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a b s t r a c t 

We report about a numerical approach based on the direct numerical simulation of the Navier–Stokes 
equations for the study of wave-bottom interaction problems. A Volume of Fluid (VOF) method is coupled 
with an Immersed Boundary Method (IBM) and applied to the simulation of propagating waves over 
complex shaped bottoms. We first investigate the flow induced by a solitary wave over generic bottoms 
(i.e. a semi-circular cylinder and a sloping beach). We show that the method is able to describe various 
important features of wave-bottom interactions, including flow separation, vortex shedding and wave 
breaking, while keeping a reasonable computational effort. Then we demonstrate the capability of the 
present approach to model arbitrary shaped bottoms by simulating the run-up of a breaking solitary 
wave over a natural beach profile. 

1. Introduction 

After being generated in the open sea by wind or geophysi- 
cal events, gravity waves propagate toward the coast, carrying a 
considerable amount of energy. Close to the shore, the wave dy- 
namics changes as a result of the interaction with the bottom. This 
is the shoaling process, which may include wave breaking. Know- 
ing the mechanisms that take place during the wave shoaling is 
a key issue for many engineering applications involving sediment 
transport, civil engineering, shore protection and energy extraction. 
During the last decades, numerical simulation has proved to be a 
promising tool for the study of wave-body and wave-bottom inter- 
action problems, as demonstrated by the wide variety of numeri- 
cal methods applied to the study of waves interacting with a sub- 
merged body in the literature (e.g. [1–3] ). 

Many studies of surface waves are based on potential flow the- 
ory, under the assumption of irrotational and inviscid flow. The 
fluid equations are usually reduced to a Laplace equation for the 
velocity potential and a set of non-linear boundary conditions. Two 
families of numerical techniques using potential flow theory are 
the Boundary Element Methods [4–7] and the Spectral Methods 
[1,8–11] which are based on pertubative expansions and are able to 
model both constant- and variable-depth problems [12,13] . When 
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viscous effects such as vortex shedding and energy dissipation in 
the boundary layers have to be locally taken into account to de- 
scribe the wave dynamics, potential flow models can be coupled 
with a Navier–Stokes solver through a domain decomposition ap- 
proach [14–16] . Note that Lin and Huang [2,17] also proposed a 
vortex method to take into account the generation and shedding 
of vorticity due to the presence of a solid body. 

Another class of numerical techniques is based on the long 
wave theory using in particular the Boussinesq equations (e.g. 
[18,19] ) and the non-linear shallow-water equations [20–22] . The 
similarity between shallow-water and gas dynamics equations al- 
lows to apply efficient shock-capturing schemes, initially developed 
for Euler equations, to investigate bore dynamics resulting from 

breaking waves [23,24] . However, as both the non-linear shallow- 
water and the Boussinesq equations are based on hydrostatic or 
almost hydrostatic approximation, they fail to predict the complex 
interaction between a wave and a bottom of arbitrary shape. 

In order to capture all the flow characteristics resulting from 

a wave-body interaction problem, one may rather choose to solve 
the full incompressible Navier–Stokes equations. A major challenge 
raised by this numerical strategy deals with the treatment of the 
free surface dynamics. 

Various techniques using boundary-fitted moving grids have 
been used [3,25–27] . These methods allow an accurate interface 
tracking as the mesh fits the shape of the free surface. However, 
it can hardly be applied to complex interface deformations as 
wave breaking. Eulerian methods allow instead to use a fixed 
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grid on which the interface is free to deform. The capture of 
the interface is ensured by the convective transport of either a 
finite number of markers or a continuous function. In particular, 
the Volume of Fluid (VOF) method has been extensively used for 
the study of wave-breaking and wave run-up [28–31] as well as 
wave-body interaction [32–34] . This method has been shown to be 
able to deal with complex phenomenon as wave breaking and air 
entrainment. When the shape of the bottom remains simple, it is 
convenient to use a boundary-fitted grid associated with a no-slip 
condition. However, with such a method the computational effort 
rapidly increases when increasing the geometrical complexity 
of the boundaries. In order to treat wave dynamics problems 
with increasing complexity while keeping a reasonable compu- 
tational cost, VOF-type methods can be coupled with Immersed 
Boundary Methods (IBM). The IBM technique enables to place 
bodies of arbitrary shape in a computational domain discretized 
with a structured Cartesian grid. This numerical approach has 
already been applied to the interaction between surface waves 
and submerged obstacles [35–37] . In this type of configuration, 
the water/air interface does not cross the water/body interface. 
More recently, physical configurations involving partially immersed 
bodies (water entry of a sphere and dam break with an obstacle) 
have been investigated by Zhang et al. [38] and Zhao et al. [39] . 

In this paper, a coupled VOF-IBM method is used to simulate 
the flow induced by a solitary wave interacting with a complex 
shaped bottom. The numerical method is applied to geometries of 
increasing complexity. Both submerged and partially immersed ob- 
stacles are considered. We first investigate the flow induced by a 
solitary wave interacting with a submerged semi-circular cylinder, 
showing that our results are in good agreement with those of Klet- 
tner and Eames [3] which were obtained with a boundary-fitted 
approach. Then, the run-up of non-breaking and breaking solitary 
waves on a sloping beach is investigated and compared to detailed 
experiments of Synolakis [40] . Finally, we present simulations of 
the run-up of a breaking solitary wave on a natural beach of com- 
plex topography, the shape of which being the result of wave- 
induced sediment transport observed in laboratory experiments. 

2. Numerical method 

2.1. Governing equations and assumptions 

Let us consider two immiscible fluids, i.e. air and water, of den- 
sity ρa and ρw , and dynamic viscosity µa and µw , respectively. We 
assume the two fluids to be Newtonian and incompressible. Con- 
sidering relatively large amplitude gravity waves, we neglect the 
surface tension effects in the following. The evolution of the two- 
phase flow is then described by the one-fluid formulation of the 
Navier–Stokes equations [41] , namely 

∂V 

∂t 
+ ∇ · (V ⊗ V ) = g −

1 
ρ

∇P + 
1 
ρ

∇ · [ µ(∇V + ∇V 
T )] + f , (1) 

∇ · V = 0 , (2) 

where V , P, ρ and µ denote the local velocity, pressure, density 
and viscosity in the flow, respectively, g denotes gravity and f is a 
volume force term used to take into account solid-fluid interaction. 
The local volume fraction C of the air obeys 

∂C 

∂t 
+ (V · ∇) C = 0 . (3) 

This volume fraction equals one (resp. zero) in cells filled with 
air (resp water) while values of volume fraction lying between 0 
and 1 indicate the presence of an air-water interface. The local 
density and viscosity are computed from the volume fraction as 
ρ = Cρa + (1 −C) ρw and µ = Cµa + (1 −C) µw , respectively. In the 
present method, no interface reconstruction step is employed so 

Fig. 1. Schematic view of the set-up. The solitary wave of amplitude H and depth h 
is initially placed at x 0 . The vertical position of the air-water interface is h + η while 
that of the intersection point between the air-water interface and the immersed 
boundary is y = h + R , R being the run-up elevation. 

the numerical thickness of the interface is not strictly zero, but 
typically spreads over three grid cells [42] . Eqs. (1) - (3) are solved 
throughout the entire computational domain, including the actual 
fluid domain and the space occupied by the solid. 

2.2. Modeling of the immersed solid 

Following the IBM method [41] , the interaction between the 
fluid and the immersed body is carried out by the addition of a 
volume force term f in (1) . We first define a solid volume fraction 
α( x ) accounting for the presence of the immersed solid. The value 
of the parameter α is set to 1 in the solid region and 0 in the fluid 
region. A transition region is introduced, where α values are laying 
between 0 and 1. Here we consider the particular case of fixed bot- 
tom or bottom-seated obstacles. Assuming that the bottom shape 
is described by a function h b ( x ) (see Fig. 1 ), we define the solid 
volume fraction as [41] 

α(x ) = 
1 
2 

{ 

1 − tanh 
(
y − h b (x )) 

ληi 1

)} 

(4) 

λ = | n x | + | n y | + | n z | (5) 

ηi = 0 . 065(1 − λ2 ) + 0 . 39 (6) 

where n = (n x , n y , n z ) is the normal outward unit vector at the sur- 
face, ηi is a parameter controlling the thickness of the transition 
region and 1 is a characteristic grid size ( 1 = 

√ 
2 1x for a 2D uni- 

form grid). The force f is then defined as 

f = α
V s − ˜ V 

1t 
, (7) 

where 1t is the time step used for the time-advancement, V s is 
the local velocity imposed in the solid object ( V s = 0 here), and ˜ V 

is an intermediate velocity field without considering the immersed 
object. For more precision, see Section 2.4 . 

2.3. Time stepping and spatial discretization 

Eqs. (1) –(3) are solved on a staggered Cartesian grid following 
a finite-volume approach [43] . The time integration of (1) and (2) 
is performed via a third-order Runge–Kutta method for all terms 
except the viscous term for which a second-order semi-implicit 
Crank–Nicolson scheme is used [44] . The incompressibility condi- 
tion (2) is satisfied at the end of each time step through a pro- 
jection method. The transport equation of volume fraction (3) is 
solved by using a modified version of the flux-corrected trans- 
port scheme proposed by Zalesak [45] . Domain decomposition and 
Message-Passing-Interface (MPI) parallelization is performed to fa- 
cilitate simulation of large number of computational cells. 



2.4. Summary of the time-advancement procedure 

The time-advancement procedure of the present coupled VOF- 
IBM method within a time-step is described in the following, in 
the specific case of a fixed immersed object. 

1. At the beginning of the time step, the divergence-free veloc- 
ity field V n , volume fraction C n , pressure P n −1 / 2 in the fluid 
are known, where n refers to the time step. 

2. C n +1 is computed by solving (3) , and second-order approx- 
imations of the volume fraction C n +1 / 2 at time (n + 1 / 2)1t

are computed using C n +1 / 2 = (C n + C n +1 ) / 2 , and used to es- 
timate fluid density and viscosity in Eq. (1) . 

3. A Mixed Runge–Kutta/Crank–Nicolson loop ( k = 1 , 2 , 3 ) is 
used to compute the velocity field predictor ̂ V n +1 , taking 
into account the presence of the solid body but not respect- 
ing the divergence free condition. 

3a. Computation of the intermediate velocity field ˜ V k without 
considering fluid-solid interaction: 

˜ V k − ̂ V k −1 

1t 
= SM , (8) 

with 

SM = γk N ( ̂  V 
k −1 ) + ζk N ( ̂  V 

k −2 ) + (αk + βk ) L ( ̂
 V 
k −1 ) 

− (αk + βk ) 

( 1 
ρ

∇P n −1 / 2 − g 

)
(9) 

where N (resp. L ) is the non-linear (resp. linear) operator for 
the advective (resp. viscous) terms. αk , βk , γ k and ζ k are the 
Runge–Kutta coefficients. The velocity predictor ̂  V k is initial- 
ized with the velocity field at the previous time step. 

3b. Computation of the velocity field which includes the contri- 
bution of the fluid-solid coupling term f k (the calculation of 
which does not make use of an internal loop) as 

f k = α
−˜ V k 

1t 
, (10) 

̂ V k − ̂ V k −1 

1t 
− βk L ( ̂

 V 
k − ̂ V 

k −1 ) = SM + f k . (11) 

3c. For k = 3 , ̂  V n +1 is then obtained. 
4. In order to verify Eq. (2) , a Poisson pseudo-equation is then 

solved to get the potential auxiliary function 8n +1 as 

∇ · ( 
1 
ρ

∇8n +1 ) = 
1 
1t 

∇ · ̂ V 
n +1 . (12) 

5. The pressure P n +1 / 2 and the divergence-free velocity V n +1 

are then obtained from the potential auxiliary function 8n +1 

P n +1 / 2 = P n −1 / 2 + 8n +1 , (13) 

V 
n +1 = ̂  V 

n +1 −
1t 

ρ
∇8n +1 . (14) 

6. Return to step 1. 

3. Results 

In the following sections, the numerical method described 
above is applied to the study of the propagation of a solitary wave 
over bottoms of various shapes, namely a semi-cylinder, a slop- 
ing beach and a natural beach. A schematic view of the set-up 
is shown in Fig. 1 . The solitary wave of amplitude H in a depth 
h moves toward the left with a phase speed c . We define the di- 
mensionless amplitude ǫ as ǫ = H/h . An immersed object may be 
included in the fluid domain and is represented by the gray region 
in Fig. 1 . The solid body may either be immersed or submerged. 

In the latter case (as represented in Fig. 1 ) the body is in contact 
with air and water. R denotes the run-up elevation. 

All the computations are initialized with a solitary wave cen- 
tered at the location x = x 0 using a second-order accurate analyti- 
cal profile given by Grimshaw [46] . The initial free surface position 
η( x , 0) is given by : 

η(x, 0) 
h 

= ǫs 2 −
3 
4 
ǫ2 s 2 q 2 + O (ǫ3 ) (15) 

where s = sech [ γ (x − x 0 )] , q = tanh [ γ (x − x 0 )] and γ = √ 

(3 ǫ/ 4) /h . The phase velocity of the solitary wave is given 
by 

c = c p 

(
1 + 

1 
2 
ǫ −

3 
20 

ǫ2 
)

+ O (ǫ3 ) , (16) 

where c p = 

√ 

gh . The initial velocity field is also given by 
Grimshaw [46] . Since the analytical solution mentioned above is 
established using the potential flow assumption, in all the cases 
presented here a transitory phase is observed at early times until 
the boundary layer is developed at the bottom wall. 

In the present configuration, the wave dynamics depends on 
the dimensionless amplitude ǫ = H/h and the Reynolds number 
here defined as [47] 

Re = 

√ 

4 
3 
c p hǫ3 / 2 

ν
. (17) 

The density ratio and viscosity ratio are held fixed at ρw /ρa = 

10 0 0 and µw /µa = 55 , while ǫ and Re are varied. Physical quanti- 
ties are made dimensionless using h and c as length and velocity 
scales, respectively, and are denoted by an asterisk. In particular, 
we define the dimensionless time t ∗ = tc/h and the dimensionless 
coordinates, x ∗ = x/h and y ∗ = y/h . 

In the following, only two-dimensional computations are per- 
formed and no turbulence model is used. Thus, low values of 
Reynolds number are employed in order to guarantee the preci- 
sion of the results and the stability of the computations. Numerical 
results presented in this paper come from four distinct computa- 
tions corresponding to four different physical configurations. For 
each computation, the dimensions and refinement of the grid have 
been carefully chosen in order to guarantee an optimal resolution 
of the flow and to prevent side effects. The numerical properties of 
the grids are summarized in Table 1 . The time step is updated at 
each iteration to guarantee the stability condition of the numeri- 
cal schemes. Independently of this condition, the time step is kept 
below a maximum value of 1t ∗ ≤ 2 . 5 × 10 −3 in order to ensure 
the temporal precision of the computations. Details on the conver- 
gence properties of the computation in the case of a propagating 
solitary wave over of bottom-seated semi-circular cylinder are in- 
cluded in the following section. 

3.1. Propagation over a bottom-seated semi-circular cylinder 

A semi-circular cylinder of radius R ∗ = 0 . 3 is placed at the lo- 
cation (x ∗p = 0 , y ∗p = 0) in the domain as an immersed boundary. 
Periodic boundary conditions are imposed along the vertical walls 
while a no-slip (resp. free-slip) condition is imposed at the bottom 

(resp. top) boundary, for the velocity. A zero normal-gradient con- 
dition is imposed for the volume fraction C at both the bottom and 
the top boundaries. 

Fig. 2 shows the computational grid around the immersed 
boundary. A solitary wave of amplitude ǫ = 0 . 3 is initialized at 
x ∗ = 14 , i.e. far enough from the cylinder so as to ensure that the 
transitory phase of boundary layer development takes place be- 
fore the wave begins to interact with the cylinder. The Reynolds 
number of the solitary wave is Re = 210 . In this section, the re- 
sults are compared, when possible, to those of Klettner and Eames 



Table 1 

Summary of the computational grids used in the present study. Note that in irregular grid regions 
the grid size varies linearly. 

Case n x × n y Range Grid spacing 

Semi-circular cylinder 2048 × 128 −18 < x ∗ < −5 . 2 1x ∗ = 1 / 32 
−5 . 2 < x ∗ < −4 . 8 1/64 < 1x ∗ < 1/32 
−4 . 8 < x ∗ < 4 . 8 1x ∗ = 1 / 64 
4.8 < x ∗ < 5.2 1/64 < 1x ∗ < 1/32 
5.2 < x ∗ < 30 1x ∗ = 1 / 32 
0 < y ∗ < 2 1y ∗ = 1 / 64 

Sloping beach non-breaking case 2696 × 80 −3 . 56 < x ∗ < −1 . 56 1/120 < 1x ∗ < 1/10 
−1 . 56 < x ∗ < 10 . 4 1x ∗ = 1 / 120 
10.4 < x ∗ < 76.4 1/10 < 1x ∗ < 1/120 
0 < y ∗ < 1 1/32 < 1y ∗ < 1/120 
1 < y ∗ < 2 1/120 < 1y ∗ < 1/32 

Sloping beach breaking case 2354 × 158 −19 . 5 < x ∗ < −6 . 3 1/100 < 1x ∗ < 1/10 
−6 . 3 < x ∗ < 9 . 7 1x ∗ = 1 / 100 
9.7 < x ∗ < 38 1/10 < 1x ∗ < 1/100 
0 < y ∗ < 0.7 1/32 < 1y ∗ < 1/100 
0.7 < y ∗ < 1.8 1y ∗ = 1 / 100 
0.7 < y ∗ < 2.5 1/100 < 1y ∗ < 1/32 

Natural beach 2038 × 152 −4 < x ∗ < 12 1 / 10 < 1x ∗ = 1 / 100 
12 < x ∗ < 36 1/10 < 1x ∗ < 1/100 
0 < y ∗ < 0.7 1/32 < 1y ∗ < 1/100 
0.7 < y ∗ < 1.8 1y ∗ < 1/100 
0.7 < y ∗ < 2.5 1/100 < 1y ∗ < 1/32 

Fig. 2. Computational grid in the vicinity of the immersed boundary. The semi cir- 
cular cylinder is materialized by the isolines of solid volume fraction α = 0 . 5 (solid 
line), α = 0 . 05 and α = 0 . 95 (dashed lines). 

[3] who performed a direct numerical simulation of a solitary wave 
interacting with a semi-circular cylinder using an ALE method on a 
two-dimensional body-fitted grid. Their simulations were realized 
using 3 × 10 6 cells approximately. In the present work, 2.5 × 10 5 

grid point are used. 
Fig. 3 shows the evolution of the free surface ( C = 0 . 5 ) for both 

the propagation over a flat bottom and over a semi-circular cylin- 
der. The free-surface is observed to be mostly undisturbed by the 
presence of the immersed object. We note in passing the presence 
of a weakly reflected wave after t ∗ ≈ 14 = x ∗0 /c 

∗ in the case of the 
semi-circular cylinder. 

In order to predict the wave-bottom interaction, it is important 
to accurately describe the flow motion in the vicinity of the solid 
boundary. In Fig. 4 , snapshots of the vorticity field near the cylin- 
der are presented at different times during the passage of the soli- 
tary wave. Fig. 4 a confirms that the flow is essentially irrotational 
except near the bottom wall and the immersed cylinder. The vor- 
ticity on the top left corner of Fig. 4 c and 4 d is related to the 
shear layer near the free surface. The regions of negative vorticity 
along the cylinder surface indicates the presence of two separation 
points : one upstream to the cylinder and one close to the top of 

Fig. 3. Evolution of the free-surface, materialized by the iso-contour C = 0 . 5 , of a 
solitary wave propagating over ( ) a flat bottom and ( ) a circular cylinder. 
The cylinder is at the location x ∗ = 0 and the initial location of the wave’s crest is 
x ∗0 = 14 . Note that the vertical scale is arbitrary. 

the cylinder. The latter is responsible for the formation of a vor- 
tex at the lee side of the cylinder, which is shed from the cylinder 
( Fig. 4 b) while other vortices are generated at the equator and are 
then subject to complex vortex interaction ( Fig. 4 c and 4 d). The 
present evolution of the vorticity field around the immersed cylin- 
der is in reasonable agreement with that obtained by Klettner and 
Eames [3] (see their Fig. 6 ). 

The streamlines around the semi-cylinder are presented in 
Fig. 5 a at t ∗ = 14 . 4 . The results are very close to those of Klettner 
and Eames [3] ( Fig. 5 b), with the presence of two recirculating re- 
gions respectively upstream and downstream to the cylinder. Some 
characteristics of theses regions are defined in Fig. 5 c and com- 
pared for both studies in Table 2 . A good agreement is observed 
between the two computations. 

The dimensionless drag force over the cylinder is estimated as 

F ∗x = 
F x 

1 
2 ρl c 2 R 

, (18) 

F x = 

∫ 

S p 

ρl f · e x dS, (19) 

with f being defined in (7) and S p being the surface of the semi- 
cylinder. The temporal evolution of the force F ∗x is plotted in Fig. 6 a 



Fig. 4. (Colour online) Dimensionless vorticity field in the vicinity of a bottom-seated semi-circular cylinder during the passage of a solitary wave of amplitude ǫ = 0 . 2 at 
t ∗ = 17 . 6 (a), 22.4 (b), 28.5 (c) and 36.3 (d). Here the vorticity is made dimensionless by c / h and the iso-contours are linearly distributed in the range [ −0 . 6 , 0 . 6] . The actual 
range of vorticity in each snapshot is [ −4 . 1 , 4 . 9] (a), [ −3 . 7 , 3 . 1] (b), [ −3 . 3 , 1 . 2] (c) and [ −2 . 7 , 0 . 8] (d). 

Fig. 5. Streamlines in the vicinity of the cylinder at t ∗ ≈ 14.4, showing the forma- 
tion of two recirculation regions stemming from the passage of the solitary wave: 
(a), present study. The semi-circular cylinder represented by a black disk is materi- 
alized by α = 1 ; (b), results of [3] using a boundary-fitted approach; (c), schematic 
view of the characteristic lengths and angles used in Table 2 of the recirculation 
regions. 

Table 2 

Characteristic lengths and angles of the recirculation regions displayed in Fig. 5 . 
The results of [3] who used a well-resolved boundary-fitted approach are taken as 
reference for comparison. 

Study l 1 /R l 2 /R α1 α2 

Klettner and Eames [3] 1 .26 1 .25 5 .9 ° 27 .4 °
Present study 1 .33 1 .36 5 .8 ° 29 .2 °
Error (%) 5 .6 8 .8 2 .3 6 .7 

and compared with that of Klettner and Eames [3] . The drag force 
is positive during the first instants of the computation, while the 
solitary wave is propagating toward the cylinder. After reaching an 
extremum at t ∗ ≈ 12, the force then rapidly becomes positive and 
reaches another extremum before it goes down to zero. This be- 
havior suggests that the drag force is mostly due to hydrostatic 
pressure gradient below the wave. However, in an idealized poten- 
tial flow, the hydrostatic pressure gradient would result in a force 
F ∗x which vanishes exactly when the crest passes over the cylinder 
(i.e. at t ∗ = x ∗0 /c 

∗), with equal positive and negative peaks before 
and after this time instance. In Fig. 6 a it is observed that F ∗x does 
not vanish at t ∗ = x ∗0 /c 

∗ and that the negative peak is almost twice 
higher than the positive one. This can be interpreted as a conse- 
quence of the presence of the viscous boundary layers. In partic- 
ular, the presence of the large downstream recirculating region, as 
shown in Fig. 5 , is expected to involve a net negative drag force. 

The dimensionless spatially-averaged horizontal momentum of 
the solitary wave is defined as I ∗ = I/cM, where M is the mass per 
unit length of the wave 

M = 

∫ x max 

x min 

ρl ηdx, (20) 

and I is the wave momentum, 

Fig. 6. Solitary wave propagating over a semi-circular cylinder: Evolution of (a) the 
drag force F ∗x exerted by the fluid on the cylinder, and (b) the time derivative of 
the spatially-averaged horizontal momentum: ( ), present study; ( ∗), results of 
[3] ; ( ), present results for the case of a solitary wave propagating over a flat 
bottom. The variation of the maximum value of dI ∗/ dt ∗ as a function of the time 
step ( ) and the grid size ( ) in the region the cylinder is included in (b) 
to show the convergence of the computation. Here, I ∗ = I/cM. 

I = 

∫ η

0 

∫ x max 

x min 

ρl Ud xd y. (21) 

Here x min and x max denote the positions of the lateral boundaries 
of the computation domain. 

The interaction between the wave and the solid body is now 

observed via the variation of dI ∗/ dt ∗ ( Fig. 6 b). In the case of a flat 
bottom, one can see a transitory regime due to the adaptation of 
the idealized non-viscous initial condition to the bottom boundary 
condition. In presence of the cylinder, the time history of dI ∗/ dt ∗ is 
very similar to the evolution of F ∗x . A positive and a negative peak 
are observed, respectively corresponding to the negative and posi- 
tive peak of F ∗x . After t 

∗ ≈ 25 the wave is not interacting anymore 
with the cylinder and dI ∗/ dt ∗ is the same as in the case of a flat 
bottom. The origin of the bump observed at t ∗ ≈ 30 in Fig. 6 has 
not been identified so far, but may be related to the vorticity dy- 
namics near the cylinder. During all the computation a good agree- 
ment with the results of Klettner and Eames [3] is observed de- 
spite the difference in the computation methods and in the num- 
ber of cells employed. 

The variation of the maximum value of dI ∗/ dt ∗ as a function 
of the time step and the grid size in the region of the cylinder 
is included in Fig. 6 b to show the convergence properties of the 
computation. The result greatly varies with the grid size while it is 
less sensitive to the time step. So far, the analysis has been done 
on the basis of numerical results obtained with 1x ∗ = 1 / 64 and 
1t ∗ = 2 . 5 × 10 −3 . It is seen that the computation is well converged 
with this set of numerical parameters. 



The above observations show that the use of the present 
VOF-IBM approach is relevant for the numerical investigation of 
wave-bottom interaction problems. The method is able to accu- 
rately capture important flow features like flow separation and vor- 
tex shedding which influence the wave loading on the body, while 
keeping a reasonable number of grid points. 

3.2. Run-up of a solitary wave on a sloping beach 

In the previous section, the modeling of the free surface has not 
been a central issue as the wave only weakly deforms due to the 
presence of the cylinder. In this section, we consider the shoaling 
of a solitary wave on a sloping beach, which introduces additional 
complexity due to (i) the presence of a triple point at the coastline 
and (ii) the occurrence of strong free-surface deformations with 
possible wave breaking. 

A solitary wave of amplitude ǫ and initially centered at x ∗0 = 50 
propagates toward the left before its encounters at x ∗p = 1 /tan (β) a 
sloping beach forming an angle β = arctan (1 / 19 . 85) with the hor- 
izontal axis. Free-slip boundary conditions are imposed at the up- 
per horizontal and the vertical boundaries for the velocity, while 
a no-slip boundary condition is imposed at the bottom boundary. 
Zero normal-gradient conditions are imposed at all boundaries for 
the volume fraction C . 

We define the wave run-up R as the maximum height reached 
by the wedge of water that climbs the beach (see e.g. Fig. 1 ). Syn- 
olakis [48] derived a solution based on the inviscid shallow-water 
theory for the run-up of a non-breaking solitary wave as a function 
of the amplitude and the slope viz 

R 

h 
= 2 . 831( cot β) 

1 
2 

(
H 

h 

) 5 
4 
. (22) 

He also stated that the occurrence of wave breaking only depends 
on these parameters. His theoretical analysis allowed him to pre- 
dict the critical amplitude H c above which wave-breaking occurs, 
namely 

H c 

h 
= 0 . 8183( cot β) −

10 
9 . (23) 

We first consider a non-breaking solitary wave of amplitude 
ǫ = 0 . 019 . The value of the Reynolds number defined in (17) is 
Re = 335 . The temporal evolution of the free-surface along the 
slope is presented in Fig. 7 together with the experimental data 
of Synolakis [40] . In order to estimate the numerical thickness of 
the free-surface relative to the wave amplitude, the interface is 
represented by three iso-lines of volume fraction. It appears that 
for such a small amplitude, the thickness of the free-surface and 
the wave amplitude are of the same order of magnitude. In prac- 
tice, the free-surface is considered to be localized along the iso-line 
C = 0 . 5 . 

The present numerical solution displayed in Fig. 7 shows a good 
agreement with experiments. The dynamics of the shoaling is well 
described, except at late times during the backwash (80 ≤ t ∗ ≤ 90) 
for which there is a slight time delay between the numerical so- 
lution and the experimental data. In addition, the run-up of the 
wave is slightly under-predicted by the computation, since we ob- 
tain a value of R /h = 0 . 059 (calculated with the iso-value C = 0 . 5 
of the water volume fraction) instead of R /h = [0 . 076 − 0 . 078] in 
the experiments of Synolakis. Eq. (22) , based on an inviscid theory, 
predicts a run-up R /h = 0 . 089 . 

When the wave propagates over an entirely immersed body, as 
in the case of the bottom-seated cylinder (see Section 3.1 ), the 
air/water and water/bottom interfaces never intersect contrary to 
the present case where both interfaces intersect. The volume frac- 
tion as well as the sloping beach near this point are shown in 
Fig. 8 . This figure shows that the interface is smeared in the re- 
gion of the run-up. This smearing is inherent of the front-capturing 

Fig. 7. Run-up of a solitary wave on a slope of angle β = arctan (1 / 19 . 85) with 
ǫ = 0 . 019 and Re = 335 . The free-surface for the present method is represented by 
iso-lines of C = 0 . 1 ( ), 0.5 ( ) and 0.9 ( ); ( ), experiments of Syno- 
lakis [48] . The immersed boundary is represented by iso-lines α = 0 . 1 , 0.5 and 0.9. 
Profiles are shown at (a) t ∗ = 38 . 01 , (b) 43.60, (c) 50.30 , (d) 55.89, (e) 61.48, (f) 
68.19, (g) 72.66, (h) 78.25, (i) 82.72 and (j) 88.31. Note that the frames have been 
stretched in the vertical direction for sake of clarity. 

Fig. 8. Run-up of a non-breaking solitary wave on a sloping beach. Visualization 
of the fluid and solid volume fraction fields in the swash zone at t ∗ = 62 . 60 . Both 
quantities are respectively represented with iso-contours of C = 0 . 1 , 0.5, 0.9 (solid 
lines) and α = 0 . 1 , 0.5 and 0.9 (dashed lines). 

methods with no interface reconstruction in regions of high shear- 
stress [42] . We verified that the smearing of the air-water interface 
was not due to the presence of the immersed-boundary, since the 
same distribution of volume fraction was found when the beach is 
treated by a boundary fitted grid with a no-slip boundary condi- 
tion (not shown here). 

Increasing the wave amplitude while keeping the same an- 
gle for the sloping beach leads to the breaking of the solitary 
wave. The occurrence of breaking is intrinsically linked to the non- 
linearity of the wave propagation. During shoaling, the informa- 
tion propagates faster at the top of the wave, resulting in high 
velocity gradients in the vicinity of the crest and increasing tur- 
bulence, as observed in the Particle Image Velocimetry measure- 
ments of Kang et al. [49] . This process may then be followed by 
the formation of a plunging jet which involve strong mixing and 



Fig. 9. Run-up of a breaking solitary wave with ǫ = 0 . 3 and Re = 210 , materialized by the volume fraction of water. 

Fig. 10. Run-up of a breaking solitary wave on a slope of angle β = arctan (1 / 19 . 85) 
with ǫ = 0 . 3 and Re = 210 . The immersed boundary is represented by iso-lines of 
α = 0 . 1 , 0.5 and 0.9 while the free-surface obtained from the simulations is mate- 
rialized by the iso-contour C = 0 . 5 : ( ) present method with the beach treated 
as an immersed boundary; ( ) experiments of [40] ; ( ) present method with the 
beach treated as a body-fitted boundary with a no-slip condition for the velocity. 
Profiles are shown at times (a) t ∗ = 23 . 91 , (b) 28.97 , (c) 34.64, (d) 57.25, (e) 68.58 
and (f) 79.91. Note that the frames have been stretched in the vertical direction for 
clarity. 

the generation of turbulence. Recall that here, we intend to solve 
all the spatial and temporal scales of the flow by means of direct 
numerical simulation, i.e. without using any turbulence model. The 
limited computational resources force us to choose moderate val- 
ues of the Reynolds number. 

We performed a simulation of the propagation of a solitary 
wave of amplitude ǫ = 0 . 3 and Reynolds number Re = 210 running 
up a sloping beach with an angle β = arctan (1 / 19 . 85) . As the am- 
plitude ǫ of the wave is well above the critical amplitude given by 
Eq. (23) H c /h = 0 . 03 , the wave is expected to break during the run- 
up. In Fig. 9 , we plot the temporal evolution of the wave shape. De- 
spite the moderate value of the Reynolds number, one can observe 
a typical plunging break down of the wave. In Fig. 9 a, a plunging 
jet impacts the free-surface, causing the formation of a secondary 
jet (splash-up, Fig. 9 b). This results in mixing between air and wa- 
ter as observed in Fig. 9 c and 9 d. This is in agreement with ex- 
perimental observations of Bonmarin [50] . 

The free-surface position during the run-up ( C = 0 . 5 ) is com- 
pared with the experimental results of Synolakis [40] in Fig. 10 . 
Note that in the experiment, Re ≈ 5 × 10 4 . A very good agree- 
ment is observed for t ∗ ≤ 35, i.e. before the collapsing of the bore 
and the ejection of the jet [51] . At t ∗ = 57 . 25 , the run-up is under- 

predicted by the computation in comparison with the experiments. 
In addition, the bore located at x ∗ = 3 for t ∗ = 70 − 80 in the ex- 
periments due to the backwash flow is not observed in the sim- 
ulation. Note however, that this region connecting the backward 
flowing thin layer of water and the deeper water is likely to be 
subject to strong mixing and air entrainment, thus increasing the 
experimental uncertainties of the free-surface measurements. 

In order to assess the influence of the immersed boundary on 
the solution, we performed another computation for which the 
beach is treated as a boundary-fitted grid with a no-slip (resp. 
zero-normal gradient) condition imposed for the velocity (resp. 
volume fraction). The profiles of the free-surface running up the 
body-fitted beach is shown in Fig. 10 (triangle symbols). It is found 
that the free-surface profile is nearly identical to that obtained 
with the simulation for which the beach is modeled via an im- 
mersed boundary. Therefore, one may conclude that the discrep- 
ancy between the simulation and the experiment is not due to the 
immersed-boundary modeling. 

The discrepancy observed between the numerical simulation 
and the experience is likely due to the difference of Reynolds num- 
bers. Recall that Re = 210 ( Re ≈ 5 × 10 4 ) in the simulations (ex- 
periments). The somewhat low value of the Reynolds number em- 
ployed in the computation may lead to an increased energy dissi- 
pation in the regions of high velocity gradients especially at the 
air-water interface and more importantly along the wall of the 
sloping beach. During the run-up of the water front, the viscous 
dissipation becomes significant in the thin layer of water which 
is subject to strong shear at both the air-water interface and at 
the wall. In the case of thin liquid fronts propagating along a hor- 
izontal wall, Bonometti et al. [52] showed that the wall friction 
could lead to a decrease of the front velocity of up to 50% espe- 
cially when the density ratio of the current to ambient is large, 
as in the present case. This is in line with the fact that the dis- 
crepancy between the simulations and the experiment in Fig. 10 is 
probably due to viscous friction (along the sloping beach) which 
is artificially increased by the somewhat low value of the chosen 
Reynolds number. 

An indirect confirmation of this point is given in Fig. 11 where 
the beach is still treated by a body-fitted mesh but with a free-slip 
boundary condition (i.e. no viscous stress at the boundary). Here, 
we observed a close agreement with experiments. The dynamics 
of both the run-up and rundown is well described, including the 
formation of a bore during the backwash, even though its position 
is slightly shifted toward the shore ( Fig. 11 e). This confirms that 
the small run-up of the computed wave front in Fig. 10 is related 
to the artificially large wall friction along the beach and not to the 
fact that the beach is modeled by an immersed boundary. 
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Fig. 11. Same as Fig. 10 : ( ) experiments of [40] ; ( ) present method with the beach treated as a body-fitted boundary with a free-slip condition for the velocity . 

Fig. 12. Visualization of the initial state of the simulation of the run-up of a solitary wave on a natural beach. The two fluid phases are represented in gray (water) and 
white (air), respectively and the immersed boundary (i.e. the beach) is represented by the solid black line. Here, the wave amplitude is ǫ = H/h = 0 . 27 . 

In summary, the above observations allow us to conclude that 
(i) the VOF method is efficient in describing complex interface de- 
formations including plunging wave breaking, the dynamics of a 
free-surface of small amplitude being well captured even with a 
moderate spatial resolution of the free surface; (ii) the IBM is able 
to reproduce wave-body interactions including non-breaking and 
breaking waves running up a sloping beach; (iii) a low value of 
the Reynolds number leads to large viscous wall friction inside the 
climbing layer of fluid along the slope. Setting a free-slip boundary 
condition along the beach permits to get good agreement between 
moderate- Re simulation and water wave experiments. 

3.3. Run-up of a solitary wave on a natural beach 

So far the present numerical method was applied to academic 
cases usually considered as paradigms of more complex natural 
configurations. The advantage of the immersed boundary method 
as compared to approaches using a body-fitted grid is that it can 
be applied to arbitrary bottom geometries. In order to illustrate 
the potential of such a method, we now focus on the run-up of 
a breaking solitary wave on a natural beach. 

Caplain [53] performed a series of experiments in order to 
study sediment transport and sea bed morphology induced by 
a harmonic wave forcing. Different types of beach profile were 
obtained depending on the energy of the incoming waves. These 
profiles were mostly two-dimensional, that is invariant along the 
horizontal direction perpendicular to the incoming waves. For our 
numerical simulation, we chose one profile as an example of a 
naturally shaped beach (see Fig. 4.11 in [53] ). A visualization of the 
beach modeled via an immersed boundary in the computational 
domain is presented in Fig. 12 . Note that we extended the left part 
of the beach by a plateau ( x ∗ ≤ 2) in order to permit overflow. 

The solitary wave is initialized with an amplitude ǫ = 0 . 27 cor- 
responding to a Reynolds number Re = 360 . Snapshots of volume 
fraction at different time during the run-up are shown in Fig. 13 . 
At t ∗ = 26 . 1 , the wave has passed the bar and lost its initial shape, 
mostly due to the blocking effect caused by the topographical 

bump. At 28.6 ≤ t ∗ ≤ 29.5, a bore is formed which collapses at 
t ∗ ≈ 30.2. In the present case, the run-up of the wave is large and 
induces an overflow visible at t ∗ = 33 . 9 . Note that this overflow is 
likely to be under predicted due to the low value of the Reynolds 
number used here, as discussed in the previous section. 

The profile of the free surface exhibits other complex interac- 
tions between the wave and the topography. An interesting fea- 
ture is the presence of a deformation of the free surface on the left 
side of the bar ( x ∗ ≈ 3.5) which appears at t ∗ = 28 . 6 and persists 
for a long time after the passage of the crest (until t ∗ = 40 ). The 
depression is located above a strong decrease of the bottom floor 
at the left of the bump. This perturbation remains stationary until 
the primary wave reaches its maximum run-up distance, and then 
propagates back offshore (33.9 ≤ t ∗ ≤ 41.3). The Froude number 
associated with the solitary wave can be estimated by F = U/ 

√ 

gh , 

U being the characteristic velocity of the solitary wave namely 
U = ǫ

√ 

gh , which leads to F = ǫ = 0 . 27 . In addition, the blockage 
factor defined as the height ratio between the bar and the free sur- 
face is approximately 80%, here. Similar features were observed in 
subcritical free surface flows over an obstruction with a high block- 
age factor, as in [54] and [55] for example. 

A typical feature of the flow induced by the run-up is shown 
in Fig. 14 . The flow structure in the vicinity of the bar, which is 
oriented from rigth to left, is characterized by two recirculation 
regions. On the lee side of the bar, we observe the formation of 
a strong vortex which persists until it is swept down when the 
wave begins to rundown (not shown). The flow pattern described 
here has a great importance in terms of bed load transport, as one 
would expect such structures to result in a sharpening of the bar. 
In order to quantitatively illustrate this feature, we show in Fig. 14 
the bottom shear stress τb = µ∂ u t /∂ n, interpolated on the isoline 
α = 0 . 5 in the vicinity of the bar. Here u t and n respectively de- 
note the tangential velocity and the direction normal to the bot- 
tom. We observe that two extrema of opposite sign ( τ b ≈ ±1) are 
present on both sides of the top of the bar. A rough estimation of 
the Shields parameter 2 = τb / (ρs − ρ) gD based on the character- 
istic sediments density ρs and diameter D of the particles used in 



Fig. 13. Run-up of a breaking solitary wave on a natural beach. Snapshots of volume fraction at t ∗ = 26 . 1 (a),28.6 (b), 29.5 (c), 30.2 (d), 33.9 (e) and 41.3 (f). Note that the 
aspect ratio of the snapshots is here equal to 1. 

Fig. 14. Run-up of a breaking solitary wave on a natural beach. Streamlines (a) and bottom shear stress (b) in the vicinity of the bar at t ∗ = 31 . 6 . 

the experiments of [53] gives 2 ≈ 0.2 for τb = 1 . Considering a 
critical value 2c = 0 . 1 above which a particle suspension may be 
expected, the present flow would result in a sediment transport 
from both sides of the bar toward the top. A similar approach has 
been used by [56] in order to simulate the morphodynamic in an 
open-channel bend. 

4. Summary and conclusions 

The aim of this work was to demonstrate the capability of a 
coupled VOF-IBM numerical method to accurately reproduce wave 
shoaling on simple and complex shaped bottoms. The propagation 
of a solitary wave over a semi-circular cylinder has been simulated 
showing that the IBM was able to reproduce some key features of 

fluid-body interaction such as flow separation and vortex shedding. 
Quantitative comparison with the results of [3] shows that the flow 

dynamics is well described even if the spatial resolution is one or- 
der of magnitude lower than that used by these authors. 

The present approach was then applied to the run-up of a soli- 
tary wave on a sloping beach where strong deformations of the 
free surface occur, including plunging wave breaking and genera- 
tion of secondary jets. The low value of the Reynolds number em- 
ployed in the simulations has been identified to be the cause of an 
under prediction of the maximum wave run-up due to an artifi- 
cially increased wall friction along the slope of the beach. Compar- 
isons with boundary-fitted simulations with no-slip and free-slip 
condition along the beach slope have shown that (i) the immersed 
boundary is able to reproduce the no-slip condition along the 



immersed boundary and (ii) using a free-slip boundary enables us 
to obtain a good agreement with experimental results despite the 
somewhat low value of the Reynolds number. 

Finally, we presented a simulation of the run-up of a breaking 
solitary wave on a natural beach including the presence of a bar in 
the breaker zone. We observed that complex interaction take place 
in this region. The free-surface dynamics is characterized by the 
presence of a stationary perturbation similar to those observed in 
channel flows over an obstacle, and the formation of two recircu- 
lating regions around the bar’s crest associated with the formation 
of strong vortices. 

The capability of the IBM to deal with arbitrary shaped bound- 
aries widely increases the diversity of problems which can be stud- 
ied numerically. Then, as both the VOF method and the IBM can be 
straightforwardly applied to three-dimensional configurations, nu- 
merical studies of wave shoaling over variable topography along 
both directions can be performed. 
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