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Transient cluster formation in generalized
Hegselmann-Krause opinion dynamics

Florian Dietrich, Samuel Martin and Marc Jungers

Abstract— We analyse the generalized Hegselmann-Krause
model of opinion dynamics. The asymptotic state of such a
system has been well studied in the literature, however the
transient state is still poorly understood. Predicting which
groups of agents will form clusters remains to be studied.
We present sufficient conditions to detect cluster formation in
the transient phase of the multi-agent system. We also give a
procedure to know how much time a cluster stays consistent, i.e.,
before it merges with other agents in the system. Our criterion
can be computed locally using the initial conditions. Finally our
results are illustrated by a numerical example.

I. INTRODUCTION

The analysis and design of cooperative behaviours in
networked dynamic systems has recently received a lot
of attention. It finds application in technical fields such
as cooperative robotics [1], mobile sensor networks [2]
or distributed algorithms [3] and takes inspiration from
collective motion in animals [4]–[6].

A more recent direction of research is to use multi-agent
systems as a tool to model social networks. The consensus
system has been widely applied to model opinion dynamics.
Regarding the linear consensus system, several conditions
for convergence towards global agreement have been
developped [7]–[15].

By contrast, when the communication strength between
agents depends on their current opinions, as in the
Hegselmann-Krause bounded confidence model [16], [17],
it has been shown that clustering may asymptotically form.
Groups of agents reach local consensuses but disagree
with the rest of the agents [18]–[22]. The study of cluster
formation is of particular relevance in social systems since it
is linked to the formation and preservation of local norms and
cultures (see [23] and references therein). Cluster patterns
may also lead to conflict between distant clusters [24]. From
a technical point of view, cluster formation in multi-agent
systems allow to apply model reduction tools and simplify
the analysis of the system [25].

In static networks of interactions, the detection of clusters
or community patterns have been largely explored [26],
[27]. However, interactions and opinions evolve in time.
Methods to predict the birth of opinion clusters remains
to be developped. Moreover, results on the convergence
to clusters of opinions do not provide a way to predict
a priori which groups of agents will converge towards
a cluster. Finally, previous analyses of opinion dynamics
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always focus on the asymptotic behaviour of the systems, be
it a global consensus or local clusters. However, simulations
have shown that despite global consensus may occur
asymptotically, meta-stable clusters may form temporarily
the transient phase [16]. This is in particular the case
for the generalized Hegselmann-Krause model where the
communication range is not a bounded set [19] (see
Section II-B for an illustration of this fact). It is of interest to
focus on the transient state rather than the asymptotic state
because in many real world applications, the time frame of
interest (political election, war, etc.) is finite. Finite time
analysis have analogously been reported in epidemiology
in [28], where extinction is the stable asymptotic state,
but the study rather focuses on quasi-equilibrium occuring
between the emergence of a disease and its extinction.

In this paper, we provide a new criterion to detect
the formation of opinion clusters in systems of opinion
dynamics. The criterion depends only on the initial set
of opinions and can be computed locally. The results
apply to various forms of opinion-dependent communication
strengths, possibly with unbounded support such as the
generalized Hegselman-Krause model. The criterion we offer
allows to detect cluster formation in the transient dynamics.
It also provides a duration in which we can differentiate a
local cluster from the rest of the group before global practical
consensus occurs.

This paper is organized as follows. In Section II we
formalize the multi-agent system we use in this paper
by introducing notation and definitions. We also describe
experimental observations that display transient clusters
formation. In Section III, several assumptions are stated in
order to obtain simple bounds on the dynamics of the system.
These bounds are used in Section IV to give conditions to
detect transient cluster formation. We then give a numerical
illustration in Section V to show how cluster formation is
detected using our main result. Finally, we conclude and offer
directions for future research in Section VI.

Throughout the paper, the notation R will denote the set of
real number, R+ the set of the positive real (zero included)
and N the set of integer. The notation |.| will denote the
cardinality of a set of integer, and the absolute value for a
real number.

II. PROBLEM FORMULATION

Let us consider a system of n agents, numbered from 1
to n and forming a discrete-time multi-agent system. The
opinion or state of agent i at time t ∈ N is a scalar denoted
xi(t) with xi(t) ∈ R. When there is no ambiguity, we drop



the time notation and write xi = xi(t) and x+
i = xi(t+ 1),

the opinion at time t+ 1, which is obtained according to the
following consensus update :

x+
i = xi +

n∑
j=1

αij∑n
k=1 αik

(xj − xi), (1)

which is a barycenter equation where αij is the weight
associated with the influence of agent j over i. In this paper
we will use state dependent weights of the form

αij = f(|xi − xj |), (2)

where the function f : R+ → R+ is called the influence
function. Examples of suitable influence functions are
provided in Section III-B

A. Notation and Definitions

This subsection gives two definitions used to describe the
multi-agent system. Namely, two key distances are defined
for a given group of agents : the diameter of the group, and
the distance separating the group from the other agents of
the system. For the rest of the paper, let A ⊆ {1, . . . , n} be
a group of agents. The group A will be the cluster candidate.

Definition 1 (Group diameter δ): The diameter of the
group A is the maximum distance between two agents in
A :

δ = max
(i,j)∈A2

|xi − xj |. (3)

Definition 2: The distance ∆ is defined as the minimum
distance between all agents in group A and all the other
agents in the system, which can be formally written as

∆ = min
i∈A, j /∈A

|xi − xj |. (4)

We just defined the main parameters of a group of agents,
and we will then look at how these parameters evolve before
reaching the consensus.

B. Experimental observations

As it has been emphasized in the introduction, the
asymptotic behaviour of such a system is well known. In
particular, if the influence function is bounded above and
remains positive over R+, the system always asymptotically
converges towards consensus [15]. Nevertheless, to
charactize the transient behaviour remains an open question.
One typical observation is that before merging toward a
unique opinion, agents are converging into some temporary
local agreement. Figure 1 displays an instance of opinion
dynamics (1) when the influence function is the decreasing
exponential f = x 7→ exp(−x). It first shows that two
clusters of similar opinions rapidly form, these clusters
remain far appart over a relatively long period of time while
they get closer. Finally the two groups merged into one to
achieve the expected consensus.

We will now provide a criterion to characterize this
transient cluster formation. During the first phase when the

Fig. 1. Simulation over 700 iterations of a multi-agent system with an
influence function f(x) = exp(−|x|) and with 20 agents, with 10 agents
initially above 9 and the others below 2, which eventually merge and
converge to one final opinion, the consensus. One can see 2 phases : rapid
convergence of agents into clusters, slow convergence of clusters toward
consensus. Note the log x-scale.

agents form clusters, the cluster formation is faster than the
dynamics which tends to bring the clusters together. Formally
speaking and using the previous definition, we can foresee
the evolution of the diameter δ of a group is decreasing faster
than the distance ∆ between the two groups.

C. Problem statement

From the previous observations, the problem of the
detection of such transient clusters arises. Once a cluster
is detected, it is also important to know for how long the
cluster stays before merging with other agents.

The criterion we present to answer this question is based
only on the evolution over time of the couple (δ,∆),
respectively defined in equations (3) and (4). In accordance
with the previous observation, we say that cluster is forming
when a group of agents has a diameter decreasing faster than
the distance separating the group from the other agents of
the system.

Definition 3 (Cluster formation): Given a group of
agents A, this group is forming a cluster if its ratio δ/∆ is
decreasing over time, i.e. if it verifies

δ+

∆+
≤ δ

∆
. (5)

We propose in the rest of this paper an upper bound of the
evolution of the ration δ/∆, by finding an upper bound on
the evolution of δ (Section III-D), and then a lower bound
on the evolution of the distance ∆ (Section III-E). As those
bounds are obtained by considering worst case scenarios, we
can then form a worst case system whose evolution bounds
the evolution of a real system. By mean of this worst case
system, which is easily computable locally, we can predict



how long a group match the definition of a cluster stated
above (Theorem 9 in Section IV).

III. PRELIMINARIES

A. Assumptions

In this subsection, several assumptions are stated for use in
later lemmas and propositions. We first introduce the function
h defined as follows to lighten the equations :

h =

(
R+ → R+

x 7→ x f(x)

)
(6)

with f the influence function defined in (2).

Assumption 1: Function f defined in (2) is non-negative,
non-increasing, of class C2 on R+ and verifies f(0) > 0.

The non-increasing and non-negative properties of the
influence function is common in terms of opinion dynamics
because the further apart two opinions are, the less they tend
to influence each others. The classical Hegselmann-Krause
model from [16] does not satisfy the previous assumption
because of the discontinuity of its influence function, hence
it is not C2. However we propose in this paper smoothed
versions of the Hegselmann-Krause function to match the
previous assumption.

The next assumption is more technical and allows us to
get locally computable results, but this is not essential to
guaranty the occurrence of transient cluster formations.

Assumption 2: Function h defined in (6) has the following
properties :

– there exists x̃ such that h is concave on [0, x̃] and
convex on [x̃,+∞),

– limx→+∞ h(x) is finite,
– and for all x̂ ∈ arg maxx∈R+ h(x), we have h′′(x̂) < 0.

According to the previous assumption, x̃ is an inflexion
point of function h. Aiming at preserving the order of agents,
we consider the following assumption.

Assumption 3: Function f is log concave, with log the
natural logarithm, meaning function log(f) is concave.

Assumption 3 ensures that the multi-agent system is order
preserving, as shown in [29, Th 2]. It guarantees that agents
are staying in the same order between iterations. More
formally the order preservation property is stated in the
following lemma.

Lemma 4: Suppose that Assumption 3 holds. The multi
agent system (1) is order preserving, i.e., for any agent i and
j in the multi-agent system, xi ≤ xj implies x+

i ≤ x
+
j .

In the sequel of the paper, a renumbering allows to write
without loss of generality x1 ≤ x2 ≤ · · · ≤ xn. It is
also natural to consider for candidate clusters, groups of
consecutive opinions, that is two integers m,M ∈ {1, . . . , n}

such that m ≤ M and A = {m, · · · ,M}. One immediate
consequence is that under Assumption 3 we have

δ+ = x+
M − x

+
m. (7)

Examples of influence functions satisfying
Assumptions 1-3 are detailed in the following subsection.

B. Examples of suitable influence functions

Here we give two examples of functions satisfying
Assumptions 1-3. The class of decreasing exponentials
satisfies Assumptions 1-3 and is a classical class of influence
function [19].

Another class of functions satisfying Assumptions 1-3
is the one of smoothed generalized Hegselmann-Krause
influence functions on infinite support. We choose to consider
such functions using sigmoid according to the formula

fGHK(x) =
1− sig(α(x− 1))

1− sig(−α)
, sig(x) =

1

1 + e−x

where α is a parameter to control the smoothness of the
curve. Figure 2 shows that the larger the α the closer we are
to an original Hegselmann-Krause function as in [16], with a
communication range of 1. Note that the Hegselmann-Krause
model cannot be considered here due to its discontinuity,
which does not verify Assumption 1.

Fig. 2. Generalized Hegselmann-Krause influence functions satisfying
Assumption 1-3 and Hegselmann-Krause influence function.

C. Basic properties

This subsection gives properties of function h defined
in (6) and will be used in the proofs of this paper.

Lemma 5 (Function h): Under Assumptions 1 and 2 the
following properties hold for function h defined in (6) :

– arg maxx∈R+ h(x) is a singleton and its unique element
is denoted x̂,

– h is non-decreasing on [0, x̂] and non-increasing on
[x̂,+∞).



Proof: Under Assumption 2, function h is convex on
interval [x̃,+∞). We then prove that h is non-increasing on
the same interval. Assume the opposite is true. Then, there
exist x, y ∈ [x̃,+∞) with x < y such that h(x) < h(y). By
the mean value theorem, there exits z ∈ [x̃,+∞) such that
h′(z) > 0. Since h is convex over this interval, the graph
of h stays above its tangents. As a consequence, function h
would diverge if it were not non-increasing.

As h is non-increasing on [x̃,+∞), it falls that all
elements of arg maxx∈R+ h(x) are in [0, x̃]. Let us pick an
element x̂ ∈ arg maxx∈R+ h(x) and show that it is unique.
By concavity of h over [0, x̃], h′ is non-increasing over the
same interval. Since h′(x̂) = 0, h′ is non-negative over
[0, x̂] and non-positive over [x̂, x̃]. This implies that h is
non-decreasing over [0, x̂] and non-increasing over [x̂, x̃] and
also over [x̂,∞).

Under Assumption 1, h is C2 and its Taylor development
up to the order 2 at x̂ is

h(x) = h(x̂) +
(x− x̂)2

2
h′′(x̂) + o(x− x̂)2,

where the first order term is zero because, by definition, x̂ is
an extremum of function h, so h′(x̂) = 0. Then by dividing
the previous equation by the quantity (x − x̂)2, we get for
x 6= x̂

h(x)− h(x̂)

(x− x̂)2
=
h′′(x̂)

2
+ o(1).

Let α = − 1
4h
′′(x̂) > 0, by Assumption 2. From definition

of o(1) it comes that it exists η > 0 such that for x ∈
[x̂− η , x̂+ η]\{x̂} we have

h(x)− h(x̂)

(x− x̂)2
≤ h′′(x̂)

2
− α =

h′′(x̂)

4
< 0,

according to Assumption 2, then as a consequence,

∀x ∈ [x̂− η, x̂+ η]\{x̂}, h(x) < h(x̂). (8)

Since h is non-decreasing over [0, x̂] and non-inscreasing
over [x̂,+∞), using equation (8), we obtain

∀x ∈ [0, x̃]\{x̂}, h(x) < h(x̂).

D. Upper bound on group diameter evolution

In this subsection we give an upper bound on the evolution
of the diameter δ defined in (3) of a selected group of agents
A, over two iterations. This bound is defined as the minimum
of two bounds obtained via different approaches, one being
less conservative for small values of δ.

Proposition 6: Under Assumptions 1-3 and for ∆ ≥ x̃ we
have

δ+ ≤ µ(δ,∆) δ , (9)

where

µ(δ,∆) = 1− |A| f(δ)

sA(δ,∆)
+

(n− |A|)
sB(δ,∆)

µB(δ,∆), (10)

with

sA(δ,∆) = f(δ) + (|A| − 1)f(0) + (n− |A|) f(∆), (11)

sB = sB(δ,∆) = f(0) + (|A| − 1)f(δ) + f(∆), (12)

µB(δ,∆) =
1

δ

(
h(∆)+min{Mh(∆)−h(∆+δ), 0}

)
, (13)

M = M(δ,∆) =


ε0

(sB − ε0)
if ε0 ≤

sB
2

1 otherwise
, (14)

ε0 = ε0(δ,∆) = δ
(
|A|max

[0,δ]
|f ′|+ (n− |A|) max

[∆,+∞)
|f ′|
)
,

(15)
with function h defined in (6).

Remark 1: The previous equations are easy to compute
locally because the only variables encountered are
cardinalities and distances δ and ∆.

This result can be interpreted as follows : if the
computation of µ(δ,∆) gives a value smaller than 1, it
gives the information that the group of agents is contracting,
meaning its diameter is decreasing.

Proof: First, let us detail the expression of δ+ given
in (7), where we split the global sum into three, each
corresponding to a part of the system : the selected group A,
the agents below A put in a group named B1, and the
agents above A grouped in B2. More formally we have
B1 = {1, · · · ,m − 1} and B2 = {M + 1, · · · , n}. Then
we can write

δ+ = δ − dA + dB , (16)

where

dA =
∑
i∈A

(
h(xM − xi)

σM
+
h(xi − xm)

σm

)
, (17)

with the notation dB = dB1 + dB2 and

dB1
=
∑
i∈B1

(
h(xm − xi)

σm
− h(xM − xi)

σM

)
, (18)

dB2
=
∑
i∈B2

(
h(xi − xM )

σM
− h(xi − xm)

σm

)
, (19)

and
σi =

N∑
j=1

f(|xi − xj |). (20)

To obtain an upper bound on δ+, we will seek separate
bounds on previously defined quantities dA and dB .

It can be first verified that the quantities sA and sB
respectively defined in (11) and (12) satisfy

sA(δ,∆) ≥ max{σm, σM}, and sB(δ,∆) ≤ min{σm, σM},
(21)

where σi has been defined in (20). Such bounds deal with
the denominators of dA and dB .



To obtain an lower bound on dA defined in (17), we first
remark that, for i ∈ A

f(xM − xi) ≥ f(δ) and f(xi − xm) ≥ f(δ),

leading to

h(xM − xi) ≥ (xM − xi)f(δ),

and
h(xi − xm) ≥ (xi − xm)f(δ).

By summing the two previous equations it comes

h(xM − xi) + h(xi − xm) ≥ h(δ),

allowing us to find the following lower bound for dA

dA ≥
|A| h(δ)

sA(δ,∆)
.

To cope with dB , we propose the following upper bound

dB ≤ (n − |A|)
(

max
u∈J

h(u)

sB(δ,∆)
−min

u∈J

h(u+ δ)

sA(δ,∆)

)
,

with u an appropriate substitution and J = [∆,+∞). Thanks
to Lemma 5, for ∆ ≥ x̂ we have maxu∈J h(u) = h(∆)
and infu∈J h(u + δ) = 0. This allows to get a part of the
expression of µ(δ,∆) in (10) by combining the two previous
equations.

To obtain equation (14) defining M(δ,∆), we rewrite the
terms of the sum dB1 in (18), knowing the reasoning is the
same for dB2 defined in (19). We define, for an agent j ∈ B1,
the quantity Qj as

Qj =
h(xm − xj)
σM + ε

− h(xM − xj)
σM

,

where ε = σm − σM .
The previous equation can be rewritten as

Qj =
1

σM

(
h(xm − xj)− h(xM − xj)

)
+

(
1

σM + ε
− 1

σM

)
h(xm − xj).

At this point and in order to bound dB , we want to obtain
an upper bound on Qj for an agent j ∈ B1.

First, under the assumption ∆ ≥ x̂ and according to
Lemma 5, we have h(xm−xj) ≤ h(∆) because with j ∈ B1,
xm − xj ≥ ∆.

Next we suppose ∆ ≥ x̃, with x̃ the inflexion point of
function h defined in Assumption 2. Then for agent i ∈ B1

we remark that xm − xj ≥ ∆ and xM − xj ≥ ∆ + δ.
Then using Assumption 2, we also know that function h is
convex on [x̃,+∞), implying that its first derivative h′ is
non-decreasing, allowing us to write

h′(xm − xj)− h′(xM − xj) ≤ 0.

This means that u 7→ h′(u)− h′(u+ δ) is non-increasing
on [x̃,+∞) and allows us to get the following upper bound

h(xm − xj)− h(xM − xj) ≤ h(∆)− h(∆ + δ).

Finally, we need to find an upper bound of
(

1
σM+ε −

1
σM

)
and for that we need to bound the absolute value of ε =
σm − σM , which is, by definition of σm and σM in (20),
given by

ε =

n∑
i=1

f(|xi − xm|)− f(|xi − xM |).

Then by using the triangle inequality and the mean value
theorem, |ε| can be bounded by

|ε| ≤ δ
(
|A|max

[0,δ]
|f ′|+ (n− |A|) max

[∆,+∞)
|f ′|
)
.

The right member of the previous equation is the definition
of ε0(δ,∆) given in (15). Finally, let us show that(

1

σM + ε
− 1

σM

)
≤ M(δ,∆)

sB(δ,∆)
,

where M(δ,∆) is defined in (14). It comes directly that(
1

σM + ε
− 1

σM

)
≤ 1

sB(δ,∆)
.

Then we will show that if ε0 < sB we have(
1

σM + ε
− 1

σM

)
≤ ε0

sB(sB − ε0)
.

For that we consider the case where ε < 0, the opposite
case giving a null upper bound that does not add precision.
So for ε < 0 we have(

1

σM + ε
− 1

σM

)
=

|ε|
σM (σM − |ε|)

,

and then for ε0 < σM such that ε ≤ |ε0| that

|ε|
σM (σM − |ε|)

≤ ε0

σM (σM − ε0)

≤ ε0

sB(sB − ε0)
.

By observing that for sB ∈]ε0, 2ε0] we have

1

sB
≤ ε0

sB(sB − ε0)
,

and we obtain the quantity M(δ,∆) as in (14) and with it
the quantity µ(δ,∆) in (10) by combination of the different
results we just provided.

E. Lower bound on the evolution of inter-group distance

This subsection gives a lower bound on the evolution of
the distance ∆ related to a selected group of agents, ∆
defined in (4) being the minimum distance separating the
agents in the group from the others.

Proposition 7: Under Assumptions 1-3 and for ∆ ≥ x̂ we
have

∆+ ≥ η(δ,∆) ∆, (22)

having

η(δ,∆) = 1− |A| ηA(δ,∆)− (n− |A|) ηB(δ,∆), (23)



where

ηA(δ,∆) =
h(∆)

σB(δ,∆)
, (24)

ηB(δ,∆) =
1

∆
max

{ h(∆)

σA(δ,∆)
,
h(2∆ + δ)

σB(δ,∆)

}
, (25)

with

σA(δ,∆) = f(0) + (|A| − 1) f(δ) + f(∆), (26)

σB(δ,∆) = f(0) + f(∆) + (|A| − 1) f(δ + ∆). (27)

Remark 2: The previous equations are, just like the upper
bound on δ+, easy to compute locally because only local
variables (specific to the selected group of agents A)
intervene. Those variables being distances δ and ∆, and
cardinalities.

Proof: We first introduce the following distance

∆1 = min
i∈A,j∈B1

|xi − xj |,

and ∆2 for group B2. We will prove the result dealing
with ∆1, knowing the expression is similar for ∆2. We begin
by writing down the detailed expression of ∆+

1

∆+
1 = ∆1 +DA +DB

where

DA =
∑
j∈A

(
h(xj − xm)

σm
− h(xj − xm−1)

σm−1

)
,

and where DB = DB1 +DB2 with

DB1 =
∑
j∈B1

(
h(xm−1 − xj)

σm−1
− h(xm − xj)

σm

)
,

DB2
=
∑
j∈B2

(
h(xj − xm)

σm
− h(xj − xm−1)

σm−1

)
,

with σm and σM defined in (20).
It can be verified that quantities σA(δ,∆) and σB(δ,∆)

defined in (26) and (27) satisfy σA(δ,∆) ≤ σm and
σB(δ,∆) ≤ σm−1. Then by using Lemma 5, we can get
the following lower bounds for ∆ ≥ x̃

DA ≥ −|A| h(∆)

σB(δ,∆)
= −|A| ηA(δ,∆),

DB1
≥ −|B1| h(∆)

σA(δ,∆)
,

DB2
≥ −|B2| h(2∆ + δ)

σB(δ,∆)
,

giving

DB ≥ −(n− |A|) max
{ h(∆)

σA(δ,∆)
,
h(2∆ + δ)

σB(δ,∆)

}
,

leading to (25) and finally to (23).

F. Upper bound on evolution of ratio δ/∆

In this subsection, we combine the two previous bounds
on δ and ∆ to bound the ratio of these two quantities.

Proposition 8: Under Assumptions 1-3 and for ∆ ≥ x̃ we
have

δ+

∆+
≤ ρ(δ,∆)

δ

∆
, where ρ(δ,∆) =

µ(δ,∆)

η(δ,∆)
, (28)

with µ(δ,∆) and η(δ,∆) defined in Propositions 6 and 7,
from which this proposition falls directly.

IV. MAIN RESULT

Before introducing the main result allowing to detect
cluster formation, we introduce a few notation in order to
ease its formulation.

We first define the domain D of the plane (δ,∆) where the
quantity ρ(δ,∆) defined in (28) is smaller than one, meaning
that the group diameter is decreasing faster than the distance
in between the group and the other agents. More formally,
this domain is defined as

D = {(δ,∆) ∈ R+2 / ρ(δ,∆) ≤ 1}, (29)

where ρ(δ,∆) is defined in (28).
We now defined a sub-domain D0 of domain D by

D0 = {(δ,∆) ∈ D / [0, δ]× [∆,+∞) ⊆ D}. (30)

We then define the worst case function W as

W =

(
D → R+2

(δ,∆) 7→
(
µ(δ,∆) δ , η(δ,∆) ∆

) ) , (31)

and a sequence of domains Dτ , for τ ∈ N such that

Dτ+1 = {(δ,∆) ∈ D∩W−1(Dτ ) /

[0, δ]× [∆,+∞) ⊆ D∩W−1(Dτ )}, (32)

with W−1(Dτ ) being the pre-image of Dτ by function W
defined in (31).

Theorem 9: Given a selected group of agents A satisfying
(δ(0),∆(0)) ∈ DT , for T ∈ N and DT defined in (32), we
have

∀t ∈ {0, . . . , T}, δ(t+ 1)

∆(t+ 1)
≤ δ(t)

∆(t)
, (33)

in other words, the group A is forming a cluster according
to Definition 3 during at least T iterations.

This theorem allows us to detect when a transient cluster is
forming and gives how many iterations it will be guaranteed
to remain a cluster before other agents merge with it.

Remark 3: Notice that it makes sense to detect cluster
formation for a limited period of time only since the decrease
of ratio δ/∆ may occur for some time but may stop when
∆ becomes small enough. This is illustrated in Section V.

Proof: Using Proposition 8 and equation (29),
statement (33) is implied by

∀t ∈ {0, . . . , T}, (δ(t),∆(t)) ∈ D.



Instead of proving the previous equation, we show that
for t ∈ {0, . . . , T}, (δ(t),∆(t)) ∈ DT−t. We will
prove it by induction. The basis case is obvious because if
(δ(0),∆(0)) ∈ DT ⊆ D then the inequality (33) stands for
t = 0.

We prove the inductive step by taking t ∈ {0, . . . , T − 1}
and assuming (δ(t),∆(t)) ∈ DT−t, then we have

W (δ(t),∆(t)) =
(
µ(δ(t),∆(t)) δ(t), η(δ(t),∆(t)) ∆(t)

)
∈ DT−t−1,

and by Propositions 6 and 7,

δ(t+ 1) ≤ µ(δ(t),∆(t)) δ(t),

∆(t+ 1) ≤ η(δ(t),∆(t)) ∆(t),

which ensures by definition of DT−t−1 that

(δ(t+ 1),∆(t+ 1)) ∈ DT−t−1.

V. NUMERICAL ILLUSTRATION

In the present section, we run numerical simulations to
validate the main result of the paper. We choose an influence
function f = x 7→ exp(−|x|). The number of agents in the
system is n = 30, and the number of agents in group A is
set as |A| = 10. These parameters enable us to compute the
domains Dτ shown in Figure 5.

We simulate a system with two different sets of initial
conditions. The first of them initially lie in set D while the
other do not. In the first case a group of agent denoted A
forms a transient cluster as shown in Figure 3. In the second
case the group of agents denoted A′ do not form a transient
cluster, as seen in Figure 4. Groups A and A′ are composed
of 10 agents and are initially distributed over two extreme
points spaced by δ(0) = 1.5 and δ(0) = 2.5, respectively.
All the remaining agents are located at one isolated point
at distance ∆(0) = 5.7 and ∆(0) = 3.5 from A or A′,
respectively.

In the configuration displayed in Figure 3, group A quickly
contracts to form a transient cluster that will merge with the
rest of the agents after a greater amount of iterations. By
contrast, the group A′ do not form a transient cluster despite
having δ(0) < ∆(0). This illustrates the following fact. The
property of having a diameter smaller than the distance to
the rest of the agents is not a sufficient criterion to detect a
cluster.

To see how our main result predicts the cluster formation
for the group A, we display in Figure 5 the trajectory of
the group A and A′ in the (δ,∆) plane, in addition to
the contours of domains D and D0 to D10 as defined in
equations (29), (30) and (32).

Initially, the couple (δ(0),∆(0)) for group A is in D3,
using Theorem 9, we know that group A is forming a
cluster during at least 3 iterations, which is conservative
compared the actual evolution of group A. This is because
Theorem 9 deals with the worst case scenario. At time t = 3,
the distance ∆(t) has increased and (δ(t),∆(t)) for group

A is now in domain D9. As a consequence, knowing the
position of the couple (δ(t),∆(t)) at time t = 3, Theorem 9
ensures that the transient cluster is forming for at least 9
more iterations.

Unlike group A, the dynamics of group A′ do not present
a transient cluster formation. This is consistent with the
(δ(t),∆(t)) trajectory of group A′ as displayed in Figure
5 : group A′ starts out of domain D and never reaches it.
This underlines this importance of a formal criterion to detect
whether a cluster is forming or not.
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Fig. 3. Evolution of a system of N = 30 agents using influence function
f(x) = exp(−|x|). Group A in blue is composed of 10 agents where 5 are
initially at x = 0 and 5 at x = 1.5. The rest of the agents are in magenta
and initially at x = 7.2. Note the log x-scale.
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Fig. 4. Evolution of a system of N = 30 agents using influence function
f(x) = exp(−|x|). Group A in red is composed of 10 agents where 5 are
initially at x = 0 and 5 at x = 2.5. The rest of the agents are in magenta
and initially at x = 6. Note the log x-scale.
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Fig. 5. Trajectories, in the (δ,∆) plane, of groups A and A′ composed
of 10 agents in a system of 30 agents, whose time evolutions are shown in
Figures 3 and 4. Are also drawn the domain D in dashed red and domains
Dτ in black. The black dashed-dotted line stands for the first bissectrice
with ∆ = δ.

VI. CONCLUSIONS

In this paper we analyzed transient cluster formation
for general models of opinion dynamics including the
generalized Hegselmann-Krause model. We proposed a
criterion for detecting cluster formation. Our criterion can
be computed locally using the initial conditions and only
requires the knowledge of the diameter of the cluster
candidate and its distance to the rest of the agents. Moreover,
our main result provides a lower bound on how many
iterations a cluster forms before merging with other agents.
Finally our results are illustrated by a numerical example.
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