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Résumé : 

Dans cet article, nous démontrons qu’une ambiguïté de 

conception lors de la réalisation d’un modèle PDEVS 
peut avoir un impact important sur les résultats de 

simulation. Nous proposons une solution, nommée 

Fuzzy-PDEVS, basée sur un coefficient de confiance afin 

d'évaluer le comportement du modèle et d'aider le 

modélisateur dans sa tâche.  
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Abstract: 

In this work, we demonstrate that a design ambiguity 

when coding a model can have a significant impact on 
simulation results. We propose a method based on a 

belief rate to evaluate the model and help the modeller in 

its design task. 
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Introduction 
 

Cet article a pour objectif de poser les bases 

conceptuelles d’une approche décisionnelle 

pour la simulation de systèmes à évènements 

discrets fondée sur le formalisme PDEVS 

(Parallèle DEVS [1]). PDEVS est une évolution 

du formalisme DEVS (Discrete EVent system 

Specification [2]) pour les systèmes parallèles 

et distribués. 

Dans ce travail exploratoire, nous souhaitons 

proposer une évolution de PDEVS visant à 

évaluer la confiance potentielle accordée à un 

modèle ou à son modélisateur. L'objectif est de 

faciliter l'expression des fonctions 

comportementales du formalisme PDEVS, et 

notamment la fonction de conflit (δcon). En 

effet, dans sa forme originale, le formalisme 

PDEVS possède une fonction de conflit (ou de 

confluence) qui peut engendrer des ambiguïtés 

lors du processus de modélisation ou 

d’utilisation du modèle. Celle-ci permet de 

gérer et de prioriser l’exécution des fonctions 

comportementales d’un modèle PDEVS (δint, 
δext) lorsque surviennent deux événements 

simultanés. Ce mécanisme de gestion est trop 

générique pour pouvoir exprimer sans 

ambiguïté un comportement concurrent. En 

effet, il est à la charge du modélisateur ou de 

l’utilisateur, d'exprimer comme il l’entend  

l'algorithme comportemental concurrent. Un 

algorithme séquentiel est proposé par défaut 

dans PDEVS (δint puis δext ou δext puis δint). 

Cependant, dans de nombreux cas, le 

modélisateur éprouve trop souvent un problème 

de conception quant à la logique à mettre en 

œuvre. La source de cette ambiguïté peut être 

très variée, mauvaise connaissance du système, 

utilisation dans un contexte incertain, mauvais 

modélisateur, etc.  

À partir d’un cas d'étude didactique, nous allons 

montrer que l’ordre d’exécution des fonctions 

comportementales δint et δext peut avoir une 

influence non négligeable sur les résultats d'une 

simulation. L’approche que nous proposons 

repose sur l'intégration dans les modèles 

PDEVS d'un coefficient nommé Br. Nous 

souhaiterions définir ici Br comme le niveau de 
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confiance accordé au modèle vis-à-vis des 

objectifs définis en rapport avec un cadre 

expérimental explicite, ou encore la confiance 

accordée au modèle par l’utilisateur. Nous 

proposons une évolution du formalisme 

PDEVS,  qui va intégrer et utiliser le coefficient 

Br.  

Dans une première partie, nous rappelons les 

principes du formalisme DEVS et son évolution 

parallèle et distribuée PDEVS. Nous 

soulignons ses avantages et ses limites. Ensuite, 

nous proposons un exemple de simulation à 

partir d’un modèle théorique. L’objectif de 

notre exemple, est de dresser un constat sur les 

ambiguïtés de modélisation introduites dans le 

formalisme PDEVS.  Puis, nous ferons part de 

notre réflexion pour pallier à ces problèmes, et 

aider le modélisateur dans ses choix. Enfin, 

après une conclusion, nous énoncerons nos 

perspectives pour finaliser l’approche 

proposée.      

 

1 Background 
 

1.1 Le formalisme DEVS 

 

Le formalisme DEVS [2] propose une approche 

formelle facilitant la modélisation et la 

simulation de systèmes complexes à 

évènements discrets. Ce formalisme est basé 

sur la théorie des systèmes. Il est courant que le 

formalisme DEVS, dans sa forme originale, soit 

adapté et étendu afin d'être replacé dans des 

contextes plus spécifiques d’un domaine 

d’application. C’est par exemple le cas quand il 

s'agit de modéliser des systèmes flous [3], [4], 

ou d’autres types de systèmes [5], [6].  

Le formalisme DEVS repose sur la définition 

de deux types de composants de modélisation: 

les modèles atomiques (M cf formule 1) et les 

modèles couplés. Les modèles atomiques 

permettent de décrire le comportement du 

système à étudier à l'aide de fonctions. M 

évoluent en fonction d'occurrences 

d’événements qui engendrent des transitions 

d’états internes ou externes.  

Un modèle atomique est défini par le tuple : M  

< X, Y, S, ta, δint, δext, λ >  (1) 

Avec :  

- X : l’ensemble des ports d’entrée ; 

- Y : l’ensemble des ports de sortie ; 

- S : l’ensemble des états du système; 

- ta : 𝑆 → 𝑅+  la fonction d’avancement du 

temps (ou de durée de vie d’un état) ; 

- δint : 𝑆 → 𝑆  la fonction de transition 

interne. Elle permet de passer d'un état s1 à 

l'instant t1, à un état s2 à l'instant t2 

lorsqu'aucun évènement externe ne 

survient durant le temps de vie de l'état 

ta(S1) ; 

- δext : 𝑄 × 𝑋 → 𝑆 la fonction de transition 

externe. Elle spécifie comment le modèle 

change d'état (passage de l'état s1 à l'état s2) 

quand une entrée survient (x) avant que 

ta(s1) ne soit écoulé ; Q est l’ensemble des 

états tels que {(e, s)|s dans S, 0 ≤ e ≤ ta(s)} ; 

e est le temps passé dans l’état.  

- λ : 𝑆 → 𝑌  la fonction de sortie ; 

 

Les modèles couplés décrivent la structure, et 

fixent une priorité entre composants du modèle 

grâce à une fonction adaptée nommée 

« select ». Plusieurs composants de 

modélisation peuvent donc être interconnectés 

entre eux dans un modèle couplé, et des 

évènements simultanés peuvent se produire. 

Cependant, dans sa formulation originale, le 

formalisme DEVS impose de briser le lien de 

causalité entre composants dans le cas 

d’événements simultanés. Si plusieurs 

composants interconnectés s'influencent 

mutuellement, les événements de sortie des 

influenceurs ne seront pas reçus par les 

influencés aux mêmes instants. Cela résulte de 

la définition de la fonction « select » empêchant 

toute possibilité de simultanéité dans le modèle 

DEVS original. De plus, un événement externe 

peut survenir sur les ports d’entrées d’un 

composant du modèle au même instant que 

celui déclenchant la transition interne. Il y a 

donc conflit et la prise en compte de ce conflit 

doit être décrite dans un algorithme adapté à la 

charge du modélisateur. Les limites 

conceptuelles qu'implique cette concurrence 

sont détaillées dans [7]. 

Le formalisme PDEVS a été proposé afin de les 

dépasser. 



1.2 Le formalisme PDEVS 

 

Le formalisme PDEVS pour (Parallel Discrete 

EVent system Specification) est une extension 

du formalisme DEVS. Il est complété d'une 

fonction (δcon) dont l’objectif est de permettre 

au modélisateur de gérer les conflits survenant 

entre évènements internes et externes 

(fonctions δint et δext). PDEVS inclut aussi un 

mécanisme (structure de données de type sac,  

𝑋𝑏  sous-ensemble de X) pour gérer les 

évènements d’entrées simultanés. Ce nouvel 

ensemble permet de collecter des événements 

émis au même instant. Ainsi, le formalisme 

PDEVS, permet de spécifier plusieurs 

événements externes à une même date. Ces 

événements sont collectés et stockés dans des 

ensembles d’événements survenus au même 

instant. Les sorties réalisées par les "modèles 

imminents", c'est-à-dire les modèles en conflits 

à un instant donnée pour lesquels une transition 

interne est prévue au même instant sont 

stockées dans un sous-ensemble d’entrées noté 

𝑋𝑏 . Chacun des événements de l’ensemble 𝑋𝑏  

est identifié par son temps d’occurrence. 

Aucune relation d’ordre n’est préconisée pour 

les événements appartenant à un même 

ensemble. On peut ainsi autoriser et dénombrer 

les évènements simultanés sur chaque port 

d’entrée X. La prise en compte des événements 

de l’ensemble n’est autorisée qu’après les 

transitions internes de tous les modèles 

imminents. 

De ce fait, les transitions externes sont réalisées 

par des ensembles représentant ainsi la réponse 

agrégée des événements simultanés. 

Le modèle atomique PDEVS M est décrit par 

un tuple < X, Y, S, ta, δcon, δint, δext, λ > (2)  

où 

- X est l’ensemble des ports ip et des valeurs 

d’entrées, 

- Y est l’ensemble des ports op et des valeurs 

de sorties, 

- S est l’ensemble des états partiels du 

système, 

- ta : 𝑆 → 𝑅+ est la fonction d’avancement du 

temps, 

- δint : 𝑆 → 𝑆  est la fonction de transition 

interne, 

- δext : 𝑄 × 𝑋𝑏 → 𝑆 est la fonction de 

transition externe où,  𝑋𝑏  est l’ensemble 

des sacs d’entrées appartenant à X, Q est 

l’ensemble des états totaux, Q = {(s, e) | s 

dans S, 0 ≤ e ≤ ta(s)}, e est le temps écoulé 

depuis la dernière transition 

- δcon : 𝑆 × 𝑋𝑏 → 𝑆  la fonction de conflit,  

- λ : 𝑆 → 𝑌 la fonction de sortie 

 

De la même manière que pour la version 

classique de DEVS, en l'absence d’événements 

sur les ports d’entrées, le modèle conserve un 

état passif jusqu’au prochain évènement 

déclenchant la transition interne (δint). Une 

sortie est alors générée par la fonction de sortie 

(λ), suivie de l'exécution de la fonction de 

transition interne (δint).  

Si un événement externe survient sur l’un des 

ports d’entrée avant l'instant prévu pour la 

transition interne, l’état du système passe à  δext 

(s, e, 𝑥𝑏). À la différence d'une approche DEVS 

classique, la transition externe recalcule l'état s 

depuis les ensembles d’événements (𝑋𝑏) 

provenant d’un ou de plusieurs modèle(s) 

PDEVS. Si un événement survient sur X à e = 

ta(s), le simulateur appelle la fonction δcon(s, e, 

𝑥𝑏). L'algorithme comportemental de la 

fonction de conflit δcon  doit être implémenté par 

le modélisateur. Par défaut δcon = δext(δint (s, e), 

0, 𝑥𝑏), donnant ainsi la priorité à la transition 

interne lors d’un conflit dans un modèle 

PDEVS. 

L'objectif de ce travail est d'exprimer ce choix 

en le soumettant à une fonction d’évaluation 

Feval. 

  

1.3 DEVS et le flou 

 

Le formalisme DEVS a déjà été combiné avec 

les théories de l’incertain [3], [8], [9]. Nous 

pouvons citer notamment les travaux 

concernant le formalisme Fuzzy-DEVS [3]. 

Celui-ci est basé sur la logique floue, intègre 

une règle "max-min", des méthodes de 

fuzzification et de défuzzification afin de gérer 

les incertitudes sur le temps des évènements. 

Tel qu’il est spécifié, un modèle atomique 

Fuzzy-DEVS ne permet de prendre en compte 



que les différentes possibilités de transitions 

entre états. Dans Fuzzy-DEVS, les entrées et les 

sorties du modèle ne sont pas représentées 

comme floues. Le modèle atomique flou Fuzzy-

DEVS, contrairement à son pendant DEVS, est 

non déterministe, c’est-à-dire qu’il ne répond 

pas aux deux conditions suivantes : 

1. la fonction de transition interne δint est 

exécutée quand la durée de vie de l’état est 

écoulée (e = 0) et que la fonction de transition 

externe δext est exécutée lorsqu’un évènement 

externe survient ; 

2. la fonction de sortie λ est exécutée quand la 

durée de vie d’un état est finie (e = ta). 

Dans le formalisme Fuzzy-DEVS, l’état suivant 

du système n’est pas déterminé par les 

fonctions δint et δext mais avec une règle "max-

min" ; Celle-ci exprime sous la forme d'un 

algorithme, l’état le plus probable nécessitant 

une mise à jour. Les différentes possibilités de 

changement d’état sont habituellement 

représentées par des matrices, et l’évolution 

d'un modèle FuzzyDEVS par des arbres de 

possibilités. Les feuilles représentent les états et 

les branches expriment la possibilité associée. 

La figure 1 présente l’évolution d’un tel modèle 

en fonction des possibilités associées aux 

fonctions de transition δint et δext. Le modèle est 

défini selon deux entrées X = {x1, x2}, deux 

sorties Y = {y1, y2} et trois états discrets 

possibles S = {s1, s2, s3}. 

 

 
Figure 1 – Une modélisation floue de type 

Fuzzy-DEVS 

 

L’état suivant du modèle de la figure 1, après 

survenue d’une entrée (x1) et déclenchement de 

la fonction de transition externe, sera choisi en 

fonction du degré de possibilité défini par : 

- max(min(0.5,0.8), min(0.5,0.2)) = 0.5 

Nous restons donc dans l’état s1.  

Après une transition interne : 

- max(min(0.8,0.2), min(0.8,0.1)) = 0.2 

Nous passons dans l’état s2. 

Remarquons que comme dans le formalisme 

DEVS original, avant une transition interne δint, 

la fonction de sortie λ doit être exécutée. 

D’autres travaux comme [8]  proposent de 

prendre en compte les imprécisions des 

données d’entrées ; Dans [9]–[12] les auteurs 

proposent d’intégrer des modèles de contrôle 

ou d’optimisation basés sur les systèmes 

d’inférence. Dans tous les cas, nous notons qu'il 

n’y a pas de travaux dans le domaine qui 

proposent d’aider à l’implémentation de la 

fonction de conflit ou qui associent PDEVS et 

la logique floue.  

 

2 Cas d'étude théorique 
 

L’objectif est ici de démontrer, au travers d’un 

exemple théorique, que l'ordre d'exécution des 

fonctions de transition (δint et δext) choisi par le 

modélisateur engendre des résultats de 

simulation qui peuvent être différents. Nous 

avons choisi d’utiliser un modèle théorique de 

croissance de stock, qui repose sur l’équation : 

𝜑t+n = 𝜑t + r × 𝜑t × (1 - (𝜑t / K) avec r un 

coefficient d’accroissement de la population, et 

K la quantité que peut absorber le milieu. Cette 

équation est issue de [13]. 

Le modèle PDEVS considéré est défini tel que :  

- X : les entrées {x1 ; x2} ∈  X qui expriment 

un prélèvement sur une quantité 𝜑 stocké 

dans le modèle PDEVS,   

- Y : modélise une valeur de sortie qui 

permet de lire la quantité 𝜑 

- 𝜑 ∈ 𝑆 : une variable d’état qui définit une 

quantité (de combustible, de poissons, 

etc.), initialement 𝜑 = 80 unités.  

- δint exprime la croissance 𝜑 (évolution de 

population) conformément à : 𝜑t+n = 𝜑t + r 

× 𝜑t × (1 - (𝜑t / K) avec r = 0,5 et K = 100. 

Nous proposons dans le tableau 1 un 



exemple d’évolution à partir d’une valeur 

initiale de 𝜑 = 80.  

- δext engendre une diminution de 𝜑 elle 

représente un prélèvement fixé 

aléatoirement à 10% pour x1, 2% pour x2. 

- δcon est utilisée avec son comportement par 

défaut. En cas de conflit entre un 

événement externe et interne nous 

privilégierons δint puis δext  

- ta = 50  
 

Tableau 1: Evolution de la quantité en fonction de 

l'équation proposée 

temps 0 50 100 150 200 250 300 

φ 80 88 93,3 96,4 98,1 99,1 99,5 

 

2.1 Fonction de conflit  

 

Nous proposons une simulation à temps discret 

(voir tableau 2) avec un grand nombre de 

conflits. Tous les 50 pas de temps, le modèle 

doit exécuter sa fonction de transition interne 

et il reçoit au même moment une demande de 

prélèvement en X. Les résultats sont présentés 

dans le tableau 2 ci-dessous :  

 
Tableau 2 : Exemple d'évolution du modèle PDEVS avec 

la fonction de conflit qui exécute la transition interne puis 

externe 

 
 

Il est assez simple de tester le scénario inverse, 

dont les résultats sont indiqués dans le tableau 

3: 

 
Tableau 3 : Exemple d'évolution du modèle PDEVS avec 

la fonction de conflit qui exécute la transition externe 

puis interne 

   
 

Nous constatons que le comportement du 

modèle entre la simulation 1 (S1) et la 

simulation 2 (S2), présente un différentiel 

d'environ 10% (cf. tableau 4).  

 

Tableau 4 : Erreur entre les deux simulations 

 
 

Le cas d'étude présenté est adapté à l’exécution 

de la fonction de conflit, d’où l’utilisation du 

temps discret, et le partage entre les deux 

fonctions de transition d’une ressource unique 

𝜑. Dans d'autres cas d'étude, notamment si les 

fonctions de transition n’impactent pas la même 

ressource, les résultats seraient très différents. Il 

découle de ce constat une forte contrainte qui 

doit permettre, en fonction du modèle, d’activer 

ou non notre approche. 

 

2.2 Entrées simultanées 

 

Dans le cas d’entrées simultanées, la 

problématique est relativement similaire à la 

précédente, puisqu'il s'agit de récupérer au 

même instant, plusieurs valeurs d’entrées. 

Outre la fonction de gestion de conflits, PDEVS 

inclus pour cela une structure de données de 

type sous-ensemble, appelée sac qui permet la 

collecte des valeurs d'entrée x. Le formalisme 

PDEVS laisse le choix au modélisateur 

d’implémenter une méthode spécifique de prise 

en compte (sélection).  Il peut alors opter pour 

une des stratégies suivantes: 

1. ne rien faire ; 

2. vider séquentiellement le sac ;  

3. élire un des éléments du sac (définir des 

priorités) ; 

4. établir une stratégie pour chaque sac 

recevable ;  

Nous nous plaçons ici dans le cadre d'une 

gestion séquentielle des entrées, où deux 

évènements simultanés impactent la même 

ressource. 

 
Tableau 5 : Exemple d'évolution avec deux entrées 
simultanées et prise en compte de l'entrée 1 puis l'entrée 

2 

 
  

 

0 50 100 150 200 250 300

φ après δint 80 88,0 87,4 87,1 86,8 86,7 86,6

φ après δext 80 79,2 78,7 78,4 78,2 78,0 77,9

temps

0 50 100 150 200 250 300

φ après δext 80 72,0 73,9 75,2 76,1 76,6 77,0

φ après δint 80 82,1 83,5 84,5 85,2 85,6 85,9

temps

0,0 2,9 4,8 6,1 7,0 7,6 7,9

0 0,04 0,06 0,08 0,09 0,10 0,10

|φ s1 - φ s2|

|φ s1 - φ s2| / φ s1 

0 50 100 150 200 250 300

φ après δint 80,0 88,0 86,3 85,2 84,5 84,0 83,7

φ après x 1 80,0 79,2 77,7 76,7 76,0 75,6 75,3

φ après x 2 80,0 77,6 76,1 75,2 74,5 74,1 73,8

temps



Sur la base du même modèle, nous avons ajouté 

une autre entrée x2 qui va elle aussi appliquer 

un prélèvement de 2% au même moment que 

x1. Nous pouvons constater sur les tableaux 5, 6 

et 8 que les résultats du modèle de production 

ne sont pas impactés mais que les quantités 

prélevées par x1 et x2 (voir tableau 8) présentent 

des différences.    

 
Tableau 6 : Exemple d'évolution avec deux entrées 

simultanées et prise en compte de l'entrée 2 puis l'entrée 

1 

 
 

Par contre, nous pouvons voir dans le tableau 7 

qu’en utilisant l’union des deux entrées 

(addition des événements du sac), il y a un 

impact sur l’évolution de la quantité 𝜑. 

 
Tableau 7 : Exemple d'évolution avec deux entrées 

simultanées et prise en compte de l'union de l'entrée 2 et 
l'entrée 1 

 
 

Le tableau 8 détaille les différences entre ces 

trois exemples de simulation, nous avons noté :  

- s1 la première simulation qui donne une 

priorité à x1 sur x2 

- s2 la seconde simulation qui donne une 

priorité à x2 sur x1, et 

- s3 la troisième simulation avec l’union de  

x1 et x2 soit un prélèvement de 12%. 

 
Tableau 8 : Différentiel entre les trois simulations (s1, s2, 

s3) 

 
 

Cette problématique peut être, et est d’ailleurs 

actuellement totalement gérée par le 

modélisateur. L’intérêt de notre proposition est 

d’essayer d’offrir une méthodologie d’aide à la 

conception pour adapter le comportement du 

modèle et la simulation à un contexte 

particulier.   

 

3 Une proposition et des 

perspectives 
 

Le cas d'étude précédent, nous permet 

d'identifier trois problématiques majeures quant 

à l'utilisation du formalisme PDEVS : (1) La 

principale : comment automatiser, ou aider le 

modélisateur à prendre en compte des conflits 

entre fonctions de transitions ou entre entrées 

simultanées ? Une solution est de définir un 

coefficient Br pour chaque modèle et d’utiliser 

ce coefficient pour définir les actions à mener. 

Cette proposition entraine deux sous 

problématiques : (2) comment définir le 

coefficient ? (3) comment le faire évoluer au 

cours de la simulation (influenceurs et 

influencés) ?  

Nous ne traitons dans ce travail que la première 

problématique (problématique principale).  

 

Nous définissons un modèle Fuzzy-PDEVS tel 

que :  < X, Y, S, Br, ta, δcon, δint, δext, λ > 

En fonction du niveau de connaissances sur le 

système, Br sera définit par le modélisateur 

comme un coefficient. Il est possible de faire 

évoluer Br au cours de la simulation en fonction 

des influences des autres composants du 

modèle. Si Br vaut 1 le modèle Fuzzy-PDEVS 

doit être considéré comme "crédible".    

Afin d'illustrer cette solution, nous l’avons 

appliqué au cas d'étude précédent. Dans les cas 

les plus simples, cette solution peut 

s’apparenter à une gestion de priorités, nous 

exécutons la fonction de transition du modèle 

ayant le coefficient le plus élevé. Un 

changement d’état entraîne la mise à jour de Br 

en appliquant une fonction définie par le 

modélisateur. 

 

3.1 Fonction de conflit 

 

Soit M1 le modèle de production, δint et δext ses 

fonctions de transition et M1(Br) son 

0 50 100 150 200 250 300

φ après δint 80,0 88,0 86,3 85,2 84,5 84,0 83,7

φ après x 2 80,0 86,2 84,6 83,5 82,8 82,3 82,0

φ après x 1 80,0 77,6 76,1 75,2 74,5 74,1 73,8

temps

0 50 100 150 200 250 300

φ après δint 80,0 88,0 80,8 86,2 81,4 85,0 81,8

φ x 1 υ x 2 80,0 70,4 77,4 71,1 75,8 71,6 74,8

temps

0,0 1,6 1,6 1,5 1,5 1,5 1,5

0,0 8,62 8,46 8,35 8,28 8,23 8,20

0,0 0,00 5,48 0,97 3,10 0,98 1,91

0,0 0,00 5,48 0,97 3,10 0,98 1,91

|φ s1 - φ s3|

|φ s2 - φ s3|

|x1 s1 - x1 s2|

|x2 s1 - x2
 
s2|



coefficient. La fonction de conflit engendre les 

cas suivants :  

- δint puis δext , cas par défaut si M1(Br) = 1 ; 

ou  M1(Br) = M2(Br)  ; 

- δext puis δint si M1(Br) < M2(Br); 

- aucune action ∅; 

- une action spécifique. 

En ce qui concerne l'expression de la fonction 

d’évolution du coefficient Br, nous laissons le 

choix au modélisateur d’utiliser soit une 

fonction d’agrégation (Min, Max, Moyenne, 

etc.), soit une règle de combinaison.  

 

3.2 Entrées simultanées 

 

Soit M un modèle Fuzzy-PDEVS et X 

l’ensemble de ses entrées. Les entrées 

simultanées engendrent les différentes 

possibilités suivantes:  

- de vider X séquentiellement en fonction de 

Br; 

- de n’exécuter que le sous-ensemble de X 

ayant le Br le plus grand; 

- de "combiner" les sous-ensembles de X.    

 

3.3 Exemple  

 

 
Figure 2 – Modèles {M1 ; M2 ; M3} 

 

La figure 2 est un exemple de modèle Fuzzy-

PDEVS possédant différents coefficients. 

L'utilisation de deux générateurs en entrée (M2, 

M3) influence beaucoup les résultats car ceux-

ci sont fixes et n’évoluent pas pendant la 

simulation. Le coefficient Br du modèle de 

production (M1) va donc en fonction de la 

"règle de combinaison" fixée converger vers 

0.7 ou 0.9. Toutefois, nous présentons 

également un cas d'étude dans lequel nous 

faisons varier le coefficient Br de l’un des deux 

générateurs. Cela nous permet d'expliciter plus 

avant notre démarche. 

Dans le tableau 9 nous présentons les résultats 

obtenus avec une fonction d’agrégation max 

afin de mettre à jour M1(Br).  

 

A t = 50 le simulateur reçoit deux entrées X 

{0.7 ; 0.9} et doit aussi exécuter δint {0.8}. Il 

doit faire un choix. δcon est alors exécutée : max 

({0.8} ; {0.7 ; 0,9}). C’est donc δext qui va être 

exécutée puis δint. Ces deux fonctions, vont 

venir mettre à jour 𝜑 en y appliquant un 

prélèvement (Pt) puis une production (Pr), 𝜑t+50 

= 𝜑t – Pt + Pr.  

Enfin, le coefficient Br de M1 va être mis à jour, 

Br = max ({0.8} ; {0.7 ; 0,9}) 

A t = 100 comme M1(Br) = Max (M2(Br) ; 

M3(Br)), le comportement par défaut est 

appliqué dans δcon, et 𝜑 est mise à jour 𝜑t+50 = 

𝜑t + Pr - Pt.  

M1(Br) n’évoluant plus jusqu’à t = 300, le 

même comportement est reproduit.  

A t = 300, le Br du modèle M1 est modifié par 

l’utilisateur pour prendre une valeur supérieure. 

Dans ce cas, δext est à nouveau privilégiée par 

rapport à δint. 

 
Tableau 9 : Exemple de simulation 

 
 

4 Conclusions et perspectives 
 

Dans ce travail exploratoire, nous proposons 

une approche conceptuelle et théorique pour 

aider le modélisateur à lever les ambiguïtés de 

conception de modèles PDEVS. Nous posons 

les bases d’une approche décisionnelle pour la 

simulation de systèmes à évènements discrets 

basée sur le formalisme PDEVS. PDEVS 

propose deux mécanismes de gestion des 

fonctions comportementales. Ce ‘flou’ peut 

entraîner une influence non négligeable sur les 

résultats d'une simulation. Nous proposons une 

solution, consistant à ajouter à chacun des 

composants PDEVS un coefficient Br. Un cas 

0,0 50,0 100,0 150,0 200,0 250,0 300,0

80,0 φ -Pt+Pr φ+Pr-Pt φ+Pr-Pt φ+Pr-Pt φ+Pr-Pt φ -Pt+Pr

B r 0,8 0,9 0,9 0,9 0,9 0,9 0,95

δcon δext puis δint δint puis δext δint puis δext δint puis δext δint puis δext δint puis δext δext puis δint

δint {0,8} {0,9} {0,9} {0,9} {0,9} {0,9} {0,9}

x b δext {0,7 ; 0,9} {0,7 ; 0,9} {0,8 ; 0,8} {0,8 ; 0,8} {0,9 ; 0,7} {0,9 ; 0,7} {0,95 ; 0,6}

temps

φ
M2 {  
Br = 0,7 ;  

P = 10% } 

M3 {  
Br = 0,9 ;  
P = 2% } 

 

M1 {  

Br = 0,8 ; 𝜑 

= 80 } 

 



d'étude est présenté. Au cours de la simulation, 

Br est évalué et permet de définir 

automatiquement les actions à entreprendre en 

cas de conflit et donc d’incertitude. 

Nous souhaitons maintenant orienter notre 

travail afin de transformer le coefficient  Br en 

masse de croyance. À partir de la définition 

suivante : « Pour modéliser et quantifier la 

crédibilité attribuée à des faits, dont on ne 

connaît pas la probabilité d’occurrence, on 

utilise des fonctions de croyance, qui indiquent 

un ordre dans la confiance attribuée à ces 

faits. » [14]. 

Nous pouvons raisonnablement penser que la 

théorie des fonctions de croyance est un cadre 

formel et/ou théorique pouvant accompagner 

notre démarche. Dans ce cas Br deviendrait une 

masse de croyance fixant ainsi la confiance que 

le modélisateur attribut à son modèle.   

Cette perspective soulève d’autres 

problématiques : (1) comment estimer le niveau 

de croyance des modèles ? (2) et comment 

définir l’influence d’un composant du modèle 

Fuzzy-PDEVS sur le suivant ?  Dans le premier 

cas, nous pensons utiliser des travaux 

permettant de définir le niveau de validité des 

modèles [15], [16]. Il serait aussi possible 

d’évaluer le modèle en fonction de nos 

connaissances sur le système et sur le cadre 

expérimental. Il est également possible de 

combiner ces premiers éléments avec un degré 

de confiance lié au modélisateur lui-même, et 

même dans le cas de modèle à états finis de 

définir un Br par état.   

Dans le second cas, nous pensons étudier 

l’impact de l’utilisation de fonctions 

d’agrégation ou de la règle de combinaison de 

Dempster [17], [18].  
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