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The rational design of synthetic cell populations with prescribed behaviours is a long-standing goal
of synthetic biology, with the potential to greatly accelerate the development of biotechnological
applications in areas ranging from medical research to energy production. Achieving this goal
requires well-characterized components, modular implementation strategies, simulation across
temporal and spatial scales and automatic compilation of high-level designs to low-level genetic
parts that function reliably inside cells. Many of these steps are incomplete or only partially under-
stood, and methods for integrating them within a common design framework have yet to be
developed. Here, we address these challenges by developing a prototype framework for designing
synthetic cells with prescribed population dynamics. We extend the genetic engineering of cells
(GEC) language, originally developed for programming intracellular dynamics, with cell
population factors such as cell growth, division and dormancy, together with spatio-temporal
simulation methods. As a case study, we use our framework to design synthetic cells with
predator–prey interactions that, when simulated, produce complex spatio-temporal behaviours
such as travelling waves and spatio-temporal chaos. An analysis of our design reveals that environ-
mental factors such as density-dependent dormancyand reduced extracellular space destabilize the
population dynamics and increase the range of genetic variants for which complex spatio-temporal
behaviours are possible. Our findings highlight the importance of considering such factors during
the design process. We then use our analysis of population dynamics to inform the selection of gen-
etic parts, which could be used to obtain the desired spatio-temporal behaviours. By identifying,
integrating andautomating keystages of the designprocess,weprovide acomputational framework
for designing synthetic systems, which could be tested in future laboratory studies.
1. INTRODUCTION

The field of synthetic biology has the potential to
greatly accelerate the development of biotechnological
applications, in areas ranging from vaccine develop-
ment, microbiome engineering and cell therapy [1], to
photosynthetic and metabolic production of bio-fuels
[2,3]. It could also enable a deeper understanding of fun-
damental biological design principles [4]. Realizing this
potential will require the ability to rationally design
populations of synthetic cells with prescribed beha-
viours, which in turn will require well-characterized
components, modular implementation strategies, simu-
lation across temporal and spatial scales and automatic
compilation of high-level designs to low-level genetic
parts that function reliably inside cells. Many of these
steps are incomplete or only partially understood, and
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methods for integrating them within a common design
framework have yet to be developed.

In spite of these challenges, basic genetic devices such
as oscillators [5] and toggle switches [6] have so far been
implemented at the level of individual cells, while more
complex devices such as synchronized oscillators [7], pred-
ator–prey systems [8], edge-detection mechanisms [9] and
multi-cellular logic circuits [10] have been implemented at
the level of cell populations. However, such devices are
typically engineered by trial and error, and corresponding
models are typically constructed independently, for
example, by writing down a set of ordinary differential
equations (ODEs). Furthermore, most devices are con-
structed from only a handful of genetic parts and exhibit
relatively simple population dynamics. It has been
argued that the design of more complex devices and beha-
viours will require substantial progress in analysis and
modelling tools, together with increased automation [2].

Preliminary steps to automate the design of syn-
thetic biological devices were previously proposed in
This journal is q 2012 The Royal Society
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Pedersen & Phillips [11] through the development of the
genetic engineering of cells (GEC) language, a program-
ming language for designing genetic devices. The
language allows desired interactions between genetic
components of a system to be specified by a programmer,
and then infers sets of devices that satisfy the design
constraints. The approach relies on a database of genetic
parts, characterized by their logical properties and kin-
etic parameters. The language is high level in the sense
that the choice of biological parts is left unspecified by
the programmer and is instead inferred automatically
by a compiler [12]. The approach was illustrated by auto-
matically inferring sets of parts for one of the most
complicated genetic designs implemented to date [8], a
synthetic predator–prey system. Other examples of
high-level languages include GenoCAD [13], which uses
formal syntax grammars to constrain the sequences of
parts that can be manually selected by a programmer,
and Eugene [14], which allows collections of abstract
components to be transformed into collections of physical
implementations in a design library. The Proto language
[15] operates at an even higher level of abstraction, allow-
ing functional behaviours such as logic gates to be
compiled to gene regulatory networks. Computational
tools and programming abstractions for synthetic biology
are reviewed in Purnick & Weiss [16], while languages for
biological modelling more generally include Antimony
[17], ProMoT [18], iBioSim [19] and little b [20], to
name a few. More detailed comparisons between GEC
and other languages for synthetic biology are presented
in Pedersen & Phillips [11] and Beal et al. [12].

In this paper, we present a prototype framework for
designing synthetic cells with prescribed population
dynamics. The framework extends the GEC language,
originally developed for programming intracellular dyna-
mics, with cell population factors such as cell growth,
division and dormancy, together with spatio-temporal
simulation methods. By using a case study, we investigate
how the synthetic predator–prey system of Balagaddé
et al. [8] could be extended to produce complex spatio-
temporal behaviours in future cell colony experiments.

The original design of Balagaddé et al. [8] used
well-mixed populations of synthetic predator and prey
Escherichia coli cells grown in a microchemostat, and
therefore did not exhibit spatio-temporal behaviour. An
extension of this system to cell colony experiments was
subsequently implemented in Song et al. [21], who
investigated the influence of cell motility on simple inva-
sion dynamics. Here, we investigate how more complex
spatio-temporal dynamics, such as travelling waves and
spatio-temporal chaos, could be produced by a synthetic
predator–prey system in Petri dish experiments. We ana-
lyse the effects of cell density within the extracellular
space, because cells in a Petri dish can grow tightly
packed, whereas growth and periodic dilution in a micro-
chemostat can lead to lower densities. Furthermore, we
investigate the effect of cells entering a dormant state
where nutrients are growth-limiting [22,23]. We consider
experiments occurring over much longer time scales
than those studied in Song et al. [21], to allow for richer
spatio-temporal behaviour such as travelling waves
[24], spatio-temporal chaos [25] or even stable reaction–
diffusion patterns [26]. In so doing, we investigate the
J. R. Soc. Interface (2012)
extent to which genetic designs at the level of individual
cells could influence the behaviour of cell colonies of the
order of billions of individuals over multiple generations.
Although the results presented here are carried out in
silico, by basing our design on an existing experimental
system, we provide predictions that could be readily
tested in future laboratory experiments.

Synthetic systems that produce complex spatio-
temporal dynamics have yet to be designed and tested
in the laboratory. Our results indicate that designing
such systems is non-trivial, and that consideration of
multiple factors at different scales is required. Our frame-
work could significantly enhance our ability to design
such systems. Complex spatio-temporal dynamics are
much-studied phenomena in population biology, which
can result from a combination of oscillatory population
dynamics and movement of individuals. We have pre-
sented an approach that offers, for the first time, the
potential to investigate the predictions of theoretical
models of spatio-temporal dynamics in synthetic oscil-
latory systems, through computational simulation and
analysis. Our work also highlights the potential for
using synthetic experimental microcosms to address fun-
damental questions in microbial and population ecology,
which have traditionally been performed using non-
synthetic microbial communities. Example study areas
are the maintenance of species diversity in microbial com-
munities [27], microbial population dynamics [28] and
spatio-temporal pattern formation [29,30].

The paper is structured as follows. In §2, we present
our computational framework for designing synthetic
cells with prescribed population dynamics and illustrate
our approach by designing a synthetic predator–prey
system that, when simulated, produces complex spatio-
temporal behaviours. We present an overview of our com-
putational framework (§2.1) together with a summary of
our case study (§2.2). We provide a high-level design of
the system (§2.3), followed by its automatic compilation
to a set of genetic devices (§2.4) and corresponding
computational model (§2.5). We then describe how
environmental factors are incorporated into the model
(§2.6 ), and explore the range of population dynamics
that can be obtained by varying the model parameters
(§2.7). Using this information, we constrain the system
design to obtain the desired population dynamics (§2.8).
Finally, we demonstrate the range of complex spatio-
temporal behaviours that are produced by the synthetic
design (§2.9). Additional details of the computational
methods used in this study are presented in §4.
2. RESULTS

2.1. Computational design framework

We developed a computational framework for designing
synthetic cells with prescribed population dynamics
(figure 1), by extending the GEC programming language
with cell population factors, such as cell growth, division
and dormancy, together with spatio-temporal simulation
methods. We start with an experiment design (figure 1a)
involving populations of synthetic cells that interact with
each other in a spatial context such as a Petri dish. We
then use the GEC language to program a system design

http://rsif.royalsocietypublishing.org/
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Figure 1. A computational framework for the rational design of synthetic cells with prescribed population dynamics. From a con-
ceptual experiment design (a) we program a system design of the genetic device (b) using the genetic engineering of cells (GEC)
language. Following compilation of the design to a set of genetic devices (c; shown as a representative plasmid), we select a can-
didate device and compile it to a system model (d), which characterizes the intracellular dynamics of the device. We then obtain a
reduced system model (e) as a set of ordinary differential equations (ODEs), under quasi-steady-state assumptions (QSSAs). We
then incorporate population factors to obtain a population model ( f ). We conduct parameter scans to identify the environmental
conditions that generate the desired population dynamics (g). We then vary the parameters of the system to further improve the
population dynamics under the chosen environmental conditions (h). The parameter scans are then used to constrain the system
design, by restricting the kinetic properties of the biological parts that can be selected. We then simulate a candidate device that
satisfies the design constraints, using full spatio-temporal simulations (i). The candidate device can then be synthesized and
tested in the laboratory.
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(figure 1b), which specifies the genetic device in terms of
desired interactions between genetic parts. The design is
then used to automatically generate a set of genetic
devices that satisfy the design constraints (figure 1c).
A candidate device is chosen and compiled to a
J. R. Soc. Interface (2012)
corresponding system model (figure 1d), which represents
the intracellular dynamics of the chosen device. The
model is represented as a set of chemical reactions,
which is automatically translated to a set of ODEs,
assuming mass action kinetics. A reduced system model

http://rsif.royalsocietypublishing.org/


2886 Rational design of synthetic populations N. Dalchau et al.

 on March 24, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
(figure 1e), consisting of a reduced set of ODEs, is then
automatically generated, assuming quasi-steady-state
dynamics. Further simplifications to the model are
made when needed. A set of population factors such as
cell growth and division is then introduced, resulting in
a cell population model (figure 1f ). Numerical simu-
lations of the cell population model are then produced
under different environmental conditions (figure 1g),
such as different assumptions about cell density and
resource limitation. The simulation results are compared
with the desired population dynamics, and the most suit-
able environmental conditions are selected. Refinements
to the parameters of the system design are then con-
sidered (figure 1h), such as modulating the strength of
ribosome binding sites (rbs) via base-pair substitutions.
The parameter variations are used to expand the range
of environmental conditions under which the desired
population dynamics are observed, thereby increasing
the potential robustness of the system. The system
design is then updated to include the additional par-
ameter constraints, to ensure that only genetic devices
capable of generating the desired population dyna-
mics are considered. A candidate genetic device is
then selected, based on the additional parameter con-
straints, for simulation in a spatially extended context
(figure 1i). This enables the resulting spatio-temporal
behaviours to be examined under varying initial and
boundary conditions. The candidate genetic device
could then be synthesized and tested in the laboratory.

In the remainder of this section, we detail each stage
of the design process, by considering a case study invol-
ving the design of a synthetic predator–prey system
that exhibits complex spatio-temporal behaviours.
2.2. Programming complex spatio-temporal
behaviours in a predator–prey system

Using our design framework, we investigated how the
synthetic predator–prey system of Balagaddé et al. [8]
could be extended to produce complex spatio-temporal
behaviours. The original design consisted of two genetic
devices, predator and prey, inserted into two E. coli
populations grown in a well-mixed setting in a micro-
chemostat. This allowed the population cycles arising
from the predator–prey interactions to be modelled
using non-spatial population methods. We extended
this design by building upon mathematical theory of
spatially extended oscillatory systems, which shows
that if population cycles are guaranteed in a well-
mixed setting then spatio-temporal patterns such as
travelling waves or spatio-temporal chaos can be
observed in a context in which neighbourhood effects
are spatially limited [29,31].

Because the model of Balagaddé et al. [8] was devel-
oped and experimentally tested only for well-mixed
systems, we extended this model to take into account
spatio-temporal dynamics in a Petri dish environment.
The lack of continuous dilution in Petri dish exper-
iments forced us to investigate the effects of a range
of density-dependent factors, such as the effects of
limited extracellular space on signal concentrations
and the effects of limited resources on birth and dor-
mancy or death rates. We explored plausible genetic
J. R. Soc. Interface (2012)
modifications that could make the system more likely
to generate the desired dynamics, and we simulated
the final design under different experimental conditions
to test these modifications.
2.3. Programming the system design

We programmed the desired behaviour of our synthetic
predator–prey system in GEC, a programming language
for designing genetic devices [11], in terms of interactions
between the molecular components of the system. The
main innovation behind GEC is that biological devices
can be designed by a programmer with little or no
knowledge of the specific genetic parts available. The
programmer needs only a basic knowledge of the avail-
able part types, namely promoters, rbs, protein-coding
regions and terminators. These elementary part types
are composed to form system designs, and the desired
part properties are expressed as constraints in the
GEC language. The full GEC design for the synthetic
predator–prey system is presented in figure 2.

In this scheme, the population densities of predator
and prey cells depend on the abundance of the MiniF
plasmid CcdB (death) protein, which initiates pro-
grammed cell death. CcdB is produced in prey cells on
receipt of an intercellular signal generated by the
predator cells. It is produced constitutively inside
the predator cell, and an antidote protein (CcdA) is
induced in the predators upon receipt of a signal from
the prey. In this way, the prey are needed to ensure
the survival of the predators.

Each cell type recognizes the presence of the other
using synthetic intercellular signalling devices, derived
from natural quorum-sensing components. The predator
cells produce a distinct acyl homoserine lactone (AHL)
3-oxo-C12-HSL (AHL12), which binds to the LasR
transcriptional activator within the prey cells and initiates
transcription of CcdB. The prey cells produce a second
AHL, 3-oxo-C6-HSL (AHL6), which binds to the LuxR
transcriptional activator and initiates transcription of
the CcdA antidote protein in the predator cells. The
CcdB lysis protein that causes cell death was placed
under the control of a LacI-inducible promoter in the
predator cells to modulate downstream gene expression.
The activity of the constitutively expressed LacI-regulated
promoter is modulated by supplying isopropyl b-D-1-thio-
galactopyranoside (IPTG), which binds to LacI dimers,
preventing formation of transcription-initiating tetramers.

The GEC code was more detailed than in [11]
because the new model required (i) explicit dimerization
of AHL-receiver for downstream transcriptional induc-
tion and (ii) that the Plac=ara�1 promoter is explicitly
induced by LacI molecules, with IPTG blocking the
tetramerization of two LacI homodimers [32] (figure 2).
2.4. Automatically deriving the genetic parts

The GEC language allows a user to program the desired
behaviour of a genetic device, and to infer candidate
implementations by searching a database of well-
characterized biological parts [11]. Compiling the GEC
program initiates a search over the database, the result
of which is a set of all solutions that satisfy the design

http://rsif.royalsocietypublishing.org/
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constraints. Upon selection of a particular solution, the
GEC software produces a model of the intracellular be-
haviour of the device, in the form of a set of biochemical
reactions, with rate constants as defined in the database.
The reactions are displayed in the language for biological
systems (LBS; [33]). Compilation of LBS code permits
stochastic simulations to be carried out using the Gillespie
algorithm, and deterministic simulations using a Runge–
Kutta–Fehlberg ODE solving routine. The compilation
also produces a series of representations of the LBS
code, including a graphical representation and a Matlab
function that can simulate the reactions as a system
of ODEs.

To enable GEC to find solutions that matched the
desired topology, we created minimal databases of bio-
logical parts and reactions (detailed in the electronic
supplementary material, tables S2 and S3, respect-
ively). As the program specified a total of nine rbs
and our database contained two different rbs parts,
compilation of the program resulted in a large number
of solutions. Taking into account the two different
ways of assigning AHL molecules to predator and prey
cells, GEC returned 2 � 29 ¼ 1024 solutions. The multi-
plicity of solutions illustrates both the flexibility and
uncertainty conferred to the designer when construct-
ing a synthetic biological device. These different GEC
solutions are described by the same set of system reac-
tions, with only the kinetic rate parameters being
variable. Therefore, to analyse the system design, we
selected the first solution from the list and generated
the corresponding reaction network, together with a
set of ODEs in Matlab code (see the electronic sup-
plementary material, A.1 and A.2, for the full reaction
network and ODE model).
2.5. Automatically deriving the system model

Model reduction techniques were applied to the system
model derived by GEC (figure 1d), producing equations
that are more amenable to quantitative analysis
(figure 1e). To do this, we systematically applied
quasi-steady-state assumptions (QSSAs), by assuming
that the kinetics of some reactants operated on a
faster time scale than the kinetics of others, such that
the reactants were effectively in dynamical equilibrium.
We made this assumption for all intracellular reactions,
allowing the system to be formulated purely in terms of
the extracellular concentrations of the AHLs (see §4 and
the electronic supplementary material, A3, for details).
This form of model reduction was also used by Bala-
gaddé et al. [8] to analyse the optimal concentration
of IPTG for generating population cycles.

When we compared the equations in Balagaddé et al.
[8] with those derived for our model, we found two
differences. First, our model indicated that the par-
ameter K2 (half saturation constant for the functional
response of prey cells to AHL6) was IPTG-dependent
(in addition to vA2 and dc1). As the receiver protein
LasR is produced downstream of the Plac=ara�1 promo-
ter, which is IPTG-activatable, we conclude that the
analysis in Balagaddé et al. [8] claiming that K2 is not
IPTG-dependent cannot be justified. The second differ-
ence arose in the functional form of the IPTG-dependent
J. R. Soc. Interface (2012)
parameters. In Balagaddé et al. [8], a second-order Hill
function was assumed, whereas we derived a slightly
more complicated functional form from a plausible
reaction set involving LacI, IPTG and Plac=ara�1.
Realistically, the difference in these functional forms is
likely to confer only minor effects on the dynamics of the
system, as the leading order of both the numerator and
denominator is quadratic in the concentration of IPTG.
Nevertheless, the fact that differences can be identified
illustrates an advantage of automating the design pro-
cedure. It is also possible that automation could
obfuscate poorly justified assumptions, such as in the
application of the QSSAs [34]; so it would be important
to incorporate rigorous checks for their validity.

The reduction of the model equations can be
achieved in a semi-automated way. After selecting
which concentrations are to be dynamic, the derivatives
of the remaining concentrations can be equated to 0
using software with an algebraic solving capability,
such as Mathematica or Maple. Equations representing
gene regulatory networks often produce characteristic
functional forms, such as the Hill function. Further-
more, each concentration usually depends on no more
than three upstream variables, simplifying the form
of the final reduced equations (figure 1e). Conse-
quently, as was observed in this case, applying
QSSAs can lead to a very simple set of equations.
The combination of the equations for the steady-state
and dynamic concentrations provides a complete
approximate representation of the synthetic circuits in
each cell type.
2.6. Programming the cell population model

By producing a reduced equation set that incorporates
the environmental and population-level factors, it is
possible to rapidly assess the impacts of the environ-
ment on the performance of the device (figure 1g). In
this section, we illustrate how we incorporated and ana-
lysed alternative assumptions about environmental
factors in the simplified cell equations.

The key difference between the microchemostat and
Petri dish experiments is that populations could poten-
tially rise to higher densities in Petri dishes. Unlike
microchemostats, continuous dilution is not possible,
and E. coli populations can grow until resources are lim-
iting or until other density-dependent factors (e.g.
toxins) build up to such an extent that the populations
stop growing. To incorporate these effects, we re-
derived the population model of Balagaddé et al. [8]
from their set of biochemical reactions, considering
whether any of their calculations required making
assumptions about physical space or resources not
becoming limiting (see the electronic supplementary
material, B, for details).

The first modification we made to the model of
Balagaddé et al. [8] was to remove the effects of dilution.
Second, we relaxed the assumption that the ratio of the
volume of extracellular space to the space occupied by
E. coli is high, an assumption likely to be violated in
dense populations ([35], details given later). Third,
resource availability is likely to become both limiting
and spatio-temporally heterogeneous in Petri dishes

http://rsif.royalsocietypublishing.org/
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[21,30]; so we represented resources explicitly. Next, we
considered negative density-dependent effects on popu-
lation growth. Such effects are commonly abstractly
incorporated as an increasing or constant per capita
mortality rate as a function of density [29,30,36]. How-
ever, an increasing death rate is not generally observed
over the relatively short time scales considered in our
study (days to weeks). Rather, cells enter a dormant
state, in which metabolic activity is considerably
reduced. Cells can potentially recover from their dor-
mant state when resources become available again
[22,23], though, in controlled experiments, this effect
is most likely to be negligible. We therefore explored
the effects of incorporating either density-induced mor-
tality or dormancy to cover both of these eventualities
(details given later).

Taking our considerations of the effects of limiting
space and resources into account led us to derive the
following form for the population model:

dc1

dt
¼ c1ðtÞf1ð�Þ � c1ðtÞdc1ðIeÞ

Kb
1

Kb
1 þ Ae2ðtÞb

; ð2:1aÞ

dc2

dt
¼ c2ðtÞf2ð�Þ � c2ðtÞdc2

Ae1ðtÞb

Kb
2 þ Ae1ðtÞb

; ð2:1bÞ

dAe1

dt
¼ vA1g1ð�Þ � dAe1Ae1ðtÞ; ð2:1cÞ

dAe2

dt
¼ vA2ðIeÞg2ð�Þ � dAe2Ae2ðtÞ; ð2:1dÞ

dc1ðIeÞ ¼ 0:5þ I 2
e

52 þ I 2
e

ð2:1eÞ

and vA2ðIeÞ ¼ 0:02þ 0:03I 2
e

52 þ I 2
e

ð2:1f Þ

Here, c1 and c2 are the population densities of active
predators and prey (cells ml21), respectively, and t is
time (hours). Ae1 is the concentration of an ‘antidote’
signal, AHL6 (nM), in the extracellular space with
decay rate dAe1 (h21), and Ae2 is the concentration of
a ‘killer’ signal, AHL12 (nM), with decay rate dAe2

(h21). K1 and K2 are half saturation constants (nM),
and b scales the shape of the death rate functional
responses (dimensionless). dc1 and dc2 are the death
rates (h21) and vA1 and vA2 are the production rates
for the AHLs (nM h21). As in Balagaddé et al. [8], dc1

and vA2 vary with the extracellular concentration of
[IPTG] (Ie, mM) according to (2.1e) and (2.1f), re-
spectively. We use ð�Þ to denote a generic function
representing an assumed effect of the environment or
population factor. In this case, f ð�Þ and gð�Þ are
always non-negative (described separately in the
following subsections).
2.6.1. Effect of cell density on signal production
As the population density of E. coli increases in a Petri
dish towards an absolute maximum density cabs, the
volume of extracellular space in the medium decreases
and can no longer be considered much larger than the
space occupied by the E. coli. To incorporate this
effect on the concentration of AHLs in the extracellular
medium, we derived an alternative functional form
J. R. Soc. Interface (2012)
for gið�Þ,

gið�Þ ¼
ciðtÞ

cabs � c1ðtÞ þ c2ðtÞ
; ð2:2Þ

where i ¼ (1, 2). Here, cabs is defined as the absolute
maximum packing density for typical E. coli, which
we estimated to be approximately 1540 cells pl21 (see
§4 for details), although this would not be achieved in
practice owing to resource limitations and packing con-
straints. The effect of modifying this function is that the
rate of increase of the concentration of a given AHL in
the medium, for every quantity of AHL emitted per
individual E. coli into that medium, becomes higher
because the extracellular volume within which it is
diluted becomes less. Note that for comparison with
the original model, where gi ¼ ci, we need to rescale
vAi ¼ v̂Ai cabs, with v̂Ai taking the values in Balagaddé
et al. [8].
2.6.2. Effect of resource limitation on population growth
and CcdB-independent mortality
To explicitly incorporate the effects of resource limit-
ation on the E. coli birth rates, we altered the per
capita population growth rate function fi from the
logistic form used by Balagaddé et al. [8] to

fið�Þ ¼
kcisðtÞ

Kscmax þ sðtÞ � lð�Þ; ð2:3Þ

where i ¼ (1, 2). For simplicity, we treat resource avail-
ability s as having the same units as predator and prey
(cells pl21), and s ¼ cmax � N , where N is the total abun-
dance of E. coli. In this context, cmax is the maximum
carrying capacity as determined by total resource avail-
ability. 0 , Ks , 1 is the half saturation constant of the
birth rate function, normalized to be a constant fraction
of the carrying capacity, and for simplicity we assume
Ks ¼ 0:1 because it results in a functional form that is
similar to the logistic equation assumed by Balagaddé
et al. [8]. We considered two alternative formulations for
the CcdB-independent mortality/dormancy rate function
lð�Þ. The first of these makes the standard assumption of a
density-dependent mortality rate

lið�Þ ¼ kdiðc1ðtÞ þ c2ðtÞÞ; ð2:4Þ

where i ¼ (1, 2). To estimate the mortality rate kdi, we
assume that, in the complete absence of nutrient limit-
ation, the death rate owing to the build-up of toxins will
balance the birth rate when ðc1 þ c2Þ ¼ cabs (i.e. at the
absolute maximum population density). This leads us to
estimate that kd1 ¼ 0:00052 and kd2 ¼ 0:00026. For sim-
plicity, we also assume that nutrients are immediately
returned to the medium when cells die [37]. Consequently,

sðtÞ ¼ cmax � ðc1ðtÞ þ c2ðtÞÞ:
2.6.3. Effect of resource limitation on population
dormancy
To explore the effects of dormancy in increasingly
dense cell populations, we considered using lð�Þ in
(2.4) to instead represent the rate of conversion of
individuals to a pool of dormant individuals. Losses

http://rsif.royalsocietypublishing.org/
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owing to dormancy are different from mortality in
three key respects: (i) the nutrients absorbed by
dormant individuals remain unavailable to the active
cell populations, (ii) dormant individuals have an
effect on the availability of extracellular space, and
(iii) the death rate of dormant individuals will still
be a function of the relevant concentration of AHL
in the medium. We modelled these effects by adding
equations to represent the populations of dormant
predators and prey

d�c1

dt
¼ l1ð�Þ ��c1ðtÞdc1ðIeÞ

Kb
1

Kb
1 þ Ae2ðtÞb

; ð2:5aÞ

d�c2

dt
¼ l2ð�Þ ��c2ðtÞdc2

Ae1ðtÞb

Kb
2 þ Ae1ðtÞb

; ð2:5bÞ

lið�Þ ¼ kdiðc1ðtÞ þ c2ðtÞ þ�c1ðtÞ þ�c2ðtÞÞ ð2:5cÞ

and gið�Þ¼
ciðtÞþ�ciðtÞ

cabs�ðc1ðtÞþc2ðtÞ þ�c1ðtÞ þ�c2ðtÞÞ
; ð2:5dÞ

where i ¼ (1, 2) and �c1 and �c2 are the population den-
sities of dormant predators and prey, respectively. For
simplicity, we assume that dormant cells retain the
ability to produce AHL molecules and that their mor-
tality rate is a function of the external AHL
concentration. Therefore, the only difference between
dormant and non-dormant individuals is that dormant
individuals cannot reproduce. Finally, we assume that
nutrient availability follows

sðtÞ ¼ cmax � ðc1ðtÞ þ c2ðtÞ þ�c1ðtÞ þ�c2ðtÞÞ;

consistent with the definition given earlier.
2.7. Constraining the environmental conditions

All of the formulations of the non-spatial population
dynamics equations required sufficiently high IPTG
concentrations to predict population cycles for realistic
parameter values (figures 1g and 3). Low IPTG concen-
trations resulted in slower variations in the expression
of the genes controlling the predator death rate and
antidote production rates. This resulted in popula-
tion dynamics that converged to a stable steady state
over time. As a result, we restricted our attention to
simulations in which IPTG � 5 mM.

We compared the predictions of our population
dynamics model under different combinations of
assumptions about density dependence, volumetric
effects and parameter values (figure 3). In all scenarios,
low antidote decay rates resulted in predator extinction.
A detailed analysis of the bifurcation structure revealed
that these were in fact extremely long period population
cycles in which predator densities were driven to very
low levels for very long periods of time (see electronic
supplementary material, figure S1). We classified
these dynamics as ‘predator extinction’ because the
lengths of these cycles, and possibly implausibly low
population densities, are likely to be impractical
for laboratory experiments. As the antidote decay rate
dAe2 was reduced from relatively high rates, we obser-
ved a transition in the predicted dynamics from an
equilibrium steady state, to periodic oscillations, to
J. R. Soc. Interface (2012)
predator extinction (see figure 3 and electronic
supplementary material, S1).

When cmax ¼ 100 ml21 and the antidote decay rate
dAe2 is sufficiently high, then the predator populations
can be driven to extinction. Intuitively, this can
happen if the decay rates of antidote are so high that
there is never sufficient antidote to maintain a positive
population growth rate. In cases in which the carrying
capacity is sufficiently low, the predator population
can never rise to a sufficient abundance to produce suf-
ficient antidote to permit a positive growth rate in the
predator population, and the predator population goes
extinct. Mathematical and numerical analysis confirms
the absence of a stable coexistence steady state for suf-
ficiently high antidote decay rates (see the electronic
supplementary material for details).

Increasing the carrying capacity from cmax ¼ 100 ml21

resulted in a wider range of antidote and killer decay
rates that led to population cycles (figure 3). It is
widely known that increasing the carrying capacity in
coupled models of trophic interactions can lead to a
destabilization of the homogeneous steady state to perio-
dic oscillations: this is the classic ‘paradox of enrichment’
[38]. Our observations are another example of that
phenomenon; increasing the carrying capacity can lead
to a transition in the predicted dynamics from a stable
coexistence steady state to periodic oscillations.

Assuming density-dependent mortality generally
leads to population cycles being predicted for a relatively
narrow range of parameter values (figure 3a). The range
of dAe2 is expanded only slightly by increasing cmax. This
is generally the pattern predicted for the equations of
Balagaddé et al. [8] for the same range of parameter
values but without dilution. If instead we assume that
individuals do not die, but enter a dormant state, then
the range of parameter values predicting population
cycles increases (figure 3b and electronic supplementary
material, S1). Dormancy limits the population growth
rate by not removing non-reproductive individuals,
leading to increased negative density dependence. The
reduced per capita birth rates result in deeper population
crashes, which increase the time lag between predator
and prey population responses and destabilize the popu-
lation dynamics for a wider range of parameter values
than in the absence of dormancy effects.

The assumption of the extracellular volume being lim-
ited (without density-dependent dormancy) also leads to
an expansion of the parameter region predicting popu-
lation cycles, especially at high cmax (figure 3c). Adding
the volume limitation effects on AHL production rates
results in an increased per capita production rate of killer
and antidote molecules, which in turn results in more
marked population crashes. The resulting increased time
lag in population responses is sufficient to destabilize the
population dynamics. The time-lag effects of dormancy
and volume-dependent AHL production appear to be
complementary, resulting in further expansion of the
region of parameter space predicting population cycles.
2.8. Constraining the system design

The previous analysis into the effects of the environment,
IPTG addition and density-dependent dormancy on the

http://rsif.royalsocietypublishing.org/
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Figure 4. Selection of optimal ribosome-binding site (rbs) strengths. Oscillation period was calculated as a function of the AHL
activation constants vA1 and vA2 in the model with high-density populations and density-dependent dormancy, to assess how to
optimally assign rbs in the genetic design. The two cases presented correspond to the parameter set used in Balagaddé et al. [8]
with [IPTG] ¼5 mM and cmax ¼ 500 ml21, and the AHL degradation rates set to (a) dAe1 ¼ 0:017 h21, dAe2 ¼ 0:11 h21 and (b)
dAe1 ¼ 0:1 h21, dAe2 ¼ 0:4 h21. In (a), the red hatched box indicates a desirable region, while the red crosses indicate the values of
n̂A1 andv̂A2 that are possible from the parts database in the electronic supplementary material, table S2. Note that only one pair of
values lies within the desirable region.
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propensity of the synthetic predator–prey system to
exhibit population cycles revealed some flexibility in the
environmental parameters that could be chosen to
result in the desired behaviour. At this stage, one could
attempt to obtain numerical estimates of the environ-
mental parameters and deduce from figure 3 whether
cycles are likely to occur, and the characteristics of
those cycles. In the situation that cycles are not present,
or that the oscillation period is too long, it could be
desirable to modify the original genetic design. In our
quantitative framework, this turns out to be a simple
extension of the environmental parameter scan in
figure 3 (as shown in figure 1h).

By applying single base-pair mutations to specific
promoter or rbs sequences, it is possible to generate
libraries of diversified components that have slightly
differing quantitative characteristics [39,40]. In the
case of rbs elements, numerical algorithms offer
approximations of such sequence manipulations [40].
As an example of how to refine designs of synthetic
biological systems, we considered modulating the
rate of AHL synthesis by changing the strength of
the rbs elements that lie upstream of the coding
sequences for LuxI and LasI, the enzymes that cata-
lyse the production of AHL6 and AHL12 (figure 1h).
In general, the rate of translation depends on both
the rbs and the 50 end of the coding sequences. How-
ever, recent work has shown that spacer sequences
can be inserted such that protein expression levels
correlate with rbs strength with high precision [41].
Therefore, we proceed by assuming that increasing
or decreasing the strength of rbs sequences is
analogous to modifying the rates of AHL synthesis,
v̂A1 and v̂A2.
J. R. Soc. Interface (2012)
We varied v̂A1 and v̂A2 over a wide range of values to
select the optimal rbs. Initially, we did this for the par-
ameter set used by Balagaddé et al. [8], which led to
the prediction that v̂A2 can be assigned optimally near
0.0025 nM h21 provided that v̂A1 exceeds approximately
0.05 nM h21 (figure 4a). Afterwards, we considered the
case where the pH of the growth medium was buffered
such that the degradation rates of the AHLs were
increased to dAe1 ¼ 0:1 h21, dAe2 ¼ 0:4 h21 (figure 4b).
In contrast to the unmodified AHL degradation rates
in figure 4a, we found an opposite qualitative depen-
dency on the AHL synthesis rates, as v̂A1 could be
assigned an optimal value (near 0.0025 nM h21) pro-
vided that v̂A2 was no less than 0.01 nM h21. As
expected, the oscillation period was considerably
reduced when increasing the degradation rates with
pH buffers (figure 4).

We used the GEC software to impose conditions on
kinetic rates associated with specific interactions, allow-
ing us to assess conditions under which the desired
behaviours are predicted to occur, and to specifically
use biological parts that adhere to these conditions. In
relation to our synthetic predator–prey case study, we
sought to incorporate the analysis of figure 4 into the
GEC code. From the definitions of the simplified model
parameters v̂A1, v̂A2, K1, K2, dc1 and dc2 in terms of the
rates of the underlying chemical reactions (see the elec-
tronic supplementary material, table S1), we found that
v̂A1 and v̂A2 could be manipulated independently of
the other simplified model parameters via changes in the
rates of translation or degradation of theAHL synthesizing
enzymes LuxI and LasI, kJ1, kJ2, dJ1 and dJ2. Under the
assumption that the rate of translation can be set indepen-
dent of the coding sequence, we focus on how to select
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optimal values for kJ1 and kJ2. The strength of rbs can
be constrained directly by GEC. As an example, we use
the constraints in figure 4a, whereby we require
0:005cabs � v̂A1 � 1:0cabs, 0:0025cabs � v̂A2 � 0:01cabs.
This is equivalent to requiring

0:005
dJ1dMR1cabs

NR1tR1b1
� kJ1 � 1:0

dJ1dMR1cabs

NR1tR1b1
;

0:0025
dJ2dMR2cabs

NR2tR2b2
� kJ2 � 0:01

dJ2dMR2cabs

NR2tR2b2
:

Adding these inequalities into the GEC program is
achieved by assigning parameters to specific parts and
writing the inequalities in terms of these parameters.
For example, the rbs elements associated with J1
and J2 synthesis can be assigned rates as rbs,

rate(KJ1). andrbs,rate(KJ2)., while constitu-
tive promoters can be written as prom,con(TR).. To
further constrain the number of solutions, we imposed a
constraint that all remaining rbs elements use the same
part, by assigning a variable R0 (written R0:rbs).
Finally, by default, GEC assumes that the gene copy
number is 1; for illustrative purposes, we left this
unchanged (i.e. NR1 ¼ NR2 ¼ 1). This results in a revised
GEC program that, when compiled, results in only four
solutions (electronic supplementary material, section D,
gives details). Both the rbs elements associated with
AHL synthesizing enzymes were equal to the database
entry rbs2 in all solutions, while R0 was assigned as
either rbs1 or rbs2 and A1/A2 was assigned inter-
changeably as AHL6/AHL12. The values of v̂A1 and v̂A2

that are achievable from the database (detailed in the
electronic supplementary material, tables S2 and S3)
can be visualized in figure 4.
2.9. Simulating spatio-temporal behaviour

Having completed a full design cycle, understanding
how to combine the effects of a variety of environmental
and population-level factors with specific biological
parts, we investigated how this translated to spatio-
temporal dynamics in simulated Petri dish experiments
(figures 1i and 5).

In the absence of chemotaxis (assumed here for sim-
plicity, though this could be enforced by using non-
chemotactic E. coli mutants), such spatio-temporal
dynamics can be simulated using reaction–diffusion
equations of the form

@c
@t
¼ Fcðc; aÞ þ Dc

@2c
@x2 þ

@2c
@y2

� �
ð2:6aÞ

and

@a
@t
¼ Faðc; aÞ þ Da

@2a
@x2 þ

@2a
@y2

� �
; ð2:6bÞ

where c ¼ c(x,y,t) is the vector of cell densities, a ¼
a(x, y, t) is the vector of extracellular signalling mol-
ecule concentrations, Fc represents the interactions
between the cells and molecules that influence the
growth or decline of the cell populations and Fa rep-
resents the interactions that influence the kinetics of
the molecules. The diffusion rates of each species are
J. R. Soc. Interface (2012)
represented by Dk (k ¼ c; a), while x and y represent
the spatial dimensions of the Petri dish.

We used the results of the parameter scans (figure 4)
to select a model formulation and a set of parameter
values for simulating the reaction–diffusion equations
(2.6). For the interactions term, we chose what we
believe to be a realistic model formulation, incorporat-
ing density-dependent dormancy and volumetric
effects on AHL production (i.e. equations (2.1) and
(2.5) with functional forms (2.2)–(2.4)). Parameter
values were sought that generated population cycles
with a relatively short temporal period, and we chose
parameters corresponding to the redesigned system
analysed in figure 4b (cmax ¼ 500 ml21, Ie ¼ 5 mM,
vA1 ¼ 0:01cabs and vA2 ¼ 0:005cabs). We chose two sets
of diffusion rates, one set based on values in Tyson
et al. [36] (Ds ¼ 1, where Ds scales all diffusion rates;
see the electronic supplementary material, table S1)
and another set with the same values reduced by an
order of magnitude to simulate the effects of increasing
the thickness of the nutrient agar (Ds ¼ 0:1). An ‘inva-
sion scenario’ (which is perhaps more realistically termed
a ‘colonization’ scenario but we adopt the standard ter-
minology here) was simulated in which equal densities
of predator and prey are placed in a central core of the
Petri dish with only nutrient in the surrounding region.

Using our selected parameter values, the invasion scen-
ario predicts amoving invasive front from the centre to the
edge of the Petri dish over a period of around 5 days in the
faster diffusion scenario (figure 5a,c,e,f ) and 10 days in
the slower diffusion scenario (figure 5b,d–f ). Detailed
inspection of the spatio-temporal dynamics over 504 simu-
lated hours (three weeks) indicates that the invasion front
in the faster diffusion scenario traverses the Petri dish
before a new wave begins in the centre (figure 5c). These
dynamics then clearly begin to converge towards spatially
homogeneous oscillations (figure 5c,e). In contrast, a few
irregular travelling waves are generated behind the inva-
sion front in the slower diffusion scenario over the same
period (figure 5d–f ). Note that these are not ‘periodic
travelling waves’ in the strict mathematical sense, which
are one-dimensional travelling waveforms of constant
speed and shape [24]. Simulating the same equations
with the slower diffusion rates on a much larger one-
dimensional domain (we only show a selected region
in figure 5g) reveals the phenomenon of ‘dynamical
stabilization’ behind the invasion front [43], in which
the reactants approach, and remain close to, their
unstable coexistence steady state behind the invasion
front for a period of time before transitioning to what
appears to be spatio-temporal chaos (though we have
not confirmed whether it is indeed spatio-temporal
chaos). Intriguingly, the region exhibiting dynamical
stabilization in this simulation reaches an approximately
constant width (about 50 cm), which phenomenologically
appears to be very similar to the constant-width band of
periodic travelling waves observed behind invasion
fronts in studies of other oscillatory reaction–diffusion
systems (e.g. fig. 1 of [25]). Note, however, that the
domain size (metres) and simulation length (years) we
used is practically infeasible, and further design modifi-
cations would be needed to obtain such dynamics for
more practical experiments.
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Figure 5. An invasion scenario yields irregular travelling waves in an optimized synthetic predator–prey system. (a,b) Snapshots of
simulated predator density (c1, cells pl21) within the GEC tool are displayed for two different simulations of the reaction–diffusion
equations (2.6) (c,d) Space–time plots of predicted dynamics at y ¼ 5 and x between 5 and 10 for 500 simulated hours (about three
weeks) for (a,b), respectively. Both simulations started with c1 ¼ 100 cells pl21 and c2 ¼ 100 cells pl21 in the central 0.5 cm� 0.5 cm
of the simulated environment (s ¼ 300 cells pl21) and c1 ¼ c2 ¼ 0 cells pl21 everywhere else ðs ¼ cmax). (a,c) Predators and
prey diffuse at 0.0108 cm2 h21, nutrients and AHL6 diffuse at the faster rate of 0.0324 cm2 h21, and AHL12 diffuses at half the
rate of AHL6 because it is a larger molecule (Ds ¼ 1, where Ds scales all diffusion rates; see the electronic supplementary material,
table S1). The snap-shot was taken after 3 simulated days. (b,d) The diffusion coefficients are exactly an order of magnitude smaller
than those in (a) (Ds ¼ 0:1). The snap-shot was taken after 6 simulated days. The same set of parameter values was used in both
simulations (other than the diffusion coefficients), chosen from the results in figure 4b, with cmax ¼ 500 cells pl21, Ie ¼ 5 mM,
dAe1 ¼ 0:017 h21, dAe2 ¼ 0:11 h21, vA1 ¼ 0:01cabs and vA2 ¼ 0:005cabs (see the electronic supplementary material, table S1, for
other parameter values). We simulated the partial differential equations with GEC (see the electronic supplementary material, sec-
tion E), which uses a semi-implicit finite difference method based on the Crank–Nicolson method [42], with space discretization of
0.1 cm and a time step of 0.1 hours. The colour scale ranges from black to green, with black corresponding to low predator density and
green being high predator density. (e) Predator density as a function of space at one moment in time, and ( f ) as a function of time for
one point in space, for the two invasion scenarios shown in (a–d). (g) Predicted dynamics using the same equations and parameters
as in (b) and (d) but assuming one-dimensional space, a much larger domain (we used a 1000 cm domain length but we only show
300 cm here), and longer simulated time (up to 22 000 hours is shown here). (e,f) Blue line, Ds ¼ 1; green line, Ds ¼ 0.1.
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3. DISCUSSION

Automating the design of synthetic biological devices is
a long-term goal in the field of synthetic biology, which
could enable significant advances in biotechnological
applications. In this article, we have presented a compu-
tational methodology to aid the design of synthetic cells
with prescribed population dynamics, which proposes
biological parts most likely to achieve the desired
behaviour (figure 1). The GEC software solves a con-
straint problem to select genetic parts that behave
according to specification, though it requires accurate
knowledge of the behaviour and kinetics of each
part. Currently, few individual parts have been well
characterized, with the best example of characterization
being at the level of devices consisting of combinations
of parts, such as the 3-oxo-C6-HSL receiver system [44].
A database of characterized parts is a useful resource,
provided that the interactions between the parts of a can-
didate design are rigorously tested, for instance, to check
for potential cross-reactivities between transcription fac-
tors and promoters, or to determine the concentration of
transcription factors needed to saturate a given promoter.
Another issue relates to the multiplicity of solutions. In
this study, we investigated multiple solutions by consider-
ing a parameterized model that represented the set of all
possible solutions. We then used this model to generate
constraints on specific genetic parts, using parameter vari-
ation methods for combinations of parameters (figure 4).
In some cases, the constraints may suggest using parts
that are not yet in the database, such as the creation of
stronger rbs elements.

Several technical challenges limit the use of software
in automating the design of synthetic biological sys-
tems. Most of the software tools assume that the
interactions between specific promoters and regulators
are known, and that the kinetics of all DNA elements
have been well characterized. Furthermore, it is often
assumed that the synthetic circuit can operate indepen-
dently from the host cell, despite the clear problem that
high expression of the synthetic circuit will undoubtedly
impinge on the resources of the cell, reducing its overall
fitness and therefore limiting the output of the synthe-
tic device. Despite these limitations, the development of
software aimed at characterizing what is possible to
create is still of importance.

We have shown how the full model of Balagaddé et al.
[8] can be derived automatically from an initial com-
ponent-level design, whereas the original model was
constructed entirely by hand. We have also used partial
automation to perform model reduction, allowing
efficient simulation of long-running spatio-temporal
dynamics. Our tools for model derivation and reduction
demonstrate how a number of inconsistencies in the orig-
inal, manually derived model can be detected and fixed.

The reduction of models to fewer equations using
QSSAs is standard practice, though typically involves
subjective judgement [34], such as determining which
concentrations operate on fast versus slow time scales.
We implemented QSSAs in our model of the synthetic
predator–prey system by importing the equations into
Mathematica and equating the right-hand side of
quasi-steady concentrations to zero, and substituting
J. R. Soc. Interface (2012)
these into the remaining dynamic equations. Conse-
quently, we have achieved only partial automation of
this step. We observed that this partial automation cir-
cumvented the time-consuming and error-prone nature
of conducting algebraic manipulations by hand (§2.5),
while maintaining a rigorous derivation of approxi-
mate system dynamics. A more complete automation
of QSSAs has been implemented in the reb2sac tool,
which performs time-scale separation analysis to deter-
mine removable states [45]. Incorporating the reb2sac
method would enhance our ability to analyse system
dynamics and minimize the time it takes to select opti-
mal part configurations for synthetic biological circuits
at the cell level.

We used numerical continuation to obtain a deeper
understanding of the effects of parameter variation on
the non-spatial population dynamics (figure 3 and the
electronic supplementary material, figure S1). However,
it could also be used to explore the effects of varying
important reaction rate parameters on the dynamics of
intracellular reactions, or the properties of plausible tra-
velling wave solutions in spatio-temporal simulations
for specific parameter values or ranges of parameter
values. In particular, identifying the range of possible
travelling wave solutions, their wave speeds, wavelengths
and stability would help in the design of the spatial
domain, helping, for example, to identify a suitable
Petri dish size and simulation experiment length in
order to obtain the desired spatio-temporal dynamics.
Incorporating numerical continuation software such as
AUTO [46,47] or WAVETRAIN [48] into our synthetic
design framework could therefore be worthwhile.

To develop models at the population level, we used
standard formulae for representing resource-dependent
birth rates and cell diffusion [30]. Bacterial chemotaxis
was omitted for simplicity, although there are also stan-
dard formulae for representing this [30]. However,
differences between how the loss rate term is typically
modelled (linear or density-dependent per capita mor-
tality rates, [30]) and other studies highlighting the
possible role of induced dormancy [22,23] led us to
experiment with different models for the loss rate
term. Further clarification of the most appropriate
models would be valuable.

Despite this element of uncertainty, modelling cell
population dynamics for a number of common exper-
imental scenarios can typically be done using
standard functions. Theoretical prediction of bacterial
spatio-temporal dynamics was recently successfully
demonstrated in microfluidic chemostats [35], another
potentially useful experimental set-up for automated
design. If the behaviour of cell population dynamics
can be sufficiently well characterized for a commonly
used variety of experimental scenarios, then it is likely
that prediction of the spatio-temporal dynamics of
such populations could be automated further, allowing
automated experimentation and detection of desired
population behaviours.

The study of Song et al. [21] demonstrated that syn-
thetic predator–prey systems could be used to address
questions relating to spatio-temporal dynamics. Our
study highlights a natural extension to that work: simu-
lating spatio-temporal dynamics over longer time scales
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to allow cycles of multiple generations. However, effects
resulting from running longer experiments are likely to
influence the outcomes of such experiments. One of
these is the poorly understood response of cells to
density-dependent effects, as discussed earlier. Another
is evolution within the cultures leading to the loss of
the synthetic functionality. However, if these obstacles
can be overcome, then there are a number of further
potential uses of synthetic predator–prey systems
for research. If such systems could be engineered to
reliably generate non-homogeneous spatio-temporal
dynamics, then they could be used to directly investi-
gate the influence of various forms of heterogeneity
on spatio-temporal dynamics: a topic of widespread
scientific interest [29,49]. Moreover, despite existing
mathematical theory on the origins of the variations of
spatio-temporal dynamics observed in animal popu-
lations [24], experimental testing of their predictions
has been prohibitively expensive. In such cases, exper-
imental microcosms might be appropriate systems to
test theoretical predictions.

One surprising outcome from our study was that the
chosen set of parameter values could lead to the gener-
ation of dynamical stabilization and spatio-temporal
chaos behind the invasion front. Indeed, the phenom-
enon of an approximately constant-width band in the
one-dimensional simulation (figure 5) is so similar to
the periodic travelling wave band observed in studies
of other oscillatory reaction–diffusion systems under
invasion (see [25]) that we hypothesize that it occurs
for a related underlying mechanism. Presumably, the
small differences remaining from approaching the co-
existence steady state behind the invasion front grow
in time but with velocities less than that of the invasion
front. The width of the visible band is then determined
by the unstable mode whose growth rate and velocity
determine the shortest distance necessary to achieve a
given extent of growth behind the invasion front [25].
Dynamical stabilization in biological systems has only
been seen using very abstract models to date [43]. Indeed,
studies of complex spatio-temporal dynamics behind inva-
sion fronts in ecological systems have also primarily been
restricted to studies of the predictions of theoretical
models, without knowledge of whether there exists any
ecological system in the real world that truly conforms to
the hypothesized mechanisms [24]. Our study indicates
that it may be possible to use synthetic ecological systems
to generate such dynamics in the laboratory.

Future experiments will be essential not only to test the
predictions of our specific case study, but also to demon-
strate whether our framework can be used to successfully
design real synthetic systems with prescribed population
behaviours in practice. Both of these developments
would advance synthetic biology as a discipline.
4. METHODS AND MATHEMATICAL
MODEL

4.1. Model reduction

Model reduction of the reaction set generated by the GEC
software canbe automatically condensed intoa small set of
ODEs, enabling the analysis of the effects of the
J. R. Soc. Interface (2012)
intracellular synthetic programme on the behaviour of
the cell populations. Initially, we derived two single-cell
models, one each for the predator and prey cells. We
then incorporated these into models for the population
behaviours (see the electronic supplementary material,
section A.3 and A.4, for detailed analysis of the equations).

Obtaining the same equations as those analysed in
Balagaddé et al. [8] would justify the use of GEC in
designing complex synthetic biological systems. How-
ever, our approach identified an error in the original
study of Balagaddé et al. [8], in which the parameter
K2 is assumed to be IPTG-independent. K2 is a measure
of the sensitivity of the prey cells to the signal (A1)
received from the predators, and incorrectly combines
the binding/unbinding characteristics of the signal to
the receiver protein LasR and the production/turnover
of LasR itself. Since LasR mRNA is transcribed from a
genetic construct under the control of Plac=ara�1 [8], it is
necessarily IPTG-dependent, as reflected in our model.
This illustrates how using design automation can
improve our ability to produce accurate, analysable
models from high-level design specifications.

Another difference between our model and that of
Balagaddé et al. [8] is that we explicitly modelled the
lac repressor as a tetramer (Li � Li), formed as a complex
of two lacI dimers Li that are specifically not bound to
IPTG (Ii). The complex between a lacI dimer and IPTG
is denoted as Li � Ii. After deriving the quasi-steady
states of the system, we found that this scheme for
the lac repressor resulted in a different functional
form for IPTG dependence than a simple Hill function
with exponent 2 (see the electronic supplementary
material, equations S7b, S7d, S10d).

Despite the model used in Balagaddé et al. [8] not
accurately representing the system dependency on
IPTG, we chose to perform analysis on their model so
that our results are comparable with their study. We
keep in mind that, as IPTG levels are increased, there
is a progressively smaller effect on a2 and K2.
4.2. Estimation of maximum carrying capacity,
cmax, and the theoretical maximum volume
that could be occupied by cells, cabs

Approximate physical dimensions for E. coli are 0.5 mm
wide by 2 mm long. Their volume is approximately
0.65 mm3. Given these physical dimensions, 1 mm3 of
volume could theoretically contain about 1.54 cells. This
implies that an absolute physical maximum density is
1 540 000 cells per mm3 of volume, which is more than
an order of magnitude higher than the carrying capacity
used by Balagaddé et al. [8] of cmax ¼ 100 000 cells
mm23. We therefore used cabs ¼ 1 540 000 mm23 as the
maximum theoretical volume that could be occupied
by cells.

The physical maximum of cabs would never be rea-
lized in reality; E. coli would become resource limited
or be influenced by the production of waste before
this density is reached and there is also a physical
limit to how closely E. coli naturally pack (e.g. Volfson
et al. [35] observed a maximum density of 80% in two-
dimensional biofilms). Instead, we explore the effects of
increasing cmax up to cmax ¼ 1 000 000 cells, an order of
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magnitude higher than that used by Balagaddé et al. [8]
but achieving only up to 65 per cent of the maximum
possible packing density.
4.3. Parameter values and initial conditions for
the population model

We began with the parameter values given in Balagaddé
et al. [8] to parameterize our various model formulations.
The electronic supplementary material, table S1, sum-
marizes the ranges of parameter values that we explored.

To simplify the analysis, we chose to vary par-
ameters that are likely to be most easily modified in
the laboratory, to investigate the effects of parameter
variation on the model predictions. Balagaddé et al.
[8] indicated that IPTG can be used to tune the acti-
vation of the inserted genetic components; so we
chose to vary this parameter. Likewise, total nutrient
availability is likely to be straightforward to modify in
the laboratory and we explored the effects of varying
that parameter though varying cmax. The decay rates
of the chemicals dAe1 and dAe2 can be affected by the
pH of the medium [8], which could also be manipulated
in the laboratory. It is plausible that variations in pH
may also vary other kinetic factors of E. coli population
dynamics, though we assumed that this was not the
case for our study and varied only dAe1 and dAe2 . We gen-
erally chose parameter value ranges spanning those
used by Balagaddé et al. [8], within realistic limits.

We assumed that all experiments started with a low
initial abundance of predator and prey cells, and that
antidote and killer levels corresponded to their equili-
brium concentrations. This latter decision was made
to regulate the initial dynamics: if no antidote AHL
was present initially, then the predator population
would take a long time to increase, and, in the absence
of killer AHL, the prey population would rapidly
increase, depleting resource levels and preventing the
predator population from increasing.
4.4. Numerical analysis

For some simple formulations of equations (2.1), such as
the original formulation of Balagaddé et al. [8] with zero
dilution, it is possible to derive closed-form expressions
for steady states and calculate their linear stability.
However, the resulting expressions are typically cum-
bersome, making them of limited value and, moreover,
we cannot obtain closed-form expressions for all formu-
lations considered here. Thus, all of the analyses of
equations in this study rely on numerical analysis.

To investigate the predictions of the various model
formulations under the various ranges of parameter
values, systems of ODEs were solved numerically
using the Matlab ode45 routine, which implements an
adaptive step-size Runge–Kutta integrator [50]. The
integration tolerances were set to provide accurate sol-
utions for concentrations as low as 10210 nM. For each
set of parameters, we performed a Fourier analysis to
detect population cycles (using fast Fourier transform
in Matlab). To remove the initial transient dynamics,
we ran the simulation over a period of 2500 hours and
then used the last 1024 hours to perform the Fourier
J. R. Soc. Interface (2012)
analysis. We concentrated on whether our models could
predict population cycles over time periods ranging
from few days to one or two weeks. A number of
our simulations predicted population cycles in which
the predator abundances went extremely low, and the
period of the oscillations was greater than 1024 hours.
We categorized these cases as predator extinction events.

4.5. Bifurcation analysis with AUTO

Numerical continuation software enables the auton-
omous monitoring of changes in long-term solutions to
systems of ODEs, most commonly equilibrium solutions
and periodic orbits, to changes in parameter values.
We used numerical continuation, using the software
package AUTO [46,47], to investigate in detail the bifur-
cation structure when varying parameter values in each
model formulation. This analysis was used to verify that
the results obtained were consistent with the period
analysis resulting from numerical simulations. We pro-
vide more details on the analysis in the electronic
supplementary material, section C.

We thank Filippo Polo, Matthew Lakin, Michael Pedersen
and Kathy Gray for their contributions to integrating this
framework within the GEC user interface.
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