis gal(∇|g) = {0}.

(2) If ∇̃ is the quotient connection on e/g then gal(∇̃) = {0}.

If ϕ ∈ gal(∇) then for any X ∈ g, [X,Bi] ∈ g thus 0 = ϕ[X,Bi] = [X,ϕBi] and ϕBi commute with
g. From the second point above ϕB ∈ g. By hypothesis ϕBi = 0 and gal(∇) = {0} The projection
on E of an algebraic leaf of ∇ containing the point gives an algebraic leaf for the foliation of E by
the left translation by g. This proves the lemma. �

Theorem 2. Let g be a centerless Lie algebra. An algebraic variety (M,ω) with a rational paral-
lelism of type g is isogenous to an algebraic group if and only if gal(∇rec) = {0}.

Proof. – It follows directly from Lemma 7 and Corollary 3.2. �

Corollary. Let g be a centerless Lie algebra. Any algebraic variety endowed with a pair of commut-
ing rational parallelisms of type g is isogenous to an algebraic group endowed with its two canonical
parallelisms of left and right invariant vector fields.

Proof. – Just note that to have a pair of commuting parallelism is a more restrictive condition
than to have a parallelism with vanishing Lie algebra of the Galois group of its reciprocal connection.

�
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This result can be seen as an algebraic version of Wang result in [9]. It gives the classification of
algebraic varieties endowed with pairs of commuting parallelisms. The hypothesis of centerless Lie
algebra is not superfluous, note that the result clearly does not hold for abelian Lie algebras. There
are rational 1-forms in CP1 that are not exact (isogenous to (C, dz)) nor logaritmic (isogenous to
(C∗, d log(z))).

Remark 2. In virtue of Theorem 3.3, if g is a non-algebraic centerless Lie algebra, there is no
algebraic variety endowed with a pair of regular commuting parallelisms of type g. This limits the
possible generalizations of Theorem 7.

Appendix A. Picard-Vessiot theory of a principal connection

In this previous reasoning we have used the concept of differential Galois group of a connection.
Here we present a dictionary between invariant connection and strongly normal differential field
extension (in the sense of Kolchin). In our setting a differential field is a pair (K,D) where K
is a finitely generated field over C and D is a K vector space of derivations of K stable by Lie
bracket. The dimension of D is called the rank of the differential field. Note that we can adapt
this notion easily to that of a finite number of commuting derivations by taking a suitable basis of
D. However we prefer to consider the whole space of derivations. With our definition a differential
field extension (K,D) → (K′,D′) is a field extension K ⊂ K′ such that each element of D extends
to a unique element of D′, and such extensions span the space D′ as K′-vector space.

A.1. Differential field extensions and foliated varieties. First, let us see that there is a
natural dictionary between finitely generated differential fields over C and irreducible foliated
varieties over C modulo birational equivalence. Let (M,F) ba an irreducible foliated variety of
dimension n. The distribution TF ⊂ TM is of rank r ≤ n. We denote by XF the space rational
vector fields in TF ; it is a C(M)-Lie algebra of dimension r. Hence, the pair (C(M),XF) is a
differential field. The field of constants is the field C(M)F of rational first integrals of the foliation.

Let (M,F) and (M ′,F ′) foliated varieties. A regular (rational) map φ : (M ′,F ′) 99K (M,F) is
a regular (rational) morphism of foliated varieties if dφ induces an isomorphism between TxF

′ and
Tφ(x)F for (generic values of) x ∈M ′. It is clear that F ′ and F have the same rank.

A differential field extension, correspond here to a dominant rational map of irreducible foliated
varieties φ : (M ′,F ′) 99K (M,F). It induces the extension φ∗ : (C(M),XF ) → (C(M ′),XF ′) by
composition with φ.

Example 14. Let F the foliation of C2 defined by {dy−ydx = 0}. It correspond to the differential
field

(
C(x, ex),

〈
d
dx

〉)
.

Remark 3. Throughout this appendix “connection”’ means “flat connection”.

A.2. Invariant F-connections. Let us consider from now a foliated manifold of dimension n
and rank r without rational first integrals (M,F), an algebraic group G and a principal irreducible
G-bundle π : P →M . A G-invariant connection in the direction of F is a foliation F ′ of rank r in
P such that:

(a) π : (P,F ′) → (M,F) is dominant regular map of foliated varieties.
(b) The foliation F ′ is invariant by the action of G in P .

With this definition (C(M),XF) → (C(P ),XF ′) is a differential field extension. Also, each element
g ∈ G induces a differential field automorphism of (C(P ),XF ′) that fixes (C(M),XF ) by setting
(g · f)(x) = f(x · g).

Let g be the Lie algebra of G. There is a way of defining a G-equivariant form ΘF ′ with values
in g, and defined in dπ−1(TF) in such way that TF ′ is the kernel of ΘF ′. First, there is a canonical
form Θ0 defined in ker(dπ) that sends each vertical vector Xp ∈ ker dpπ ⊂ TpP to the element g

that verifies,
d

dε

∣∣∣∣
ε=0

p · exp εA = Xp.

This form is G-equivariant in the sense that R∗
g(Θ0) = Adjg−1 ◦ ω. We have a decomposition of

the vector bundle dπ−1(TF) = ker(dπ)⊕ TF ′. This decomposition allows to extend Θ0 to a form
ΘF ′ defined for vectors in dπ−1(TF) whose kernel is precisely TF . We call horizontal frames to
those sections s of π such that s∗(ΘF ) = 0.
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A.3. Picard-Vessiot bundle. We say that the principal G-bundle with invariant F -connection
π : (P,F ′) → (M,F) is a Picard-Vessiot bundle if there are no rational first integrals of F ′. The
notion of Picard-Vessiot bundle correspond exactly to that of primitive extension of Kolchin. In
such case G is the group of differential field automorphisms of (C(P ),XF ′) that fix (C(M),XF )
and (C(M),XF ) → (C(P ),XF ′) is a strongly normal extension. Moreover, any strongly normal
extension with constant field C can be constructed in this way (see [5], Ch. VI §10 Theorem 9).

One of the most remarkable properties of strongly normal extensions is the Galois correspondence
(from [5], Ch. VI §4).

Theorem 3 (Galois correspondence). Assume that (C(M),XF ) → (C(P ),XF ′) is strongly nor-
mal with group of automorphisms G. Then, there is a bijection between the set of intermediate
differential field extensions and algebraic subgroups of G. To each intermediate differential field
extension, it corresponds the group of automorphisms that fix such an extension point-wise. To
each subgroup of automorphisms it corresponds its subfield of fixed elements.

A.4. The Picard-Vessiot bundle of an invariant F-connection. Let us consider an irre-
ducible principal G-bundle π : (P,F ′) → (M,F) endowed of a invariant F -connection F ′. We
assume that F has no rational first integrals. A result of Bonnet (see [1], Theorem 1.1) ensures
that for a very generic point in M the leaf passing through such point is Zariski dense in M . Let
us consider such a Zariski-dense leaf L of F in M . Let us consider any leaf L′ of F ′ in P that
projects by π onto L. Its Zariski closure is unique in the following sense:

Theorem 4. Let L′ and L′′ two leaves of F ′ whose projections by π are Zariski dense in M . Then,
there exist an element g ∈ G such that L′ · g = L′′.

Proof. – By construction, there is some x ∈ π(L′)∩ π(L′′). Let us consider p ∈ π−1({x})∩L′

and q ∈ π−1({x}) ∩ L′′. Since p and q are in the same fiber, there is a unique element g ∈ G such
that p · g = q. By the G-invariance of the connection L′ · g is the leaf of F ′ that passes through q.
The set L′′ is, by construction, union of leaves of F ′ and contains the point q. Thus, L′ · g ⊆ L′′,
and L′ · g ⊆ L′′. Now, by exchanging the roles of L′ and L′′, we prove that there is an element h
such that L′′ · h ⊆ L′. It follows h = g−1 and it finishes the proof. �

Let L be the Zariski closure of L′. Let us consider the algebraic subgroup,

H = {g ∈ G : L · g = L}

stabilizing L. The projection π restricted to L is dominant, thus there is a Zariski open subset
M⋆ such that π⋆ : L⋆ → M⋆ is surjective. Let us call F⋆ the restriction of F ′ to L⋆. It follows
that the bundle: π⋆ : (L⋆,F⋆) → (M⋆,F|M⋆) is a principal bundle of structure group H called
Picard-Vessiot bundle. The differential field extension (C(M),XF) → (C(L⋆),XF⋆) is the so-called
Picard-Vessiot extension associated to the connection. The algebraic group H is the differential
Galois group of the connection.

A.5. Split of a connection. Let us consider a pair of morphisms of foliated varieties,

φj : (Mj ,Fj) → (M,F), for j = 1, 2.

Then, we can define inM1×MM2 a foliation F1×FF2 in the following way. A vectorX = (X1, X2)
is in T (F1 ×F F2) if and only if dφ1(X1) = dφ2(X2) ∈ TF . Let us consider (P,F ′) a principal F
connection. Note that the projection:

π1 : (M1 ×M P,F1 ×F F ′) → (M1,F1)

is a principal G-bundle endowed of a F1-connection. We call this bundle the pullback of (P,F ′)
by φ1.

We also may consider the trivial G-invariant connection F0 in the trivial principal G-bundle,

π0 : (M ×G,F0) → (M,F),

for what the leaves of F0 are of the form (L, g) where L is a leaf of F and g a fixed element of
G. We say that a the G-invariant connection (P,F ′) is rationally trivial if there is a birational
G-equivariant isomorphism of foliated manifolds between (P,F) and (M ×G,F0).
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Invariant connections are always trivialized after pullback: there is a universal G-equivariant
isomorphism defined over P :

(P ×G,F ′ ×F F0) → (P ×M P,F ′ ×F F ′), (p, g) 7→ (p, p · g),

that trivializes any G-invariant connection. However the differential field (C(P ),XF ′) may have
new constant elements. To avoid this, we replace the pullback to P by a pullback to the Picard-
Vessiot bundle L⋆:

(L⋆ ×G,F⋆ ×F F0) → (L⋆ ×M P,F⋆ ×F F ′), (p, g) 7→ (p, p · g).

The Picard-Vessiot bundle has some minimality property. It is the smallest bundle on M that
trivializes the connection. We have the following result.

Theorem 5. Let us consider π : (P,F ′) → (M,F) be as above, π⋆ : (L⋆,F⋆) → (M,F) the Picard-

Vessiot bundle, and and φ : (M̃, F̃) → (M,F) any dominant rational map of foliated varieties such
that:

(a) F̃ has no rational first integrals in M̃

(b) The pullback (M̃ ×M P, F̃ ×F F ′) → (M̃, F̃) is rationally trivial.

There is a dominant rational map of foliated varieties ψ : M̃ 99K L⋆ such that π⋆ ◦ ψ = φ in their
common domain.

Proof. – Let us take τ : M̃ ×G 99K M̃ ×M P a birational trivialization, π2 : M̃ ×M P → P be
the projection in the second factor, and ι : M̃ → M̃×G the inclusion p 7→ (p, e). Then, ψ̃ = π2◦τ ◦ι

is a rational map from M̃ to P whose differential sends T F̃ to TF . By Bonnet theorem, M̃ is
the Zariski closure of a leaf of F̃ that projects by φ into a Zariski dense leaf of F . From this, ψ̃
contains a dense leaf of F ′ in P . By applying a suitable right translation in P and uniqueness
Theorem 4, we conclude. �

A.6. Linear connections. Let (M,F) be as above, of dimension n and rank r. Let ξ : E → M
be a vector bundle of rank k. A linear integrable F -connection is a foliation FE of rank r which is
compatible with the structure of vector bundle in the following sense: the point-wise addition of
two leaves of any dilation of a leaf is also a leaf. This can also be stated in terms of a covariant
derivative operator ∇ wich is defined only in the direction of F . First, the kernel of dξ is naturally
projected onto E itself

vert0 : ker(dξ) → E, Xv 7→ w,

where d
dε

∣∣
ε=0

v + εw = Xv. Then, the decomposition of dξ−1(TF) as ker(dξ) ⊕ TFE allows us to
extend vert0 to a projection

vert: dξ−1(TF) → E.

Thus, we define for each section s its covariant derivative ∇s = s∗(vert ◦ ds|TF ). This is a 1-form
en M defined only for vectors in TF . This covariant derivative has the desired properties, it is
additive and satisfies the Leibniz formula:

∇(fs) = df |TF ⊗ s+ f∇s.

In general we write for X a vector in TF , ∇Xs for the contraction of ∇s with the vector X . It is
an element of E over the same base point in M that the vector X . We call horizontal sections to
those sections s of ξ such that ∇s = 0.

Let π : R1(E) → M be the bundle of linear frames in E. It is a principal linear GLk(C)-
bundle. The foliation FE induces a foliation F ′ in R1(E) that is a G-invariant F -connection.
Let us consider the Picard-Vessiot bundle, (L⋆,F⋆). The uniqueness theorem 5 on the Picard-
Vessiot bundle, can be rephrased algebraically in the following way. The Picard-Vessiot extension
(C(M),XF) → (C(L⋆),XF⋆) is characterized by the following facts (cf. [8] Section 1.3):

(a) There are no new constants, C(L⋆) = C.
(b) It is spanned, as a field extension of C(M), by the coefficients of a fundamental matrix of

solutions of the differential equation of the horizontal sections.
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A.7. Associated connections. Let π : (P,F ′) → (M,F) be as a G-invariant connection, as be-
fore, where F is a foliation in M without rational first integrals. Let us consider φ : G → GL(V )
a finite dimensional linear representation of G. It is well known that the associated bundle
πP : VP →M ,

VP = P ×G V = (P × V )/G (p · g, v) ∼ (p, g · v),

is a vector bundle with fiber V . Here we represent the action of G in V by the same operation
symbol than before. The G-invariant connection F ′ rises to a foliation in P × G and then it is
projected to a foliation FV in VP . In this way, the projection

πP : (VP ,FV ) → (M,F),

turns out to be a linear F -connection. It is called the Lie-Vessiot connection induced in the
associated bundle. The Galois group of the principal and the associated Lie-Vessiot connection are
linked in the following way.

Theorem 6. Let H ⊂ G be the Galois group of the principal connection F ′. Then, the Galois
group of the associated Lie-Vessiot connection FV is φ(H) ⊆ GL(V ).

Proof. – Let us consider the bundle of frames R1(VP ), with its induced invariant connection
F ′′. Let us fix a basis {v1, . . . , vr} of V . Then, we have a map,

π̃ : P → R1(VP ), p 7→ ([p, v1], . . . [p, vr]),

where the pair [p, v] represents the class of the pair (p, v) ∈ P × V . By construction, π̃ sends TF ′

to TF ′′. It implies that, if L⋆ is a Picard-Vessiot bundle for F ′ then π̃(L⋆) is a Picard-Vessiot
bundle for F ′′. Second, if L⋆ is a principal H bundle, then π̃(L⋆) is a principal H/K bundle where
K is the subgroup of H that stabilizes the basis {v1, . . . , vr}. �

Let us dicuss how the covariant derivative operator in ∇ is defined in terms of ΘF ′ and the
action of G in V . Let us denote by φ′ : g → gl(V ) the induced Lie algebra morphism. Let s be
a local section of ξ. Let us consider the canonical proyection π̄ : P × V → V (P ). This turns out
to be also a principal bundle, here the action on pairs is (p, v) · g = (p · g, g−1 · v). Now we can
take any section r of this bundle, and define s̃ = r ◦ s. As r takes values in a cartesian product,
we obtain s̃ = (s1, s2) where s1 is a section of π and s2 is a function with values in V . Finally we
obtain:

(3) ∇s = ds2|TF − φ′(s∗1(ΘF ′))(s2).

A calculation shows that it does not depend of the choice of r and it is the covariant derivative
operator associated to FV . In particular if s2 is already an horizontal frame, then the covariant
differential is given by the first term dss|TF .

Appendix B. Deligne’s realization of Lie algebra

The proof of the existence of a regular parallelism for any complex Lie algebra g is written in
a set of two letters from P. Deligne to B. Malgrange (dated from November of 2005 and February
of 2010 respectively) that are published verbatim in [6]. We reproduce here the proof with some
extra details.

Theorem 7 (Deligne). Given any complex Lie algebra g there exist an algebraic variety endowed
with a regular parallelism of type g.

Lemma 8. Let T be an algebraic torus acting regularly by automophisms in some algebraic group
H, and let t be the Lie algebra of T . Let us consider the semidirect product:

t⋉H, (t, h)(t′, h′) = (t+ t′, (exp(t′) · h)h′)

as an algebraic variety and analytic Lie group. Its left invariant vector fields form a regular paral-
lelism of t⋉H. The Galois group of this parallelism is a torus.
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Proof. – Let us denote by α the action of T inH and α′ : t 7→ X[H ] the Lie algebra isomorphism
given by the infinitesimal generators

(α′X)h =
d

dε

∣∣∣∣
ε=0

αexp(εt)(h).

Let X be an invariant vector field in t. Let us compute the left invariant vector field in t ⋉ H
whose value at the identity is (X0, 0). In order to perform the computation we write the vector as
an infinitesimally near point to (0, e).

L(t,h)(0 + εX0, e) = (t+ εXt, αexp(εX)(h)) = (t+ εXt, h+ ε(α′X)h)

And thus dL(t,h)(X0, 0) = (Xt, (α
′X)h). We conclude that (X,α′X) ∈ X[t⋉H ] is the left invariant

vector field whose value at (0, e). Let us consider now Y an left invariant vector field in H . Let us
compute, as before, the left invariant vector field whose value at (t, h) is (0, Yh).

L(t,h)(0, e+ εYe) = (t, Lh(e + εYe)) = (t, h+ εYh)

And thus (0, Y ) is the left invariant vector field whose value at (0, e) is (0, Ye). These vector fields
of the form (X,α′X) and (0, Y ) are regular and span the Lie algebra of left invariant vector fields
in t⋉H . Hence, they form a regular parallelism.

In order to compute the Galois group of the parallelism, let us compute its reciprocal parallelism.
It is formed by the right invariant vector fields in the analytic Lie group t⋉H . A similar compu-
tation proves that if X is an invariant vector field in t then (X, 0) is right invariant in t⋉H . For
each element τ ∈ T , ατ is a group automorphism of H . Thus, it induces a derived automorphism
ατ∗ of the Lie algebra of regular vector fields in H . Let Y be now a right invariant vector field in
H . Let us compute the right invariant vector field Z in t⋉H whose value at (0, e) is (0, Ye):

R(t,h)(0, e+ εYe) = (t, αexp(t)(e + εYe)h) = (t, h+ ε(αexp(t)∗Y )h)

and , Zt,h = (0, (αexp(t)∗Y )h). Those analytic vector fields depend on the exponential function
in a torus thus we can conclude, by a standard argument of differential Galois theory, that the
associated differential Galois group is a torus. �

Let us consider g an arbitrary, non algebraic, finite dimensional complex Lie algebra. We consider
an embedding of g in the Lie algebra of general linear group and E the algebraic hull of the Lie
algebra. E is a connected linear algebraic group, whose Lie algebra e contains g.

Lemma 9 (Also in [2] Proposition 1). With the above definitions and notation [e, e] = [g, g].

Proof. – Let H be the group of matrices that stabilizes g and acts trivially on g/[g, g]. Its
Lie algebra h contains g and thus H ⊇ E and h ⊇ e. By definition of H we have [h, g] = [g, g],
therefore [e, g] ⊆ [g, g]. Let us now consider the group H1 that stabilizes e and g and that acts
trivially in e/[g, g]. This is again an algebraic group contaning E, and its Lie algebra h1 satisfies
[h1, e] ⊆ [g, g]. Taking into account e ⊆ h1 we have [e, e] ⊆ [g, g]. The other inclusion is trivial. �

Because of Lemma 9 the abelianized Lie algebra gab = g/[g, g] is a subspace of eab = e/[e, e].
Moreover, if we consider the quotient map, π : e → eab, then g = π−1(gab).

Let us consider an algebraic Levy decomposition E ≃ L ⋉ U (see [7], Chapter 6). Here, L
is reductive and U is the unipotent radical, consisting in all the unipotent elements of E. The
semidirect product structure is produced by an ation of L in U , so that, (l1, u1)(l2, u2) = (l1l2, (l2 ·
u1)u2).

Since L is reductive, its commutator subgroup L′ is semisimple. Let T be the center of L, which
is a torus, the map:

ϕ : T × L′ → L, (t, l) 7→ tl,

is an isogeny. The isogeny defines an action of T × L′ in U by (t, l) · u = tl · u. We have found an
isogeny,

(T × L′)⋉ U → E

The Lie algebra u of U is a nilpotent Lie algebra, so that the exponential map exp: u → U
is regular and bijective. In general, if V is an abelian quotient of U with Lie algebra v then the
exponential map conjugates the addition law in v with the group law in V .
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Lemma 10. With the above definitions and notation, let ū be the biggest quotient of uab in which
L acts by the identity. Whe have a Lie algebra isomorphism eab ≃ t× ū.

Proof. – Let us compute eab. We compute the commutators e by means of the isomorphism
e ≃ (t× l′)⋉ u. We obtain,

[(t1, l1, u1), (t2, l2, u2)] = (0, [l1, l2], a(t2, l2)u1 + [u1, u2]),

where a represents the derivative at (e, e) of the action of L in U . From this be obtain that [e, e] is
spanned by ({0}×l′)⋉{0}, {0}⋉[u, u] and {0}×〈a(l)u〉. Taking into account that ū/ (〈a(l)u〉+ [u, u])
is the biggest quotient of uab in which L acts trivially, we obtain the result of the lemma. �

Let t be the Lie algebra of T . Its exponential map is a analytic group morphism, and thus we
may consider the analytic action of t × L′ in U given by (t, l) · u = (exp(t)l) · u. Let Ẽ be the
algebraic variety and anaytic Lie group (t× L′)⋉ U . By application of Lemma 8 and taking into

account that Ẽ ≃ t⋉H where H is the compositum group L′ · U we have that the left invariant
vector fields in Ẽ are regular. Let us consider the projection,

π1 : Ẽ → eab = t× ū, (t, l, u) 7→ (t, [log(u)]),

this projection is algebraic by construction, and also a morphism of Lie groups. By Lemmas 9 and
10, gab is a vector subspace of the image. Then, let us take G̃ the fiber π−1

1 (gab). It is an algebraic

submanifold of Ẽ and an analytic Lie group. The derivative at the identity of π1 is precisely the
abelianization π and it follows that the Lie algebra of G̃ is precisely g. Finally G̃ is an algebraic
variety with a regular g-parallelism. This finishes the proof of Theorem 7.

Remark 4. The right invariant vector fields in G̃ are constructed as in Lemma 8 by means of
the exponential function in the torus. Hence, Galois groups of the parallelisms obtained via this
construction are allways tori.
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