
HAL Id: hal-01293232
https://hal.science/hal-01293232v1

Submitted on 28 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HPFIT: A Set of Integrated Tools for the Parallelization
of Applications Using High Performance Fortran

T. Brandes, S. Chaumette, Marie-Christine Counilh, Alain Darte, Frédéric
Desprez, Jean Roman, Jean-Christophe Mignot

To cite this version:
T. Brandes, S. Chaumette, Marie-Christine Counilh, Alain Darte, Frédéric Desprez, et al.. HPFIT:
A Set of Integrated Tools for the Parallelization of Applications Using High Performance Fortran.
[Research Report] CNRS; ENS Lyon; INRIA; UCBL; Laboratoire de l’Informatique de Parallélisme.
1996. �hal-01293232�

https://hal.science/hal-01293232v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

HPFIT: A Set of Integrated Tools

for the Parallelization of Applications

Using High Performance Fortran

T. Brandes, S. Chaumette, M.C.

Counilh, A. Darte, F. Desprez,

J.C. Mignot, J. Roman

October 8, 1996

Research Report N

o

96-28

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

HPFIT: A Set of Integrated Tools

for the Parallelization of Applications

Using High Performance Fortran

T. Brandes, S. Chaumette, M.C. Counilh, A. Darte, F. Desprez, J.C. Mignot, J. Roman

October 8, 1996

Abstract

In this report, we present the HPFIT project whose aim is to provide a set of interactive tools

integrated in a single environment to help users to parallelize scienti�c applications to be run

on Distributed Memory Parallel Computers. HPFIT is built around a restructuring tool called

TransTOOL which includes an editor, a parser, a dependence analysis tool and an optimization

kernel. Moreover, we provide the users with a clean interface, so that developers of tools around

High Performance Fortran can easily integrate their software within our tool.

Keywords: Semi-automatic parallelization, High Performance Fortran (HPF), Development Tools

R�esum�e

Dans ce rapport, nous pr�esentons le projet HPFIT dont le but est de fournir un ensemble d'outils

interactifs int�egr�es dans un seul environnement pour aider les utilisateurs �a parall�eliser des ap-

plications scienti�ques sur des machines parall�eles �a m�emoire distribu�ee. HPFIT est bâti autour

d'un outil de restructuration appel�e TransTOOL qui inclut un �editeur, un analyseur syntaxique,

un outil d'analyse de d�ependances et un noyau d'optimisation. De plus, nous fournissons une in-

terface propre pour aider les d�eveloppeurs d'outils autour d'High Performance Fortran �a int�egrer

leurs logiciels �a l'int�erieur de notre outil.

Mots-cl�es: Parall�elisation semi-automatique, High Performance Fortran, outils de d�eveloppement

HPFIT: A Set of Integrated Tools

for the Parallelization of Applications

Using High Performance Fortran

1

T. Brandes S. Chaumette, M.C. Counilh A. Darte and F. Desprez

and J. Roman and J.C. Mignot

GMD/SCAI

2

LaBRI

3

LIP

4

Germany France France

October 8, 1996

1

This work is partly supported by the CNRS{ENS Lyon{INRIA project ReMaP and by the LHPC{EuroTOPS

project.

2

Institute for Algorithms and Scienti�c Computing, German National Research Center for Computer Science,

Schloss Birlinghoven, PO Box 1319, 53754 St. Augustin, Germany.

3

URA CNRS 1304, ENSERB and Universit�e Bordeaux I, 351, Cours de la Liberation, 33405 Talence, France.

4

URA CNRS 1398, INRIA Rhône-Alpes, 46, All�ee D'Italie, 69364 Lyon Cedex 07, France.

Introduction

Developing large scienti�c applications on distributed memory parallel computers is a di�cult task, especially

for newcomers or people without a deep knowledge of parallelism. Currently, we notice that parallelism not

only enters industrial areas but also other �elds of science. The aim of European projects, like EUROPORT

1 and 2 is clear: to prove the validity of a parallel solution for large industrial codes. Moreover, in order to

solve larger problems, scientists need more and more powerful computers in terms of M
ops and memory

size. During the last two years, big e�orts have been put in the de�nition of libraries and languages. These

e�orts lead to standards like BLAS (Basic Linear Algebra Subroutines), MPI (Message Passing Interface)

and HPF (High Performance Fortran). Some parallel libraries like ScaLAPACK or NAG start to be widely

used. Finally, many tools for the development of applications using data-parallel languages begin to appear.

Nevertheless, almost none of them o�ers a complete collection of portable tools and almost none of them is

available as a free software.

It is unlikely that we will ever see a \black box" able to parallelize a non-trivial serial code into a

performing parallel code. The user needs to help the compiler by giving information about his code. This

can be done for example via directives inserted in the source �le like in HPF. But it is now admitted that

the insertion of such directives is a non trivial task for average users who do not have a deep knowledge

of parallelization techniques. Therefore, interactive parallelization tools have a great importance in parallel

computing, even in the limited �eld of numerical problems.

This report includes two papers, presenting the HPFIT

1

project and the developments made around it.

These two papers were presented at the ETPSCIII workshop [14, 15]. The �rst paper presents the HPFIT

project in general and its kernel, TransTOOL (Chapter 1). The second paper presents the data structure

visualization tool VisIt and HPF extensions for irregular problems (Chapter 2). These two papers describe

the �rst results of our development e�ort.

The remainder of this report is organized as follows. In Chapter 1, Section 1.1 gives a short survey

of tools for data-parallel programming. Section 1.2 presents the development of a parallel application and

describes the HPFIT project. In Section 1.3, we present TransTOOL which contains the editor, the parser,

the dependences analysis tool, and an optimization kernel. Section 1.4 presents two research directions in

the TransTOOL optimization kernel. In Chapter 2, Section 2.1 describes one tool, DDD, used to visualize

and analyse data-parallel programs in terms of the data they work on, and its underlying model. Section 2.2

presents extensions of High Performance Fortran to handle irregular problems before some conclusions and

ideas for future work.

1

URL http://www.ens-lyon.fr/~desprez/FILES/RESEARCH/SOFT/HPFIT/

1

Chapter 1

HPFIT and the TransTOOL

Environment

1.1 Previous Work

A lot of work has been done since the early eighties around tools for supercomputer programming. These

early tools need to be enhanced to follow the development of parallel computing. In this section, we present

some tools for the parallelization of applications written in Fortran 77 and HPF. For a comprehensive survey

of HPF tools, see [48].

One of the �rst projects around an \intelligent" editor for the parallelization of applications written

in Fortran77 was the ParaScope editor (PED) from Rice University [42]. PED was designed for shared

memory machines. It has been built from di�erent other projects in Rice, like R

n

, PFC and PTOOL. PED

allowed the search of a dependences graph whose size was limited by some �ltering information. Several

optimizations were added to the tool like loop restructuring, loop parallelization, dependence deletion and

memory optimization. PED has been using an incremental analysis to update its text and dependences

panes.

The D-Editor [35] has been partly developed from PED also at Rice University. This editor has been

designed for the parallelization of applications written in Fortran D, a data-parallel language which turned

out to be a major input to the design of HPF. The D-editor contains an interprocedural analysis tool,

the Fortran D compiler and tools for automatic data distribution, data-race detection, static performance

estimation and performance pro�ling. The graphical display is derived from PED and contains �ve panes:

an overview pane provides a summary of the loops and subroutines in the program (loops which restrict

parallelism are highlighted); a dependence pane displays the data dependences carried on the selected loop;

the communication pane displays all the communications associated with the selected loop; the data layout

pane displays the data decomposition information for each array of the loop; and �nally the source pane

shows the actual program code. The performance analysis environment Pablo has also been integrated within

the D-Editor [2].

The Vienna Fortran Compilation System (VFCS) [60] is a source-to-source compilation system based on

Vienna Fortran, another extension set for Fortran, similar to Fortran D and HPF. It contains a compiler, an

interactive performance estimator P3T [20], a performance measuring system (VFPMS), and a knowledge

based tool, eXPert Advisor (XPA) to help the user to insert the directives [5].

ForgeExplorer is an interactive parallelizer based on an interactive source code browser. It also performs

loop level transformations.

The Annai tool environment [22], developed by CSCS in a collaboration with NEC, uses MPI as the

communication interface for various distributed memory platforms: NEC Cenju-3, Cray T3D, Intel Paragon,

and Unix multiprocessor/networked workstations. It consists of an extended HPF compiler (with extensions

for irregularly structured computations), a parallel debugger and performance monitor and analyzer, designed

with important feedback from application developers.

The Computer Aided Parallelization Tools (CAPTools [37]) is a recent set of tools developed at the

2

University of Greenwich. This tool can show dependences using a graphical display [44]. The user can interact

inside the parallelization process by giving information about values or ranges of variables, by \deleting"

dependences, : : : It has a Partitioner window to partition his code and data structures, a communication

browser to see the generated communication routines calls. The code generated by CAPTools is written in

F77 and explicit communications routines calls.

To conclude this section, we point out that other important compilation projects are being undertaken,

like SUIF [4] and Paradigm [7].

1.2 The HPFIT Project

The development of a \real" application is conducted in a cycle involving several steps. This cycle is shown

on Figure 1.1.

Sequential algorithm

Parallel code

Data distribution

Libraries (seq, par)

MonitoringProfiling

Debugging

HPF compiler

Code with message passing

executable

Execute

Compiler

HPFize

Figure 1.1: Development cycle of an application on distributed memory platforms.

Tools can be designed to help users especially during the distribution phase. The programmer must

�nd a \good" distribution of data structures. This distribution should allow for the most parallelism, and

should reduce the number and volume of communications to its minimum. This can be evaluated using

various tools (monitoring tools, pro�lers). From this distribution, the user is able to write HPF directives

in the declaration part of the code. These distributions should be propagated inside the routines. They can

sometimes di�er and the programmer is allowed to redistribute the data inside the code. The code is then

compiled to obtain a source code in Fortran 77 with message-passing calls. It is sometimes possible to modify

the resulting code to insert optimizations. The code can then be executed or simulated. If traces have been

generated, the user can have an idea of the behavior of his code. The quality of the distribution (and the

optimizations) can be improved. This cycle can be executed several times to obtain the best performance.

One question is: how portable is the resulting code?

One problem with HPF is that a HPF compiler is not required to follow the user's advice (stated as

directives). This can be a problem because the user can have a false view of his code, \corrupted" by the

compiler. That is why we think that a strong interaction between the compiler and the parallelization tool

is necessary.

3

The aim of the HPFIT

1

project is to provide a set of interactive tools integrated in a single environment

to help users to parallelize scienti�c applications to be run on distributed memory platforms. This tool will

also be used as an interface to a large number of existing tools like HPF compilers, computation libraries,

simulators, data visualization tools, monitoring systems, pro�lers, and so on. These tools will interact in a

coherent environment. This environment should allow scientists with sequential source codes to produce good

parallel versions. Furthermore HPFIT will enable users to control the parallelization of their application, in

order to make it even better.

HPFIT will not be a black box taking a sequential application as input and magically producing an

e�cient parallel application as output. Rather, HPFIT will be a tool environment to support and ease the

development, tuning and maintenance of HPF applications. Though it is intended to be an open environment

that allows integration of new tools, we focus in the �rst version of our tool on the following items:

� source editing with analysis information,

� dependence analysis of particular loop nests,

� automatic detection of independent loops,

� automatic detection of pipelined computations patterns and code generation,

� support for data mapping (adding data distribution directives),

� visualization and evaluation of data mappings,

� interfaces to existing parallel libraries (e.g. ScaLAPACK, : : :),

� interfaces to HPF compilers,

� simulation, monitoring, performance analysis and interface with pro�ling tools,

� compilation and execution interface.

The parallelized code is a data parallel program with explicit data mapping and explicit data parallelism.

As the data parallel paradigm might not be the most e�cient one in some situations, we will provide a

library interface to codes written in other languages or other parallel programming styles, in particular

message passing libraries, and e�cient parallel computation libraries.

As most applications considered for parallelization are written in Fortran, and because a lot of work has

been done for automatic parallelization of this language, our target language is HPF. Since HPF provides

the EXTRINSIC mechanism, we can interface it with existing parallel libraries and other programming styles.

Some HPF compilers are being released. These compilers are designed by software companies (like pghpf

from PGI, DEC and IBM HPF compilers, : : :) or universities (like ADAPTOR from GMD/SCAI [19], VFCS

from the University of Vienna, sHPF from the University of Southampton, Fortran D from Rice University,

PARADIGM from the Center for Reliable and High-Performance Computing at the University of Illinois at

Urbana-Champaign, HPFC from the Ecole des Mines de Paris, : : :). HPFIT should make possible for the

user to use any of these HPF or HPF-like compiler, and all those to come, even if most of them will not

allow some functionalities like monitoring, and translation of sequential library calls. We intend to make use

of this variety of possible \post-compilers" in order to run HPF codes on nearly all kinds of architectures.

For instance the ADAPTOR compilation system not only generates message passing code for MIMD system

with distributed memory, but can also generate code for MIMD systems with shared or distributed shared

memory. The �rst version of HPFIT (Version 1.0) will support two compilers: ADAPTOR from GMD/SCAI

and pghpf from Portland Group.

The HPFIT project is based on several other projects developed in di�erent universities. At the moment,

4 research groups have decided to work on the project and to design shared interfaces. These laboratories are

the LIP in Lyon, France, the LaBRI in Bordeaux, France, the LIFL in Lille, France, and theGMD/SCAI

in Bonn, Germany. The developed tools can be used either in a stand-alone fashion or within the HPFIT

interface.

1

High Performance Fortran Integrated Tools.

4

1.3 TransTOOL

TransTOOL, developed at the LIP, is the kernel of the HPFIT project. At the moment, it contains a

powerful editor (XEmacs), the F77 parser (from the ADAPTOR compiler developed at the GMD/SCAI

lab.), the dependence analyzer (Petit at the University of Maryland) and an optimization kernel. At the

moment, this kernel allows to do some parallelism detection and optimizations of pipelined computations

(see Section 1.4). TransTOOL provides an interface to be able to get the results of the parsing and of the

dependence analysis. Figure 1.2 gives a snapshot of the TransTOOL screen.

Figure 1.2: Snapshot of TransTOOL.

1.3.1 The XEmacs Editor

The sequential program source is displayed by an XEmacs editor. Using a powerful editor enables us to share

previously developed modes, to let the user con�gure its editor with his preferences (by using his regular

.emacs �le). The TransTOOL edition is suited to the target language using a modi�ed F90 mode. HPF

keywords are highlighted. The user has the opportunity to click on a program component to trigger some

actions (like choosing a loop nest for the dependence analysis).

1.3.2 HPFize

Numerous applications have been developed on sequential, vector or parallel machines. These codes have

to be modi�ed to be executed on distributed memory machines. Writing a program in HPF consists in

including compilation directives into the source code. It is interesting to simplify the way the user inserts

such directives. This is achieved using a graphical environment that is able to get the necessary pieces of

information from the user and from the program itself (after parsing and dependence analysis).

5

To summarize, the �rst functionality of this part of TransTOOL is to help the user to insert HPF basic

components into his \old Fortran" source code (and give defaults values as much as possible): let the user

insert, with some assistance, directives and constructions like template, processor, align, distribute, forall

and calls to intrinsic procedures.

The main research topic around the semi-automatic insertion of HPF directives is the automatic distri-

bution of matrices using dependence analysis, previous distributions and target machine parameters.

1.3.3 Dependence Analysis

Dependence analysis is a crucial part of the semi-automatic parallelization of a code. Many tools for depen-

dence analysis have been designed and Petit [40] is one of them. Petit is a version of Michael Wolfe's Tiny

tool extended by the Omega Project at the University of Maryland. This tool uses the Omega library [41]

to compute the dependences.

We use Petit via its batch interface to compute the dependences of selected loop nests. The user can

choose a loop nest and ask for the dependences. Then, a graphical interface allows the user to see the

dependences, to select some dependences according to some criterion (for example, choosing only the
ow

dependences, : : :), to see the sink and target of dependences on the editor.

When a loop nest is chosen, the corresponding sub-program is rebuilt from the Abstract Syntax Tree and

transformed into the Petit language using f2p.

Figure 1.2 shows some of the dependences analysis windows of TransTOOL.

1.3.4 Parsing and Unparsing

ADAPTOR (Automatic Data Parallelism Translator) is a public domain compilation system developed at

GMD for compiling data parallel HPF programs to equivalent message passing programs [19]. The compiler

tools used for ADAPTOR can be retrieved and used to build other tools. In TransTOOL, we use the front end

which is able to parse a Fortran 77 source �le, to generate the Abstract Syntax Tree (AST) and to unparse

the AST in a output �le. We use the AST and the unparsing functionality to build the sub-programs for

the dependence analysis. If the source �le is an HPF source code, the directives are also in the AST. We

will use them for the semi-automatic parallelization.

We also use ADAPTOR for the compilation of the code generated by HPFIT.

1.3.5 Translation of Calls to Sequential Libraries

Many real applications are currently using basic libraries like BLAS or LAPACK. These libraries are avail-

able on many existing machines. Parallel versions of these libraries are available like the PBLAS [39] and

ScaLAPACK [38]. They are highly optimized, and reach very high e�ciencies close to peak performance

together with a good scalability. It is impossible to reach the same e�ciency using usual compilers. A

problem appears when one wants to transform a source code into HPF: these libraries are added during

the link phase, and thus their source code is not available for automatic parallelization during the upstream

operations. Moreover, even if we have the source of the sequential routine, its automatic parallelization will

lead to poor performance. If a parallel version of the library exists, we must use it for the parallelization of

the application.

Some work have been done around HPF interfaces of parallel libraries [18, 45]. This is the best way to

obtain a portability between HPF compilers and parallel libraries. One of the goals of TransTOOL is to o�er

the users the opportunity to automatically translate library calls from sequential to parallel versions (via their

HPF interfaces). Furthermore, TransTOOL will allow the user to insert redistribution phases if it appears

to be necessary. It will be a semi-automatic translation linked with the compilation. Moreover, TransTOOL

will allow to insert the source code of subroutines which do not have their parallel implementation. Then the

source will be \HPFized" and distribution will be inherited. One problem is that HPF handles many more

distributions than those supported by ScaLAPACK. This will imply the development of conversion routines.

6

1.3.6 Execution Interface

TransTOOL has been designed to be a self-contained environment. From the XEmacs editor, the user should

be able, taking a sequential Fortran 77 code, to semi-automatically generate an HPF source code, to compile

this code and to execute the SPMD program on the di�erent machines he has access to. To this purpose,

we have designed an interface to give the parameters of the machines (how to start a computation on the

machine, how you allocate nodes, and so on), to compile the HPF code by choosing among available HPF

compilers, and to start the program on a remote machine.

1.3.7 Developer's Toolkit

HPFIT will provide a standard interface to many other tools used in the parallelization of applications like

performance monitors, trace analyzers, and simulation tools. In this �rst version, HPFIT is not a totally

new environment built from scratch but an \intelligent" interface into which existing or new tools are being

plugged. Thanks to this interfacing, we will be able to add new tools as they appear.

The TransTOOL Developer's Toolkit (T

3

) is the set of interfaces which can be used to build new tools

from TransTOOL, or to integrate new functionalities inside the editor. Currently, the Toolkit has interfaces

to:

� the XEmacs editor,

� the parser,

� the dependence analysis tool.

These interfaces are written with either C, TCL or Lisp, so they can be used in a C program, a tcl script

or within the XEmacs editor.

The �rst version (V 1.0) of TransTOOL and its developer's Toolkit is available on the Web

2

.

1.3.8 Other Tools

HPFbuilder [25] from the LIFL which allows the user to insert HPF distribution directives using a graphical

interface will be integrated soon.

1.4 TransTOOL Optimization Kernel

Our main interest in TransTOOL is to validate recent research results on real applications, and to be able to

integrate the corresponding (limited size) software developments within existing, more complete and more

powerful tools.

In this section, we present two research topics, i.e. parallelism detection for automatic generation of

independent directives, and the pipelined loops detection for the automatic generation of calls to the LOCCS

library.

1.4.1 Parallelism Detection in Nested Loops

One of the objectives of the TransTOOL project is to develop and integrate strategies for transforming

automatically (or semi-automatically) sequential Fortran pieces of codes into codes with HPF directives. The

goal is to help the programmer to recognize parallelism at the loop level, and to automate the corresponding

loops transformations for him.

Since our target language is HPF, we have to keep in mind that only transformations that can be

expressed in HPF and that can be e�ciently compiled by an HPF compiler are suitable. In particular, we

do not currently address the following topics: parallelism exploited in doacross loops, software pipelining,

minimization of synchronization barriers: the �rst two topics because such parallelism can not be easily and

2

URL http://www.ens-lyon.fr/~desprez/FILES/RESEARCH/SOFT/TransTOOL/

7

e�ciently implemented in a data-parallel language like HPF (it is easier to exploit it when compiling HPF),

the third topic because HPF codes are usually compiled into SPMD codes, synchronized by nature.

Our main goal is to expose to the programmer the maximal parallelism that can be detected. We are

interested only in understanding if a large set of independent computations can be detected, and if they can

be described by parallel loops. In other words, we aim at detecting loops that, in HPF, can be preceded by

the directive !HPF$ independent (denoted by DOPAR in the pseudo-code below).

Fine-grain Parallelism

In many applications, there is no need to use sophisticated dependence analysis techniques and parallelization

algorithms for detecting full parallelism. A simple algorithm such as Allen and Kennedy's algorithm [3] is

su�cient for most of the loops. Our implementation of Allen and Kennedy's algorithm will be used as a

comparison base to evaluate how often more sophisticated algorithms are needed. In this context, we recently

showed that, as long as dependence level is the only information available, Allen and Kennedy's algorithm

detects maximal parallelism (see [23]).

In some loops however, some more accurate representation of dependences is needed. Techniques based

on the hyperplane method [43] have been developed in the past so as to exploit a more accurate description

of dependences such as the description by direction vectors (see Wolf and Lam's algorithm [59]). This last

algorithm is able to take into account the information given on all components of distance vectors (which

is not possible with Allen and Kennedy's algorithm and level of dependences), but it is not able to use the

information concerning the structure of the dependence graph (which is the basis of Allen and Kennedy's

algorithm for applying loop distribution).

We thus proposed a novel algorithm, Darte and Vivien's algorithm, that combines and subsumes both

algorithms [24]. We found that this algorithm exploits optimally the structure of the graph and the infor-

mation on direction vectors. It is even optimal for a more accurate representation of dependences that we

called PRDG (polyhedral reduced dependence graph), roughly speaking, approximations of dependences by

non parameterized polyhedra, de�ned by vertices, rays and lines.

Medium-grain Parallelism

In HPF, codes with single innermost parallel loops are often not parallel enough to o�er good performance.

In this case, the grain of parallelism must be increased, either by trying to move up the parallel loop to the

outermost possible level, or by using blocking (tiling) techniques.

We studied this tiling problem in [13] in the simple case of uniform loop nests, and it turns out that Darte

and Vivien's algorithm can be easily adapted to the tiling technique, as Wolf and Lam's algorithm that was

developed with a \tiling spirit". Actually, the detection of parallel loops and the detection of maximal tiling,

related to maximal sets of permutable loops, are two equivalent problems.

We are currently implementing in TransTOOL, a tiling version of Darte and Vivien's algorithm: it

informs the programmer of the maximal parallelism he can hope, and proposes loop transformations that

reveal maximal parallelism, either as �ne-grain parallelism, or as medium-grain parallelism.

A lot of problems remain to be solved such as the choice of the block size for tiling, the choice of a suitable

mapping (with possibly temporary arrays), : : : As the reader can notice, the above algorithms are able to

generate !HPF$ independent directives, but they do not address the generation of directives such as align

or distribute. This is still left to the programmer: he has to choose the mapping that exploits at best the

parallelism that has been detected.

We conclude this section by a very simple example, that illustrates the type of codes that can be generated

by our parallelism detection algorithm. Figure 1.3(a) shows the original code, and Figure 1.3(b) the code

with �ne-grain parallelism. Note that Allen and Kennedy's algorithm would also �nd one parallel loop in this

example. However, the fact that loop distribution can be avoided cannot be found by Allen and Kennedy's

algorithm.

8

DO i = 1, n

DO i = 1, n b(i, 1) = a(i, 0) + b(i - 1, 0)

DO j = 1, n DOPAR j = 2, n

a(i, j) = a(i - 1, j + 1) + b(i - 1, n) a(i, j - 1) = a(i - 1, j) + b(i - 1, n)

b(i, j) = a(i, j - 1) + b(i - 1, j - 1) b(i, j) = a(i, j - 1) + b(i - 1, j - 1)

ENDDO ENDDOPAR

ENDDO a(i, n) = a(i - 1, n + 1) + b(i - 1, n)

ENDDO

(a) (b)

Figure 1.3: Original code and code with �ne-grain parallelism.

1.4.2 Detection of Pipelined Loops and Code Generation

Parallel distributed memory machines improve performance and memory capacity but their use adds an

overhead due to the communications. To obtain programs that perform and scale well, this overhead must

be minimized. Part of the job is devoted to communication libraries, which should provide e�cient point-to-

point and macro-communications. Another important issue is to \hide" communication as much as possible,

by overlapping them with independent communications.

Asynchronous communications can be used to overlap computations and communications. The call to

the communication routine (send or receive) is then issued as soon as possible in the code. A wait routine

is used to check for the completion of the communication. Unfortunately, this is not always legal due to the

dependences between computations and communications. Pipeline schemes are also sometimes found within

the code. These schemes lead to a sequentiality in the execution of the whole algorithm.

The optimization we have added is what we call Macro-pipeline Overlap. There is a sequentiality within

the code (see Figure 1.4 (A)). Processor P1 must wait for processor P0 to complete his computation and send

the results, to receive the data and start to work. As soon as it has �nished, it sends the results to processor

P2 which, in turn, starts to work on the received data. The total execution time is higher than the sequential

one because of the overhead of the communications. One �rst solution is to start the communications as

soon as possible, i.e. as soon as one processor has computed one data item. For each data item computed, an

other one is sent to the following processors so they can start as soon as possible. This is called a �ne-grain

pipeline ((B) on Figure 1.4). This solution adds an overhead because of the communication startup time.

This time is usually higher than the cost of the communication of one element. Thus, the total time can be

higher than the one without pipelining. A trade-o� has to be found which minimizes the execution time.

This is a coarse grain pipeline ((C) on Figure 1.4).

T
IM

E

P0 P1 P2 P0 P1 P2 P0 P1 P2

(A) (B) (C)

Figure 1.4: Macro-pipeline.

A typical example of a code that may bene�t from a macro-pipeline optimization is the ADI algorithm

9

given on Figure 1.5.

PARAMETER (N=...)

REAL, DIMENSION (N,N) :: A, B

!HPF$ DISTRIBUTE (*,BLOCK) :: A, B

...

! sweep along the columns

DO I = 2, N

DO J = 1, N

A(I,J) = A(I,J) - A(I-1,J)*B(I,J)

END DO

END DO

! sweep along the rows

DO J = 2, N

DO I = 1, N

A(I,J) = A(I,J) - A(I,J-1)*B(I,J)

END DO

END DO

Figure 1.5: High Performance Fortran Version of the ADI

algorithm.

PARAMETER (N=...)

REAL, DIMENSION (N,N) :: A, B

!HPF$ DISTRIBUTE (*,BLOCK) :: A, B

...

DO I = 2, N ! parallel execution

DO J = 1, N

A(I,J) = A(I,J) - A(I-1,J)*B(I,J)

END DO

END DO

CALL DALIB_LOCCS_DRIVER (BLOCK, 2, 0,

A(:,2:N), [0,1], B(:,2:N), [0,0])

...

EXTRINSIC (HPF_LOCAL) SUBROUTINE BLOCK (A, B)

REAL A(:,:), B(:,:)

!HPF$ DISTRIBUTE *(*,BLOCK) :: A, B

DO J=lbound(A,2),ubound(A,2)

DO I=lbound(A,1),ubound(A,1)

A(I,J) = A(I,J) - A(I,J-1)*B(I,J)

END DO

END DO

END

Figure 1.6: ADI algorithm using the LOCCS library.

10

We have designed a library for the optimization of pipelined computations called the LOCCS [26, 28]

3

.

This library has been integrated in the ADAPTOR compiler [16] and we are currently working on its

integration within TransTOOL.

Within ADAPTOR, the LOCCS library consists in a driver routine that takes as parameters information

about the distributed matrices, the distributed dimension(s) and a routine which is called at each step of

the macro-pipeline. Within the driver routine, choices are made to use macro-pipelining or not, and also

on the way of doing this optimization. There are several reasons to use a library instead of generating the

code directly in the SPMD source code. The �rst one is the ease of use for the programmer of an HPF

compiler. Instead of generating several lines of code, the compiler only has to generate a subroutine call,

to �ll the parameters and to generate the computation routine. Another reason is to be able to perform

run-time optimizations like, for example, the dynamic computation of the optimal grain size as a function

of the network load, cache e�ects, and so on.

We have obtained very good results using this library in the ADAPTOR compiler, for example with the

ADI algorithm given in Figure 1.5. There are two strategies to solve this problem, one using a redistribution

(transposition) and the other one using our library to have an optimized pipelined execution. The pipelined

execution achieves nearly the optimal speed-up and a dynamic data remapping is not necessary in this case.

Other applications of the library will be given in [17].

Now we need to integrate the LOCCS inside TransTOOL. First we need to �nd what Tseng called Cross

Processor Loops (CP loop) in [56]. A loop is a CP loop if it has a true dependence carried by the loop and

of course if its iteration crosses the processors boundaries. If a loop is a CP loop, one processor needs the

results of the computation of its left or right neighbor to start to work. However, telling that a loop is a

CP loop is not su�cient to say that a macro-pipeline execution is e�cient. We are working on an algorithm

that detects loops that can bene�t from a macro-pipeline execution.

For the computation of the optimal granularity of the pipeline, we will use the OPIUM library [27]. The

granularity will be also tuned at run-time depending of cache e�ects or network tra�c (this has also been

suggested in [1] and [53]).

The user will be able to give to TransTOOL the parameters of the target machine (parameters of a

communication, costs of an average computation). These parameters will be used for the optimization of

the code generation. For example, when using PVM on a network of workstations connected via Ethernet,

no macro-pipeline should be used because of the huge costs of communication startups.

3

Low Overhead Communication and Computation Subroutines.

11

Chapter 2

Data-Structure Visualization and

HPF Extensions for Irregular

Problems

2.1 Data Visualization and Trace Analysis

When using a data-parallel language, the user mainly conceives his application in terms of data. For instance,

when talking about his program, he would say \... block 1 of matrix A is added to block 1 of matrix B

...". Hence, when considering the behavior of an application, there is hardly any reason for displaying

process-based information, even though the e�ective implementation, i.e. the result of the compilation,

is eventually executed using the model of communicating processes. Therefore HPFIT will o�er a set of

software components, VisIt, developed at the LaBRI, that will make it possible to visualize and analyze

data-parallel programs and their behavior in terms of the data they work on. As of writing, some of these

software components are available as prototypes. This chapter describes one of them, called DDD, and its

underlying model.

2.1.1 State of the Art

The research which has been done during past years in the area of message passing has proven quite successful

in providing support to end-users (see for instance TOPSYS[8, 9, 11]). Both hardware and software vendors

now supply environments of their own. Furthermore, public domain tools (such as ParaGraph[33]) are

now being delivered either as fully supported or public domain ported tools. In terms of performance

measurement, these tools that were used when dealing with message passing applications can still be used.

Nevertheless, there is a lack of relationship between the display they provide and the semantics of the

application. If the message passing model was close to the execution model on distributed memory machines

it is no longer the case when considering data parallelism.

Although research is now on its way at various places, there is still a lot to be done in terms of tools

that would help users to tackle the paradigm of data-parallel programming. One of the reasons why this is

so, is that tools need information that cannot always be accessed easily. Consider for instance, information

regarding distributions of arrays. A convenient way to proceed is to rely on the user to supply these

information. This is the approach which is for instance implemented in IVD[32]. Another manner is to

have libraries that \instrument" the basics of the language and which are linked to the application at the

same time as the language libraries themselves. This is the approach which is achieved in one of PTOOLS

project called Distributed Array Query and Visualization (DAQV [46]). The aim of this project is to provide

an environment to query and visualize distributed arrays. Among the participants of this projects are the

researchers formerly involved in the DDV project[30]: Data Distribution Visualization (for performance

evaluation). The main goals of this project are: to get information about data decompositions using a

12

dedicated language called ADL (Array De�nition Language); to query the arrays using a language called

AQL (Array Query Language) usable both by means of a graphical interface and an API; to visualize arrays

using tools such as IRIS Explorer. This implies to setup de�nitions: de�nition of services; de�nition of how

data can be accessed; de�nition of a protocol to dialogue with/between tools. A prototype implementation,

based on PC++[12] with visualization achieved by means of IRIS Explorer, has been around for some time.

An HPF implementation has recently been released.

An other very interesting project is EPPP[36]. It o�ers a development platform, ranging from the

language to a performance debugger. The language underlying the environment is HPC which is a dialect

of C augmented to meet the data parallel paradigm. There are many tools which are o�ered in EPPP for

which we plan to have similar systems in HPFIT. The main di�erence is that we have de�nitely chosen HPF

as our expression language. This makes a big di�erence because it implies that we will not really control the

run-time support as it is the case for EPPP, which controls the run-time libraries of HPC. For instance, this

will make it really more di�cult for us to get run-time information regarding data distribution or exchanges,

still being independent of the HPF compiler at hand.

Our approach aims, as far as possible, at being independent both from the user and from instrumentation

of runtime libraries. We only rely on source preprocessing, which, provided the language obeys a standard,

does not depend on anything.

There are many other tools or systems which we have studied. We will not describe all of them in

this paper because they seem less related to our goal (see for instance EPPP[36], P2D2[21], Pharos[55],

Paradyn[47]...).

One of the other aims of HPFIT, hence of VisIt, at least in its second release is to tackle sparse and

irregular data-structures. We have not found any tool that would deal with this paradigm.

2.1.2 A Model and its Validation on Data Distribution

In the current prototype, we �rst have concentrated, for two main reasons, on data distribution.

� When willing to tune HPF codes, the distribution of data is an important factor. This parameter has

to be correctly evaluated to obtain interesting performances at the end of the compilation chain. Using

the possibilities of alignments and distributions, the �nal code becomes very complex and it is really

hard to have an idea of how matrices are distributed among a virtual network of processors.

� The problem of visualizing and querying data distributions is simple enough, so that we can still

concentrate on the underlying model which we are setting up, still providing concrete results and

utilization of the model (which is a way to make a �rst evaluation of it).

Abstraction from Implementation

When designing our model, we took into account two criteria which we consider central within VisIt, i.e.

within HPFIT:

� Although most data-parallel applications use some sort of matrices, these matrices might code other

data-structures, trees for instance. In such a case, there is no point in providing the user with a rep-

resentation of the matrix ; he better wants to see a tree.

This is an attempt to take the semantics of the application into account.

� A tool, to be general purpose, cannot rely on any assumption about the implementation of a data-

structure: for instance, a matrix can be coded by lines, columns, blocs, and such. Furthermore, even

though the matrix is implemented by lines, the user should be presented with a matrix as a whole, not

with a set of lines.

This is an attempt to abstract from implementation.

13

Therefore, we have set up a model to represent data structures that makes it possible to abstract from

both their e�ective implementation, and their meaning. In this section, we give a brief overview of this

model.

The basic idea is that any data structure can be represented by a graph, the nodes of which are the items

contained inside the data structure. Using this model, a data structure is fully described by means of:

a root: it is the root of the graph, i.e. the entry point of the data structure,

a degree d: it is the maximum number of successors of any node of the graph,

d successor functions s

i

: these functions give, for any node, its successors in all directions. The i

th

successor of node N can be noted as [0; 0; :::;1; :::; 0; 0] where the only 1 is at position i.

For instance, a dense matrix matrix[2][3] would be described very easily, since its successor functions

e�ectively match index incrementations (see Figure 2.1).

s
0

s
0

s
0

s
1

s
1

s
1

s
1

s
1

s
1

s
0

matrix[2][3] (degree = 2)

root

Figure 2.1: A graph coding a matrix.

Assuming this graph is provided, either from a library, or by the user, there is no need to know how the

data structure is e�ectively implemented. This dense matrix could be coded by rows, columns, and such.

The successor functions build a mapping from an implementation to a logical model of the data-structure.

Furthermore, if a tree were coded in the matrix, the successor functions could be used to describe it, providing

a tree model of a tree implemented by means of a matrix.

This model, and the notation that we have introduced to express successors lead to an array-like way to ac-

cess items in the data structure. For instance, matrix[1; 2] would be represented by root[1; 0][0; 1][0; 1]. Note

that in this case, this notation is not unique, e.g. we could for instance have used root[0; 1][1; 0][0;1]. This

comes from the fact that, in this speci�c case, we have an equivalence between N [1; 0][0; 1] and N [0; 1][1;0],

where N is a node. A model having this property will be referred to as commutative. In such a case, we can

use the compact notation [1; 2] built from
attening A[1; 0][0; 1][0;1]. We then get the same notation as we

have when dealing with standard matrices.

DDD: Data Distribution Visualization

The software component of HPFIT that implements this model to visualize and query distributions is called

DDD or D

3

for Data Distribution Display, and is part of VisIt. When writing this paper, it is still a proto-

type, but nevertheless DDDmakes it possible to visualize the distribution of data over templates and virtual

processors. This is achieved using mapping functions built on top of the model described above, which, being

given an index in a source object, provides the corresponding index in the target object:

Index map(Index src);

14

Within the current prototype, we have used a one-to-one mapping, but of course a one-to-n mapping will

be implemented. It simply consists in having a mapping function that returns either a list or an enumeration.

Furthermore, since we intend to answer user queries such as \which items are mapped to this processor?",

we will implement what we call reverse mapping functions (see Figure 2.2). These functions will be used to

move back from mapping targets to mapping sources.

reverse-mapping(i)=(i,*)

mapping(i,j)=(i)

Figure 2.2: Mapping and reverse-mapping functions.

Once again, these functions will, as far as possible, be extracted from the application at preprocessing

or at compile time (using the DISTRIBUTE, ALIGN directives, and such), which is possible when considering

current HPF distributions.

Figure 2.3: A snapshot of DDD.

Figure 2.3 shows a snapshot of the current DDD prototype implementation, which although not yet

user-friendly makes it possible to validate the model.

The reason why the model might look a bit complicated for standard dense matrices, is that it is designed

so as to provide support for sparse data structures. Of course, dealing with sparse and irregular data-structure

also relies on language level support. This last point is the main topic of the next section.

15

2.2 HPF Extensions for Irregular Problems

As presented here, HPFIT does not solve every problem encountered during the parallelization of appli-

cations. Many scienti�c applications use sparse matrices or other hierarchical and dynamic irregular data

structures that must be represented by usual arrays that hide the functionality of the code and prohibit its

optimization. Currently, it is impossible to write such codes in HPF that can be compiled e�ciently for

distributed memory machines. An other study, which uses HPFIT as a development plateform, is based on

a new data structure \Tree". This data structure, which is intended for the representation of a wide class of

irregular data structures, allows much more convenient compiler optimizations that might result in e�cient

execution also on MIMD machines. This last study which is presented in this section is a joined project

between the LaBRI, the GMD/SCAI and the LIP.

Large sparse systems of linear equations and other hierarchical and dynamic data structures occur in

many scienti�c and engineering applications encountered in military and civilian domains (
uid dynam-

ics, structural mechanics, : : :) [58]. They arise for example when performing a �nite element method on

unstructured 2D or 3D meshes.

These irregular data structures must be represented by some arrays (e.g. see SPARSKIT [52]). Unfortu-

nately, the use of these arrays for the compact representation of sparse matrices make the code di�cult to

read, hide the functionality of the code (e.g. due to the indirect addressing) and prohibit the optimization

of the code. Currently, it is impossible to write such codes in HPF that can be compiled e�ciently for

distributed memory machines.

Vienna Fortran [57] proposes simple language features that permit the user to characterize a sparse

matrix and to specify the associated representation. The compiler utilizes this information to identify the

use of the sparse matrix and to apply optimizations. The advantage of this approach is that the user has

only to add some directives or declarations in his code and he does not loose the portability. But on the

other side, the complexity of the compiler increases dramatically. The compiler must know all the possible

representations (e.g. all the di�erent representations of SPARSKIT) and also identify every use of the sparse

matrice within the users code.

Bik and Wijsho� [10] have implemented a restructuring compiler which automatically converts programs

operating on dense matrices into sparse code. This approach is very convenient for the user, but in most

situations the compiler fails to �nd a good and e�cient representation.

Our approach is based on a new data structure that is called \Tree". This data structure is mainly

intended for the representation of sparse matrices, but can also be used for any other hierarchical data

structure. The advantage of the new data structure for the user is the better readability of his programs

though he has to rewrite existing code. But the data structure itself will allowmuch more convenient compiler

optimizations that might result in e�cient execution on MIMD machines. The HPF directives provided for

the mapping of arrays (distribution and alignment) and access of array elements can be used in the same

way for trees. The compiler can use regular data dependence checking and perform standard optimizations.

This chapter is organized as follows. In Section 2.2.1 we present the idea of the new data structure \Tree"

and how a tree can be used for the representation of sparse matrices and other hierarchical data structures.

It follows the description of how trees can be embedded and implemented in FORTRAN. Section 2.2.5 shows

the use and bene�ts of the trees for a HPF programming of a sparse Cholesky factorization algorithm.

2.2.1 Trees

We �rst present the idea of how trees can be used for representing sparse data structures and other hierarchical

informations.

Description of Trees

A tree is a connected, directed and acyclic graph. The root of the tree is the node that has no predecessors.

The leaves of the tree are the nodes that have no successors. A node is on the level p (p � 0) if its distance

to the root is p. The height h of the tree is given by the maximal level number that exists. Figure 2.4 shows

a tree of height 2.

16

level 1

level 2

level 0

Figure 2.4: Tree of height 2.

A tree can be used to represent information that is hierarchically organized. The access to a node in the

tree is speci�ed by the path from the root (level 0) in the tree. Compared with arrays, a tree is the more

compact representation of information with varying number of entries.

Representation of Sparse Matrices with Trees

For a sparse matrix A, sparsity can be exploited to save storage requirements by only storing the nonzero

elements. Storage required to store the numerical values is called primary storage, while storage that is

necessary to reconstruct the underlying matrix is referred to as overhead storage.

Many di�erent ways of storing sparse matrices have been devised to take advantage of the structure

of the matrices or the speci�city of the problem from which they arise. In a similar way, there are many

possibilities of representing sparse matrices with trees. We give an example below.

Example 2.2.1 CSC representation of sparse matrices with trees.

The Compressed Sparse Column (CSC) format is one of the many possibilities of representing sparse

matrices (SPARSKIT [52]). The nonzero elements are traversed by the columns of the matrix where for each

element the number of the row will be kept in an additional array. For this scheme, the sparse matrix can

be represented by a tree with three levels.

� the i-th node on level 1 represents the i-th column.

� the j-th son of the i-th node on level 1 represents the j-th non-zero element of column i. Each such

node is a leaf and has an entry for the value of the matrix and an entry for the number of the row to

which the element belongs.

Figure 2.4 represents the tree associated with the sparse matrix given at Figure 2.5.

1 2 3 4 5 6 7 8

1

3

4

5

6

7

8

53

21

34

16

17

93

12

10

54

44

19

23

37

64

27

9

2

19 69

72

13

Figure 2.5: A sparse matrix with 10 columns, 8 rows and 18 non zero coe�cients.

17

Another Example

Example 2.2.2 Representation of a �nite element mesh.

A �nite element mesh [54] is a set of compatible elements, each of them composed of some nodes given

in a prede�nite order and associated with the unknowns that must be computed. This computation works

in two steps. In the �rst step, one computes the �nite element matrix and the right-hand side (assembly

algorithm), and in the second one, we solve the sparse system of linear equations. The assembly step consists

in a global loop over the set of elements; for each one, one performs a loop over the nodes of the element in

order to accumulate its contributions to the �nite element matrix. In parallel, the loop over the elements

is distributed, so the data structure describing the mesh must provide an element-node relation. Figure 2.6

shows how trees can be used to deal with this relation.

1

2
7

6

8

3

4
5

A

B
C

F

D
E

A B D E F

1 3 2 1 4 6 3 4 5 6 3 7 86 3 8 2 6 5 7

C

Figure 2.6: Tree representation of element-node relation mesh.

2.2.2 Using Trees in Fortran

This section describes how the data structure \Tree" can be embedded in the programming language FORTRAN.

De�nition of Trees in Fortran

Within Fortran, a tree will be de�ned by specifying a datatype for every level of the tree (except level 0). We

will use the derived types already provided in Fortran 90 to specify these datatypes. Each node of the tree

at a certain level will have an incarnation of the datatype speci�ed for this level. The following declaration

statement de�nes a tree named A of height h where every type

i

, i > 0, is the name of a derived type.

TREE (type

1

, type

2

,, type

h

) A

Trees are allocated and deallocated like allocatable arrays in Fortran 90 by the ALLOCATE and DEALLOCATE

statement. For the allocation of a tree, each node of each level must be speci�ed how many sons it has.

ALLOCATE (A(A_SIZE1, A_SIZE2(:), A_SIZE3(:), ...), ...)

The number of sons of the root, i.e. the number of nodes on level 1, is given by A SIZE1 which is a scalar

integer value. The following arrays specify always the numbers of sons for each node on the next level.

After the allocation the number of nodes cannot be changed.

Example 2.2.3 De�nition of a tree for representing a sparse matrix with a CSC format.

TYPE LEVEL1 ! no data on level 1

END TYPE

TYPE LEVEL2

INTEGER ROW ! line number

REAL VAL ! non zero value

END TYPE

18

TREE (LEVEL1, LEVEL2) A

ALLOCATE (A(10, [1, 1, 3, 1, 1, 1, 1, 1, 4, 4]))

This allocation will create a tree corresponding to Example 2.2.1. Each node on level 1 has its own values

for ROW and VAL.

Access of Tree Elements

The following notation is used to specify a certain node on level k, 1 � k � h, in the tree:

A(i1,i2,...,ik)

The numbering of sons starts always with 1. Every index speci�es the relative position of the node within

the childs of the node one level above. The array notation of Fortran 90 can be used to specify a list of nodes

where the number of indexes exactly speci�es from which level the nodes will come.

A(3) ! node 3 on level 1

A(9,:) ! all sons at level 2 of node 9 on level 1

A(5:7) ! nodes 5 to 7 on level 1

A(5:7,:) ! all sons at level 2 of nodes 5 to 7 on level 1

level 1

level 2

A(9,:)A(5:7,:)

A(5:7)

A(3)

level 0

Figure 2.7: Accessing tree elements

The elements of a derived type for a node in the tree can be accessed with the % notation of Fortran 90.

A(i1,i2,...,ik)%component

This variable denotes the incarnation of the variable component at the corresponding node. component

must be a component of the derived type speci�ed for level k.

2.2.3 Intrinsics for Trees

Two intrinsic functions that give some information on a tree are de�ned. The intrinsic function height

returns for a node the height of the subtree rooted at this node. So for the tree of Figure 2.7, height(A)

returns the value 2, and height(A(3)) returns the value 1. The intrinsic function size delivers the number

of sons of a certain node. This routine is very helpful to write loops for traversing the trees.

size (A(i1,...,ik))

If a second scalar integer argument p is provided, the function delivers the number of sons p levels deeper.

So, size (A(i1,...,ik),1) is equivalent to size (A(i1,...,ik)).

19

Example 2.2.4 Initialization of a sparse matrix described by the tree de�ned in Example 2.2.3.

DO column = 1, size(A)

DO row = 1, size(A(column))

A(column,row)%ROW = ... ! set the row position

A(column,row)%VAL = ... ! set the nonzero value

END DO

END DO

Mapping of Trees

The mapping of a tree is de�ned by the mapping of a certain level of the tree. The level of a tree can be

speci�ed by using the array notation, like A(:) for the �rst level, A(:,:) for the second one. The level of a

tree is considered as a one-dimensional array and its mapping is speci�ed via the HPF directives.

!HPF$ DISTRIBUTE A(:) (BLOCK)

!HPF$ DISTRIBUTE A(:,:) (CYCLIC)

!HPF$ ALIGN A(:) (I) WITH X(I)

If a tree is distributed along the �rst level, the nodes on level 1 will be distributed among the available

processors (see Figure 2.8 with 3 processors). If a tree is distributed along the second level, all nodes on

level 2 will be distributed among the available processors (Figure 2.9).

The distribution of a level implies a replication of all levels from the root until to this level. The higher

levels are distributed according the distribution of the given level. If a tree is distributed along a certain

level, it is guaranteed that all sons of a node on this level will reside on the same processor (collapsed).

level 1

level 2

 P1 P2 P3

Figure 2.8: Block distribution of a tree along the �rst level.

level 1

level 2

 P1 P2 P3

Figure 2.9: Block distribution of a tree along the second level.

The HPF syntax is intended in the following way:

H307 distributee :: tree-level

H316 alignee :: tree-level

20

H321 align-target :: tree-level

N001 tree-level :: tree_name (level-ind-list)

N002 level-ind :: ':'

As many algorithms could bene�t of an irregular distribution of the tree, it is helpful if the HPF compiler

supports irregular distributions [34]. If this feature is available for arrays, it should be possible to use it also

for trees.

2.2.4 Implementation of Trees

In the �nal code, trees will be represented by arrays. We propose the following solution that is very similar

to the array representations of SPARSKIT:

� Every level of the tree speci�ed by a data type will be represented by one or several corresponding

arrays that contain the incarnations of the derived type.

� For every level i, 0 � i < h, h is the height of the tree, exists an array containing the number of sons

for every node; if j = i+ 1, this array will be denoted tree-name SIZEj. For i = 0, tree-name SIZE1

is a scalar integer value.

� For every level i, 1 � i < h, exists an integer array that contains an o�set for every node of this level.

This o�set gives for the node the position of his �rst son within the array for the next higher level;

each such array will be denoted tree-name PTRi.

A_SIZE1 10

1 2 3 6 7 8 9 10 11 15A_PTR1

1 31 1 1 1 1 4 41A_SIZE2

2 7 1 5 8 6 4 5 7 2 3 5 8 1ROW

53 21 19 34 16 72 17 93 13 12 54 44 19 23 69 37 64 27

1 3 4 6

VAL

Figure 2.10: Set of arrays used for the representation of the tree named A of Example 2.2.1.

The distribution of a level (see previous section) results in a corresponding distribution of the arrays for

this level and the arrays of the higher levels. A block or a general-block distribution of a level implies a

general-block distribution of the higher levels. A cyclic or block-cyclic distribution of a level might imply

irregular distributions of the higher levels.

2.2.5 Examples

The Cholesky factorization of sparse symmetric positive de�nite matrices is an extremely important com-

putation arising in many scienti�c and engineering applications. However, this factorization step is quite

time-consuming and is frequently the computational bottleneck in these applications. Consequently, it is a

signi�cant interesting example for our study. The goal of the sparse Cholesky computation is to factor a

symmetric positive de�nite n� n matrix A into the form A = LL

T

, with L lower triangular.

Two steps are typically performed for the computation. First, we perform a symbolic factorization to

compute the non-zero structure of L from the ordering of the unknowns in A; this ordering, for example

using nested dissection strategymust reduce the �ll in and increase the parallelism in the computations. This

21

(irregular) data structure is allocated and its initial non-zero coe�cients are those of A. In the pseudo-code

given below, this step is implicitly contained in the instruction L = A. Second, the numerical factorization

computes the non-zero coe�cients of L in the data structure. We refer to [29] for more details.

We focus here on the second step which is the most time-consuming. We describe in the following the

implementation of one formulation of Cholesky factorization using our new data structure and new notations.

Sparse Column Algorithm

The chosen formulation is a column-oriented one (see for example [6, 50] and included references).

1. L = A

2. for k = 1 to n do

3. for i = k to n with l

ik

6= 0 do

4. l

ik

= l

ik

/

p

l

kk

5. for j = k+1 to n with l

jk

6= 0 do

6. for i = j to n with l

ik

6= 0 do

7. l

ij

= l

ij

- l

ik

* l

jk

The Algorithm with Trees

The symmetric sparse matrix is represented by the CSC format described by the tree de�ned in Example

2.2.3. In the following of this example, we suppose that the �rst level of the tree, and in this way the columns

of the matrix, are distributed in a cyclic way.

Figure 2.11 shows how coe�cients in column J (with J = L(K,alpha)%ROW) are modi�ed by coe�cients

in column K.

!HPF$ DISTRIBUTE L(:) (CYCLIC)

DO K = 1, size(L)

L(K, 1:)%VAL = L(K, 1:)%VAL / SQRT (L(K,1)%VAL)

DO alpha = 2, size(L(K))

J = L(K,alpha)%ROW

beta = 1

DO gamma = alpha , size(L(K))

! find beta with L(J,beta)%ROW = L(K,gamma)%ROW

I = L(K,gamma)%ROW

DO WHILE (L(J, beta)%ROW .ne. I)

beta = beta +1

END DO

L(J, beta)%VAL = L(J, beta)%VAL - L(K, alpha)%VAL *

L(K,gamma)%VAL

END DO ! loop gamma

END DO ! loop alpha

END DO ! loop K

HPF Parallelization

The iterations of the loop with the index alpha are independent (loop corresponding to the instruction 5

in the pseudo-code). One iteration should be executed by the owner of the column J=L(K,alpha)%ROW to

minimize the communication. One could specify the ownership of the iterations by using the HOME clause for

tree nodes that is proposed for HPF 2.0 [34].

!HPF$ INDEPENDENT, NEW(I, J, beta, gamma), ON HOME L(L(K,alpha)%ROW)

DO alpha = 2, size(L(K))

...

END DO

22

K

L(K,alpha)%VAL

L(K,gamma)%VAL

L(K,alpha)%ROW

L(J,beta)%VAL

Figure 2.11: Modi�cation scheme and dependences between columns.

We assume that the compiler will replicate the entry ROW of the second level before the outermost loop

to avoid communication. As the second level is implicitly distributed by the cyclic distribution of the �rst

level, the compiler generates a temporary array that contains the replicated data. Within the parallel loop,

only the terms L(K,alpha)%VAL and L(K,gamma)%VAL can cause communication. By the notation of tree

indexes, the compiler will be able to identify these two terms. The compiler must extract the communication

before the parallel loop which might not be possible as the compiler has not su�cient information about

the dependences within the loop. We propose the clause COMM IN to advise the compiler, that the owner of

column K can send the data L(K,:)%VAL to the owner of the corresponding iterations.

!HPF$ INDEPENDENT, ON HOME L(L(K,alpha)%ROW), COMM IN (L(K,:)%VAL)

DO alpha = 2, size(L(K))

...

END DO

2.2.6 Irregular Distributions

To illustrate the use of our data structure and notations, we have utilized a cyclic distribution for the trees.

!HPF$ DISTRIBUTE L(:) (CYCLIC)

In fact, for an e�cient parallel execution of the solvers, one must use a speci�c distribution that is an

irregular distribution [50, 51]; this \optimal" distribution can be given by an integer array OWNER and can

be computed by a preprocessing algorithm or at runtime.

!HPF$ DISTRIBUTE L(:) (INDIRECT(OWNER))

23

Conclusion and Future Work

In this report, we have presented the �rst versions of the HPFIT and TransTOOL projects. HPFIT will

provide one interface to many other tools used in the parallelization of applications like performance monitors,

trace analyzers, and simulation tools. In this �rst version, HPFIT is not a totally new environment built

from scratch but an \intelligent" interface into which existing or new tools are being plugged. Thanks to

this interfacing, we will be able to add new tools as they appear.

Data distribution and alignment is one of the most important problem for the parallelization of applica-

tions using HPF. It is known to be a NP-complete problem in most cases; however for classical problems,

heuristics can be found that will lead to good performance. Thus we need to add a tool for semi-automatic

data distribution (within HPFize). Another problem that has already been raised by Kennedy et al. in [35]

is the interaction between the HPF compiler and the editor. This is not a trivial work as the compiler can

make huge transformations to obtain an SPMD code with local arrays and calls to communications routines.

Converting dusty F77 to Fortran 90 seems to be a useful intermediate step in the parallelization process.

For example, data parallelism could be expressed by array syntax and FORALL loops (Fortran 95). Part

of this work is clearly not our job (cleaning F77) but we could add some fonctionnalities to integrate F90

constructs in the HPFize part of TransTOOL, by taking those loops nests that can be transformed.

In the second part, we have presented a data structure visualization tool and an HPF support for irregular

data structures.

Future research directions concerning the visualization tool are the followings. The ability to plug in

visualization modules will be based on the interconnection of basic, possibly distributed, modules. Some

systems are already based on such a mechanism, but usually execute in a centralized framework. See

for instance the Pablo programming environment[49] or the DAQV project[31]. The development of more

mechanisms to support sparse matrices and other data-structures.

In Section 2.2, we have presented the new data structure \Tree" and show how it can be used for the

representation of sparse matrices. Scienti�c codes working on sparse matrices represented by trees o�er the

possibility to be compiled e�ciently by a HPF compiler that supports this new data structure. We will

extend the HPF compilation system ADAPTOR [19] to support the tree data structure. With the current

compilation technology, it might be di�cult to identify always the most e�cient communication in parallel

loops and statements. This is especially true for the use of trees. We would like to introduce directives

to aid the compiler in generating the most e�cient communication. HPF 2.0 provides support for indirect

distributions of arrays. This will also be very useful for the distribution of trees. We will investigate the

advantages for certain applications.

A lot of work remains to be done in the �eld of tools for semi-automatic parallelization of applications.

We hope that a collaboration between several laboratories will lead to an interesting and performant tool

made available to the whole community.

24

Acknowledgments

We would like to thanks Gilles Lebourgeois, Olivier Reymann, Georges-Andr�e Silber, Lionel Tricon and

Julien Zory for their work within the TransTOOL project.

25

Bibliography

[1] V.S. Adve, C. Koelbel, and J. Mellor-Crummey. Compiler Support for Analysis and Tuning Data

Parallel Programs. Technical Report CRPC-TR95520, Center for Research on Parallel Computation,

Rice University, March 1995.

[2] V.S. Adve, J.C. Wang, J. Mellor-Crummey, D.A. Reed, M. Anderson, and K. Kennedy. An Integrated

Compilation and Performance Analysis Environnement for Data Parallel Programs. Technical Report

CRPC-TR94513-S, Center for Research on Parallel Computation, Rice University, December 1994.

[3] J.R. Allen and K. Kennedy. Automatic Translations of Fortran Programs to Vector Form. ACM Toplas,

9:491{542, 1987.

[4] P. Amarasinghe, J.M. Anderson, M.S. Lam, and C.-W. Tseng. The SUIF Compiler for Scalable Parallel

Machines. In Seventh SIAM Conference on Parallel Processing for Scienti�c Computing, February 1995.

[5] S. Andel, B.M. Chapman, J. Hulman, and H.P. Zima. An Expert Advisor for Parallel Programming

Environments and Its Realization within the Framework of the Vienna Fortran Compilation System.

Technical report, Institute for Software Technology and Parallel Systems, Vienna, Austria, 1996.

[6] C.C Ashcraft, S.C. Eisenstat, J. Liu, and A.H. Sherman. A Comparison of Three Column-Based

Distributed Sparse Factorization Schemes. Technical Report YALEU/DCS/RR-810, Computer Science

Department, Yale University, 1990.

[7] P. Banerjee, J.A. Chandy, M. Gupta, E.W. Hodges-IV, J.G. Holm, A. Lain, D.J. Palermo, S. Ra-

maswamy, and E. Su. The PARADIGM Compiler for Distributed-Memory Multicomputers. IEEE

Transactions on Computers, 28(10):37{47, October 1995.

[8] T. Bemmerl. An Integrated and Portable Tool Environment for Parallel Computers. In Proceedings of

the IEEE International Conference on Parallel Processing (St. Charles, USA), pages 50{53, 1988.

[9] T. Bemmerl and A. Bode. An Integrated Environment for Programming Distributed Memory Mul-

tiprocessors. In Bode A., editor, Proceedings of the Second European Distributed Memory Computing

Conference (M�unchen), Volume 487 of Lecture Notes in Comput. Sci., pages 130{142. Springer-Verlag,

1991.

[10] A. Bik and H. Wijsho�. Automatic Data Structure Selection and Transformation for Sparse Matrix

Computations. Technical Report 92-25, Dept. of Computer Science, Leiden University, 1992.

[11] A. Bode. Developments in distributed memory architectures. In Proceedings of Microsystem '90

(Bratislava, CSSR), 1990. Also in Technische Universit�at M�unchen, Institut f�ur Informatik, Sonder-

forschungsbereich 342: Methoden und Werkzeuge f�ur die Nutzung Paralleler Rechner Architekturen,

TOPSYS, Tools for Parallel Systems, TUM-I9013, SFB-Bericht Nr. 342/9/90 A, January 1990, seiten

11{16.

[12] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S.X. Yang. Distributed pC++: Basic Ideas for

an Object Parallel Language. Scienti�c Programming, 2(3):61{74, 1993.

26

[13] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (pen)-Ultimate Tiling? Integration, the

VLSI Journal, 17:33{51, 1994.

[14] T. Brandes, S. Chaumette, M.-C. Counilh, A. Darte, F. Desprez, J.C. Mignot, and J. Roman. HPFIT:

A Set of Integrated Tools for the Parallelization of Applications Using High Performance Fortran: Part

I: HPFIT and the TransTOOL Environment. In J.J. Dongarra and B. Tourancheau, editors, Third

Workshop on Environments and Tools for Parallel Scienti�c Computing, Faverges, August 1996. SIAM.

[15] T. Brandes, S. Chaumette, M.-C. Counilh, A. Darte, F. Desprez, J.C. Mignot, and J. Roman. HPFIT:

A Set of Integrated Tools for the Parallelization of Applications Using High Performance Fortran: Part

II: Data Structures Visualization and HPF Extensions for Irregular Problems. In J.J. Dongarra and

B. Tourancheau, editors, Third Workshop on Environments and Tools for Parallel Scienti�c Computing,

Faverges, August 1996. SIAM.

[16] T. Brandes and F. Desprez. Implementing Pipelined Computation and Communication in an HPF

Compiler. In Europar'96 Parallel Processing, volume 1123 of Lecture Notes in Computer Science, pages

459{462. Springer Verlag, August 1996.

[17] T. Brandes and F. Desprez. Implementing Pipelined Computation and Communication in an HPF

Compiler. Technical report, LIP - ENS Lyon, 1996.

[18] T. Brandes and D. Greco. Realization of an HPF interface to ScaLAPACK with Redistributions.

In H. Liddel, A. Colbrook, B. Hertzberger, and P. Sloot, editors, High-Performance Computing and

Networking (HPCN), volume 1067 of Lectures Notes in Computer Science, pages 834{839. Springer

Verlag, 1996.

[19] Th. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF Programs. In K.M.

Decker and R.M. Rehmann, editors, Programming Environments for Massively Parallel Distributed

Systems, pages 91{96. Birkh�auser, April 1994.

[20] B.M. Chapman, T. Fahringer, and H.P. Zima. Automatic Support for Data Distribution on Distribution

on Distributed Memory Multiprocessor Systems. Technical Report TR 93-2, Institute for Software

Technology and Parallel Systems, University of Vienna, Austria, August 1993.

[21] Doreen Cheng and Robert Hood. A portable debugger for parallel and distributed programs. In Proc.

of Supercomputing'94, 1994.

[22] C. Cl�eman�con, A. Endo J. Fritsher, A. M�uller, R. R�uhl, and B.J.N. Wylie. The \Annai" Environment

for Portable Distributed Parallel Programming. In 28th Hawaii International Conference on System

Sciences (HICSS-28), volume II, pages 242{251. IEEE Computer Society Press, January 1995.

[23] Alain Darte and Fr�ed�eric Vivien. On the Optimality of Allen and Kennedy's Algorithm for Parallelism

Extraction in Nested Loops. In Proceedings of Europar'96, Lyon, France, August 1996. Springer Verlag.

To appear.

[24] Alain Darte and Fr�ed�eric Vivien. Optimal Fine and Medium Grain Parallelism in Polyhedral Reduced

Dependence Graphs. In Proceedings of PACT'96, Boston, MA, October 1996. IEEE Computer Society

Press. To appear.

[25] J.-L Dekeyser and C. Lefevre. HPF-Builder: A Visual Environment to Transform Fortran 90 Codes to

HPF. In J.J. Dongarra and B. Tourancheau, editors, Third Workshop on Environments and Tools for

Parallel Scienti�c Computing, Faverges, August 1996. SIAM.

[26] F. Desprez. A Library for Coarse Grain Macro-Pipelining in Distributed Memory Architectures. In

IFIP 10.3 Conference on Programming Environments for Massively Parallel Distributed Systems, pages

365{371. Birkhaeuser Verlag AG, Basel, Switzerland, 1994.

27

[27] F. Desprez, P. Ramet, and J. Roman. Optimal Grain Size Computation for Pipelined Algorithms. In

Europar'96 Parallel Processing, volume 1123 of Lecture Notes in Computer Science, pages 165{172.

Springer Verlag, August 1996.

[28] F. Desprez and B. Tourancheau. LOCCS: Low Overhead Communicationand Computation Subroutines.

Technical Report 92-44, LIP - ENS Lyon, December 1992.

[29] A. George and J. Liu. Computer Solution of Large Sparse Positive De�nite Systems. Prentice-Hall,

1981.

[30] Steven T. Hackstadt and Allen D. Malony. Data distribution visualization (ddv) for performance

visualization. Technical report, University of Oregon, Dept. of Computer and Information Science,

October 1993.

[31] Steven T. Hackstadt and Allen D. Malony. Distributed array query and visualization for high perfor-

mance fortran. In Proc. of Euro-Par '96, Lyon, France, August 1996.

[32] M.C. Hao, A.H. Karp, M. Mackey, V. Singh, and J. Chien. On-the-
y visualization and debugging of

parallel programs.

[33] M.T. Heath and J.A. Etheridge. Visualizing the performance of parallel programs. IEEE Software,

8(5):29{39, September 1991.

[34] High Performance Fortran Forum. High Performance Fortran Language Speci�cation. Version 2.0.�.3,

Department of Computer Science, Rice University, August 1996.

[35] S. Hiranandani, K. Kennedy, C.-W. Tseng, and S. Warren. Design and Implementation of the D Editor.

In J.J. Dongarra and B. Tourancheau, editors, Second Workshop on Environments and Tools for Parallel

and Scienti�c Computing, pages 1{10, Townsend, TN, May 1994. SIAM.

[36] G. Hurteau, V. Van Dongen, and G. Gao. Overview of EPPP - an Environment for Portable

Parallel Programming. In Proceedings of Supercomputing Symposium'94, Canada's Eighth An-

nual High Performanc e Computing Conference, pages 119{127, Toronto, Ontario, June 1994.

ftp://ftp.crim.ca/apar/public/Papers/1994/SS94-EPPP.ps.gz.

[37] C.S. Ierotheou, S.P. Johnson, M. Cross, and P.F. Leggett. Computer Aided Parallelisation Tools (CAP-

Tools) - Conceptual Overview and Performance on the Parallelization of Structured Mesh Codes. Parallel

Computing, 22:163{195, 1996.

[38] J.Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and

R.C. Whaley. LAPACK Working Note: ScaLAPACK: A Portable Linear Algebra Library for Dis-

tributed Memory Computers - Design Issues and Performances. Technical Report 95, The Universtity

of Tennessee - Knoxville, 1995.

[39] J.Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R.C. Whaley. LAPACK Working Note:

A Proposal for a Set of Parallel Linear Algebra Subprograms. Technical Report 100, The Universtity

of Tennessee - Knoxville, 1995.

[40] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. New User

Iinterface for Petit and Other Extensions. CS Dept, University of Maryland, April 1996.

http://www.cs.umd.edu/projects/omega.

[41] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega

Library - Version 1.0 - Interface Guide. CS Dept, University of Maryland, April 1996.

http://www.cs.umd.edu/projects/omega.

[42] K. Kennedy, K.S. McKinley, and C.-W. Tseng. Interactive Parallel Programming Using the ParaScope

Editor. IEEE Transactions on Parallel and Distributed Systems, 2(3):329{341, July 1991.

28

[43] Leslie Lamport. The Parallel Execution of DO Loops. Communications of the ACM, 17(2):83{93,

February 1974.

[44] P.F. Leggett, A.T.J. Marsh, S.P. Johnson, and M. Cross. Integrating User Knowledge with Information

from Parallelization Tools to Facilitate the Automatic Generation of E�cient Parallel FORTRANCode.

Parallel Computing, 22:259{288, 1996.

[45] P.A.R. Lorenzo, A. Muller, Y. Murakami, and B.J.N. Wylie. High Performance Fortran Interfacing

to ScaLAPACK. Technical Report TR-96-13, Swiss Center for Scienti�c Computing (CSCS), Manno,

Switzerland, 1996.

[46] A. Malony, Mary Zosel,

May John, Alan Karp, and David Presberg. PTOOLS project proposal { Distributed Array Query

and Visualization. Available as http://www.cs.uoregon.edu/ hacks/research/ptools-daqv/proposal.

[47] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K. Hollingsworth, R. Bruce Irvin,

Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The Paradyn Parallel Performance

Measurement Tools. IEEE Computer, 28(11):61{74, November 1995. Special issue on performance

evaluation tools for parallel and distributed computer systems.

[48] J.-L. Pazat. Tools for High Performance Fortran: A Survey. Technical report, IRISA, Rennes, France,

1996. http://www.irisa.fr/pampa/HPF/survey.html.

[49] A.D. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields, and B.W. Schwartz. An Overview of

the Pablo Performance Analysis Environment. Department of Computer Science, University of Illinois,

November 1992.

[50] E. Rothberg and A. Gupta. An E�cient Block-Oriented Approach to Parallel Sparse Cholesky Factor-

ization. In Proc. of Supercomputing'93. IEEE Computer Society, 1993.

[51] E. Rothberg and R. Schreiber. Improved Load Distribution in Parallel Sparse Cholesky Factorization.

In Proc. of Supercomputing'94. IEEE Computer Society, 1994.

[52] Y. Saad. SPARSKIT: a Basic Tool Kit for Sparse Matrix Computations. Technical Report, Version 2,

CSRD, University of Illinois, June 1994.

[53] B.S. Siegel and P.A. Steenkiste. Controlling Application Grain Size on a Network of Workstations. In

Supercomputing'95, 1995. http://www.cs.cmu.edu/afs/cs/project/nectar/WWW/gnectar papers.html.

[54] G. Strang and G. F. Fix. An Analysis of the Finite Element Method. Prentice Hall, 1973.

[55] The PHAROS Team. The PHAROS project. Available as

http://www.vcpc.univie.ac.at/activities/projects/PHAROS/.

[56] C.-W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines. PhD

thesis, Rice University, January 1993.

[57] M. Ujaldon, E. L. Zapata, B. M. Chapman, and H. P. Zima. Vienna-Fortran/HPF Extensions for

Sparse and Irregular Problems and Their Compilation. Technical Report TR 95-5, University of Vienna,

University of Malaga, 1995.

[58] Springer Verlag, editor. Proceedings of HPCN Europe 1996, volume 1067 of LNCS, 1996.

[59] M.E. Wolf and M.S. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism.

IEEE Transactions on Parallel and Distributed Systems, 2(4):452{471, 1991.

[60] H. Zima and B. Chapman. Compiling for Distributed Memory Systems. Technical report, Institute for

Statitics and Computer Science, Vienna, Austria, May 1994.

29

Contents

Introduction 1

1 HPFIT and the TransTOOL Environment 2

1.1 Previous Work : 2

1.2 The HPFIT Project : 3

1.3 TransTOOL : 5

1.3.1 The XEmacs Editor : 5

1.3.2 HPFize : 5

1.3.3 Dependence Analysis : 6

1.3.4 Parsing and Unparsing : 6

1.3.5 Translation of Calls to Sequential Libraries : 6

1.3.6 Execution Interface : 7

1.3.7 Developer's Toolkit : 7

1.3.8 Other Tools : 7

1.4 TransTOOL Optimization Kernel : 7

1.4.1 Parallelism Detection in Nested Loops : 7

1.4.2 Detection of Pipelined Loops and Code Generation : 9

2 Data-Structure Visualization and HPF Extensions for Irregular Problems 12

2.1 Data Visualization and Trace Analysis : 12

2.1.1 State of the Art : 12

2.1.2 A Model and its Validation on Data Distribution : 13

2.2 HPF Extensions for Irregular Problems : 16

2.2.1 Trees : 16

2.2.2 Using Trees in Fortran : 18

2.2.3 Intrinsics for Trees : 19

2.2.4 Implementation of Trees : 21

2.2.5 Examples : 21

2.2.6 Irregular Distributions : 23

Conclusion and Future Work 24

30

List of Figures

1.1 Development cycle of an application on distributed memory platforms. : : : : : : : : : : : : : 3

1.2 Snapshot of TransTOOL. : 5

1.3 Original code and code with �ne-grain parallelism. : 9

1.4 Macro-pipeline. : 9

1.5 High Performance Fortran Version of the ADI algorithm. : 10

1.6 ADI algorithm using the LOCCS library. : 10

2.1 A graph coding a matrix. : 14

2.2 Mapping and reverse-mapping functions. : 15

2.3 A snapshot of DDD. : 15

2.4 Tree of height 2. : 17

2.5 A sparse matrix with 10 columns, 8 rows and 18 non zero coe�cients. : : : : : : : : : : : : : 17

2.6 Tree representation of element-node relation mesh. : 18

2.7 Accessing tree elements : 19

2.8 Block distribution of a tree along the �rst level. : 20

2.9 Block distribution of a tree along the second level. : 20

2.10 Set of arrays used for the representation of the tree named A of Example 2.2.1. : : : : : : : : 21

2.11 Modi�cation scheme and dependences between columns. : 23

31

