
HAL Id: hal-01293122
https://hal.science/hal-01293122v1

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy-PDEVS : vers une méthode conceptuelle pour la
gestion de conflits

P.-A Bisgambiglia, R Franceschini, Damien Foures, E Innocenti

To cite this version:
P.-A Bisgambiglia, R Franceschini, Damien Foures, E Innocenti. Fuzzy-PDEVS : vers une méthode
conceptuelle pour la gestion de conflits . 24ème Conférence sur la Logique Floue et ses Applications,
Nov 2015, Poitiers, France. �hal-01293122�

https://hal.science/hal-01293122v1
https://hal.archives-ouvertes.fr

Fuzzy-PDEVS : vers une méthode conceptuelle pour la gestion de

conflits

Fuzzy-PDEVS: towards handling δcon with conceptual method

P.-A. Bisgambiglia1 R. Franceschini1 D. Foures1,2 E. Innocenti1

1 UMR SPE 6134 CNRS – Université de Corse Pasquale Paoli

1Université de Corse – CNRS UMR SPE – équipe TIC

2Université de Toulouse – LAAS CNRS

Campus Grimaldi, Bat. Conrad - Boîte aux lettres 81 - 20250 Corte (France), bisgambiglia@univ-corse.fr

Résumé :

Dans cet article, nous démontrons qu’une ambiguïté de

conception lors de la réalisation d’un modèle PDEVS
peut avoir un impact important sur les résultats de

simulation. Nous proposons une solution, nommée

Fuzzy-PDEVS, basée sur un coefficient de confiance afin

d'évaluer le comportement du modèle et d'aider le

modélisateur dans sa tâche.

Mots-clés :

PDEVS, DEVS, modèle, conflit, croyance, crédibilité

Abstract:

In this work, we demonstrate that a design ambiguity

when coding a model can have a significant impact on
simulation results. We propose a method based on a

belief rate to evaluate the model and help the modeller in

its design task.

Keywords:

PDEVS, DEVS, model, confluent, belief, credibility

Introduction

Cet article a pour objectif de poser les bases

conceptuelles d’une approche décisionnelle

pour la simulation de systèmes à évènements

discrets fondée sur le formalisme PDEVS

(Parallèle DEVS [1]). PDEVS est une évolution

du formalisme DEVS (Discrete EVent system

Specification [2]) pour les systèmes parallèles

et distribués.

Dans ce travail exploratoire, nous souhaitons

proposer une évolution de PDEVS visant à

évaluer la confiance potentielle accordée à un

modèle ou à son modélisateur. L'objectif est de

faciliter l'expression des fonctions

comportementales du formalisme PDEVS, et

notamment la fonction de conflit (δcon). En

effet, dans sa forme originale, le formalisme

PDEVS possède une fonction de conflit (ou de

confluence) qui peut engendrer des ambiguïtés

lors du processus de modélisation ou

d’utilisation du modèle. Celle-ci permet de

gérer et de prioriser l’exécution des fonctions

comportementales d’un modèle PDEVS (δint,
δext) lorsque surviennent deux événements

simultanés. Ce mécanisme de gestion est trop

générique pour pouvoir exprimer sans

ambiguïté un comportement concurrent. En

effet, il est à la charge du modélisateur ou de

l’utilisateur, d'exprimer comme il l’entend

l'algorithme comportemental concurrent. Un

algorithme séquentiel est proposé par défaut

dans PDEVS (δint puis δext ou δext puis δint).

Cependant, dans de nombreux cas, le

modélisateur éprouve trop souvent un problème

de conception quant à la logique à mettre en

œuvre. La source de cette ambiguïté peut être

très variée, mauvaise connaissance du système,

utilisation dans un contexte incertain, mauvais

modélisateur, etc.

À partir d’un cas d'étude didactique, nous allons

montrer que l’ordre d’exécution des fonctions

comportementales δint et δext peut avoir une

influence non négligeable sur les résultats d'une

simulation. L’approche que nous proposons

repose sur l'intégration dans les modèles

PDEVS d'un coefficient nommé Br. Nous

souhaiterions définir ici Br comme le niveau de

mailto:bisgambiglia@univ-corse.fr

confiance accordé au modèle vis-à-vis des

objectifs définis en rapport avec un cadre

expérimental explicite, ou encore la confiance

accordée au modèle par l’utilisateur. Nous

proposons une évolution du formalisme

PDEVS, qui va intégrer et utiliser le coefficient

Br.

Dans une première partie, nous rappelons les

principes du formalisme DEVS et son évolution

parallèle et distribuée PDEVS. Nous

soulignons ses avantages et ses limites. Ensuite,

nous proposons un exemple de simulation à

partir d’un modèle théorique. L’objectif de

notre exemple, est de dresser un constat sur les

ambiguïtés de modélisation introduites dans le

formalisme PDEVS. Puis, nous ferons part de

notre réflexion pour pallier à ces problèmes, et

aider le modélisateur dans ses choix. Enfin,

après une conclusion, nous énoncerons nos

perspectives pour finaliser l’approche

proposée.

1 Background

1.1 Le formalisme DEVS

Le formalisme DEVS [2] propose une approche

formelle facilitant la modélisation et la

simulation de systèmes complexes à

évènements discrets. Ce formalisme est basé

sur la théorie des systèmes. Il est courant que le

formalisme DEVS, dans sa forme originale, soit

adapté et étendu afin d'être replacé dans des

contextes plus spécifiques d’un domaine

d’application. C’est par exemple le cas quand il

s'agit de modéliser des systèmes flous [3], [4],

ou d’autres types de systèmes [5], [6].

Le formalisme DEVS repose sur la définition

de deux types de composants de modélisation:

les modèles atomiques (M cf formule 1) et les

modèles couplés. Les modèles atomiques

permettent de décrire le comportement du

système à étudier à l'aide de fonctions. M

évoluent en fonction d'occurrences

d’événements qui engendrent des transitions

d’états internes ou externes.

Un modèle atomique est défini par le tuple : M

< X, Y, S, ta, δint, δext, λ > (1)

Avec :

- X : l’ensemble des ports d’entrée ;

- Y : l’ensemble des ports de sortie ;

- S : l’ensemble des états du système;

- ta : 𝑆 → 𝑅+ la fonction d’avancement du

temps (ou de durée de vie d’un état) ;

- δint : 𝑆 → 𝑆 la fonction de transition

interne. Elle permet de passer d'un état s1 à

l'instant t1, à un état s2 à l'instant t2

lorsqu'aucun évènement externe ne

survient durant le temps de vie de l'état

ta(S1) ;

- δext : 𝑄 × 𝑋 → 𝑆 la fonction de transition

externe. Elle spécifie comment le modèle

change d'état (passage de l'état s1 à l'état s2)

quand une entrée survient (x) avant que

ta(s1) ne soit écoulé ; Q est l’ensemble des

états tels que {(e, s)|s dans S, 0 ≤ e ≤ ta(s)} ;

e est le temps passé dans l’état.

- λ : 𝑆 → 𝑌 la fonction de sortie ;

Les modèles couplés décrivent la structure, et

fixent une priorité entre composants du modèle

grâce à une fonction adaptée nommée

« select ». Plusieurs composants de

modélisation peuvent donc être interconnectés

entre eux dans un modèle couplé, et des

évènements simultanés peuvent se produire.

Cependant, dans sa formulation originale, le

formalisme DEVS impose de briser le lien de

causalité entre composants dans le cas

d’événements simultanés. Si plusieurs

composants interconnectés s'influencent

mutuellement, les événements de sortie des

influenceurs ne seront pas reçus par les

influencés aux mêmes instants. Cela résulte de

la définition de la fonction « select » empêchant

toute possibilité de simultanéité dans le modèle

DEVS original. De plus, un événement externe

peut survenir sur les ports d’entrées d’un

composant du modèle au même instant que

celui déclenchant la transition interne. Il y a

donc conflit et la prise en compte de ce conflit

doit être décrite dans un algorithme adapté à la

charge du modélisateur. Les limites

conceptuelles qu'implique cette concurrence

sont détaillées dans [7].

Le formalisme PDEVS a été proposé afin de les

dépasser.

1.2 Le formalisme PDEVS

Le formalisme PDEVS pour (Parallel Discrete

EVent system Specification) est une extension

du formalisme DEVS. Il est complété d'une

fonction (δcon) dont l’objectif est de permettre

au modélisateur de gérer les conflits survenant

entre évènements internes et externes

(fonctions δint et δext). PDEVS inclut aussi un

mécanisme (structure de données de type sac,

𝑋𝑏 sous-ensemble de X) pour gérer les

évènements d’entrées simultanés. Ce nouvel

ensemble permet de collecter des événements

émis au même instant. Ainsi, le formalisme

PDEVS, permet de spécifier plusieurs

événements externes à une même date. Ces

événements sont collectés et stockés dans des

ensembles d’événements survenus au même

instant. Les sorties réalisées par les "modèles

imminents", c'est-à-dire les modèles en conflits

à un instant donnée pour lesquels une transition

interne est prévue au même instant sont

stockées dans un sous-ensemble d’entrées noté

𝑋𝑏 . Chacun des événements de l’ensemble 𝑋𝑏

est identifié par son temps d’occurrence.

Aucune relation d’ordre n’est préconisée pour

les événements appartenant à un même

ensemble. On peut ainsi autoriser et dénombrer

les évènements simultanés sur chaque port

d’entrée X. La prise en compte des événements

de l’ensemble n’est autorisée qu’après les

transitions internes de tous les modèles

imminents.

De ce fait, les transitions externes sont réalisées

par des ensembles représentant ainsi la réponse

agrégée des événements simultanés.

Le modèle atomique PDEVS M est décrit par

un tuple < X, Y, S, ta, δcon, δint, δext, λ > (2)

où

- X est l’ensemble des ports ip et des valeurs

d’entrées,

- Y est l’ensemble des ports op et des valeurs

de sorties,

- S est l’ensemble des états partiels du

système,

- ta : 𝑆 → 𝑅+ est la fonction d’avancement du

temps,

- δint : 𝑆 → 𝑆 est la fonction de transition

interne,

- δext : 𝑄 × 𝑋𝑏 → 𝑆 est la fonction de

transition externe où, 𝑋𝑏 est l’ensemble

des sacs d’entrées appartenant à X, Q est

l’ensemble des états totaux, Q = {(s, e) | s

dans S, 0 ≤ e ≤ ta(s)}, e est le temps écoulé

depuis la dernière transition

- δcon : 𝑆 × 𝑋𝑏 → 𝑆 la fonction de conflit,

- λ : 𝑆 → 𝑌 la fonction de sortie

De la même manière que pour la version

classique de DEVS, en l'absence d’événements

sur les ports d’entrées, le modèle conserve un

état passif jusqu’au prochain évènement

déclenchant la transition interne (δint). Une

sortie est alors générée par la fonction de sortie

(λ), suivie de l'exécution de la fonction de

transition interne (δint).

Si un événement externe survient sur l’un des

ports d’entrée avant l'instant prévu pour la

transition interne, l’état du système passe à δext

(s, e, 𝑥𝑏). À la différence d'une approche DEVS

classique, la transition externe recalcule l'état s

depuis les ensembles d’événements (𝑋𝑏)

provenant d’un ou de plusieurs modèle(s)

PDEVS. Si un événement survient sur X à e =

ta(s), le simulateur appelle la fonction δcon(s, e,

𝑥𝑏). L'algorithme comportemental de la

fonction de conflit δcon doit être implémenté par

le modélisateur. Par défaut δcon = δext(δint (s, e),

0, 𝑥𝑏), donnant ainsi la priorité à la transition

interne lors d’un conflit dans un modèle

PDEVS.

L'objectif de ce travail est d'exprimer ce choix

en le soumettant à une fonction d’évaluation

Feval.

1.3 DEVS et le flou

Le formalisme DEVS a déjà été combiné avec

les théories de l’incertain [3], [8], [9]. Nous

pouvons citer notamment les travaux

concernant le formalisme Fuzzy-DEVS [3].

Celui-ci est basé sur la logique floue, intègre

une règle "max-min", des méthodes de

fuzzification et de défuzzification afin de gérer

les incertitudes sur le temps des évènements.

Tel qu’il est spécifié, un modèle atomique

Fuzzy-DEVS ne permet de prendre en compte

que les différentes possibilités de transitions

entre états. Dans Fuzzy-DEVS, les entrées et les

sorties du modèle ne sont pas représentées

comme floues. Le modèle atomique flou Fuzzy-

DEVS, contrairement à son pendant DEVS, est

non déterministe, c’est-à-dire qu’il ne répond

pas aux deux conditions suivantes :

1. la fonction de transition interne δint est

exécutée quand la durée de vie de l’état est

écoulée (e = 0) et que la fonction de transition

externe δext est exécutée lorsqu’un évènement

externe survient ;

2. la fonction de sortie λ est exécutée quand la

durée de vie d’un état est finie (e = ta).

Dans le formalisme Fuzzy-DEVS, l’état suivant

du système n’est pas déterminé par les

fonctions δint et δext mais avec une règle "max-

min" ; Celle-ci exprime sous la forme d'un

algorithme, l’état le plus probable nécessitant

une mise à jour. Les différentes possibilités de

changement d’état sont habituellement

représentées par des matrices, et l’évolution

d'un modèle FuzzyDEVS par des arbres de

possibilités. Les feuilles représentent les états et

les branches expriment la possibilité associée.

La figure 1 présente l’évolution d’un tel modèle

en fonction des possibilités associées aux

fonctions de transition δint et δext. Le modèle est

défini selon deux entrées X = {x1, x2}, deux

sorties Y = {y1, y2} et trois états discrets

possibles S = {s1, s2, s3}.

Figure 1 – Une modélisation floue de type

Fuzzy-DEVS

L’état suivant du modèle de la figure 1, après

survenue d’une entrée (x1) et déclenchement de

la fonction de transition externe, sera choisi en

fonction du degré de possibilité défini par :

- max(min(0.5,0.8), min(0.5,0.2)) = 0.5

Nous restons donc dans l’état s1.

Après une transition interne :

- max(min(0.8,0.2), min(0.8,0.1)) = 0.2

Nous passons dans l’état s2.

Remarquons que comme dans le formalisme

DEVS original, avant une transition interne δint,

la fonction de sortie λ doit être exécutée.

D’autres travaux comme [8] proposent de

prendre en compte les imprécisions des

données d’entrées ; Dans [9]–[12] les auteurs

proposent d’intégrer des modèles de contrôle

ou d’optimisation basés sur les systèmes

d’inférence. Dans tous les cas, nous notons qu'il

n’y a pas de travaux dans le domaine qui

proposent d’aider à l’implémentation de la

fonction de conflit ou qui associent PDEVS et

la logique floue.

2 Cas d'étude théorique

L’objectif est ici de démontrer, au travers d’un

exemple théorique, que l'ordre d'exécution des

fonctions de transition (δint et δext) choisi par le

modélisateur engendre des résultats de

simulation qui peuvent être différents. Nous

avons choisi d’utiliser un modèle théorique de

croissance de stock, qui repose sur l’équation :

𝜑t+n = 𝜑t + r × 𝜑t × (1 - (𝜑t / K) avec r un

coefficient d’accroissement de la population, et

K la quantité que peut absorber le milieu. Cette

équation est issue de [13].

Le modèle PDEVS considéré est défini tel que :

- X : les entrées {x1 ; x2} ∈ X qui expriment

un prélèvement sur une quantité 𝜑 stocké

dans le modèle PDEVS,

- Y : modélise une valeur de sortie qui

permet de lire la quantité 𝜑

- 𝜑 ∈ 𝑆 : une variable d’état qui définit une

quantité (de combustible, de poissons,

etc.), initialement 𝜑 = 80 unités.

- δint exprime la croissance 𝜑 (évolution de

population) conformément à : 𝜑t+n = 𝜑t + r

× 𝜑t × (1 - (𝜑t / K) avec r = 0,5 et K = 100.

Nous proposons dans le tableau 1 un

exemple d’évolution à partir d’une valeur

initiale de 𝜑 = 80.

- δext engendre une diminution de 𝜑 elle

représente un prélèvement fixé

aléatoirement à 10% pour x1, 2% pour x2.

- δcon est utilisée avec son comportement par

défaut. En cas de conflit entre un

événement externe et interne nous

privilégierons δint puis δext

- ta = 50

Tableau 1: Evolution de la quantité en fonction de

l'équation proposée

temps 0 50 100 150 200 250 300

φ 80 88 93,3 96,4 98,1 99,1 99,5

2.1 Fonction de conflit

Nous proposons une simulation à temps discret

(voir tableau 2) avec un grand nombre de

conflits. Tous les 50 pas de temps, le modèle

doit exécuter sa fonction de transition interne

et il reçoit au même moment une demande de

prélèvement en X. Les résultats sont présentés

dans le tableau 2 ci-dessous :

Tableau 2 : Exemple d'évolution du modèle PDEVS avec

la fonction de conflit qui exécute la transition interne puis

externe

Il est assez simple de tester le scénario inverse,

dont les résultats sont indiqués dans le tableau

3:

Tableau 3 : Exemple d'évolution du modèle PDEVS avec

la fonction de conflit qui exécute la transition externe

puis interne

Nous constatons que le comportement du

modèle entre la simulation 1 (S1) et la

simulation 2 (S2), présente un différentiel

d'environ 10% (cf. tableau 4).

Tableau 4 : Erreur entre les deux simulations

Le cas d'étude présenté est adapté à l’exécution

de la fonction de conflit, d’où l’utilisation du

temps discret, et le partage entre les deux

fonctions de transition d’une ressource unique

𝜑. Dans d'autres cas d'étude, notamment si les

fonctions de transition n’impactent pas la même

ressource, les résultats seraient très différents. Il

découle de ce constat une forte contrainte qui

doit permettre, en fonction du modèle, d’activer

ou non notre approche.

2.2 Entrées simultanées

Dans le cas d’entrées simultanées, la

problématique est relativement similaire à la

précédente, puisqu'il s'agit de récupérer au

même instant, plusieurs valeurs d’entrées.

Outre la fonction de gestion de conflits, PDEVS

inclus pour cela une structure de données de

type sous-ensemble, appelée sac qui permet la

collecte des valeurs d'entrée x. Le formalisme

PDEVS laisse le choix au modélisateur

d’implémenter une méthode spécifique de prise

en compte (sélection). Il peut alors opter pour

une des stratégies suivantes:

1. ne rien faire ;

2. vider séquentiellement le sac ;

3. élire un des éléments du sac (définir des

priorités) ;

4. établir une stratégie pour chaque sac

recevable ;

Nous nous plaçons ici dans le cadre d'une

gestion séquentielle des entrées, où deux

évènements simultanés impactent la même

ressource.

Tableau 5 : Exemple d'évolution avec deux entrées
simultanées et prise en compte de l'entrée 1 puis l'entrée

2

0 50 100 150 200 250 300

φ après δint 80 88,0 87,4 87,1 86,8 86,7 86,6

φ après δext 80 79,2 78,7 78,4 78,2 78,0 77,9

temps

0 50 100 150 200 250 300

φ après δext 80 72,0 73,9 75,2 76,1 76,6 77,0

φ après δint 80 82,1 83,5 84,5 85,2 85,6 85,9

temps

0,0 2,9 4,8 6,1 7,0 7,6 7,9

0 0,04 0,06 0,08 0,09 0,10 0,10

|φ s1 - φ s2|

|φ s1 - φ s2| / φ s1

0 50 100 150 200 250 300

φ après δint 80,0 88,0 86,3 85,2 84,5 84,0 83,7

φ après x 1 80,0 79,2 77,7 76,7 76,0 75,6 75,3

φ après x 2 80,0 77,6 76,1 75,2 74,5 74,1 73,8

temps

Sur la base du même modèle, nous avons ajouté

une autre entrée x2 qui va elle aussi appliquer

un prélèvement de 2% au même moment que

x1. Nous pouvons constater sur les tableaux 5, 6

et 8 que les résultats du modèle de production

ne sont pas impactés mais que les quantités

prélevées par x1 et x2 (voir tableau 8) présentent

des différences.

Tableau 6 : Exemple d'évolution avec deux entrées

simultanées et prise en compte de l'entrée 2 puis l'entrée

1

Par contre, nous pouvons voir dans le tableau 7

qu’en utilisant l’union des deux entrées

(addition des événements du sac), il y a un

impact sur l’évolution de la quantité 𝜑.

Tableau 7 : Exemple d'évolution avec deux entrées

simultanées et prise en compte de l'union de l'entrée 2 et
l'entrée 1

Le tableau 8 détaille les différences entre ces

trois exemples de simulation, nous avons noté :

- s1 la première simulation qui donne une

priorité à x1 sur x2

- s2 la seconde simulation qui donne une

priorité à x2 sur x1, et

- s3 la troisième simulation avec l’union de

x1 et x2 soit un prélèvement de 12%.

Tableau 8 : Différentiel entre les trois simulations (s1, s2,

s3)

Cette problématique peut être, et est d’ailleurs

actuellement totalement gérée par le

modélisateur. L’intérêt de notre proposition est

d’essayer d’offrir une méthodologie d’aide à la

conception pour adapter le comportement du

modèle et la simulation à un contexte

particulier.

3 Une proposition et des

perspectives

Le cas d'étude précédent, nous permet

d'identifier trois problématiques majeures quant

à l'utilisation du formalisme PDEVS : (1) La

principale : comment automatiser, ou aider le

modélisateur à prendre en compte des conflits

entre fonctions de transitions ou entre entrées

simultanées ? Une solution est de définir un

coefficient Br pour chaque modèle et d’utiliser

ce coefficient pour définir les actions à mener.

Cette proposition entraine deux sous

problématiques : (2) comment définir le

coefficient ? (3) comment le faire évoluer au

cours de la simulation (influenceurs et

influencés) ?

Nous ne traitons dans ce travail que la première

problématique (problématique principale).

Nous définissons un modèle Fuzzy-PDEVS tel

que : < X, Y, S, Br, ta, δcon, δint, δext, λ >

En fonction du niveau de connaissances sur le

système, Br sera définit par le modélisateur

comme un coefficient. Il est possible de faire

évoluer Br au cours de la simulation en fonction

des influences des autres composants du

modèle. Si Br vaut 1 le modèle Fuzzy-PDEVS

doit être considéré comme "crédible".

Afin d'illustrer cette solution, nous l’avons

appliqué au cas d'étude précédent. Dans les cas

les plus simples, cette solution peut

s’apparenter à une gestion de priorités, nous

exécutons la fonction de transition du modèle

ayant le coefficient le plus élevé. Un

changement d’état entraîne la mise à jour de Br

en appliquant une fonction définie par le

modélisateur.

3.1 Fonction de conflit

Soit M1 le modèle de production, δint et δext ses

fonctions de transition et M1(Br) son

0 50 100 150 200 250 300

φ après δint 80,0 88,0 86,3 85,2 84,5 84,0 83,7

φ après x 2 80,0 86,2 84,6 83,5 82,8 82,3 82,0

φ après x 1 80,0 77,6 76,1 75,2 74,5 74,1 73,8

temps

0 50 100 150 200 250 300

φ après δint 80,0 88,0 80,8 86,2 81,4 85,0 81,8

φ x 1 υ x 2 80,0 70,4 77,4 71,1 75,8 71,6 74,8

temps

0,0 1,6 1,6 1,5 1,5 1,5 1,5

0,0 8,62 8,46 8,35 8,28 8,23 8,20

0,0 0,00 5,48 0,97 3,10 0,98 1,91

0,0 0,00 5,48 0,97 3,10 0,98 1,91

|φ s1 - φ s3|

|φ s2 - φ s3|

|x1 s1 - x1 s2|

|x2 s1 - x2

s2|

coefficient. La fonction de conflit engendre les

cas suivants :

- δint puis δext , cas par défaut si M1(Br) = 1 ;

ou M1(Br) = M2(Br) ;

- δext puis δint si M1(Br) < M2(Br);

- aucune action ∅;

- une action spécifique.

En ce qui concerne l'expression de la fonction

d’évolution du coefficient Br, nous laissons le

choix au modélisateur d’utiliser soit une

fonction d’agrégation (Min, Max, Moyenne,

etc.), soit une règle de combinaison.

3.2 Entrées simultanées

Soit M un modèle Fuzzy-PDEVS et X

l’ensemble de ses entrées. Les entrées

simultanées engendrent les différentes

possibilités suivantes:

- de vider X séquentiellement en fonction de

Br;

- de n’exécuter que le sous-ensemble de X

ayant le Br le plus grand;

- de "combiner" les sous-ensembles de X.

3.3 Exemple

Figure 2 – Modèles {M1 ; M2 ; M3}

La figure 2 est un exemple de modèle Fuzzy-

PDEVS possédant différents coefficients.

L'utilisation de deux générateurs en entrée (M2,

M3) influence beaucoup les résultats car ceux-

ci sont fixes et n’évoluent pas pendant la

simulation. Le coefficient Br du modèle de

production (M1) va donc en fonction de la

"règle de combinaison" fixée converger vers

0.7 ou 0.9. Toutefois, nous présentons

également un cas d'étude dans lequel nous

faisons varier le coefficient Br de l’un des deux

générateurs. Cela nous permet d'expliciter plus

avant notre démarche.

Dans le tableau 9 nous présentons les résultats

obtenus avec une fonction d’agrégation max

afin de mettre à jour M1(Br).

A t = 50 le simulateur reçoit deux entrées X

{0.7 ; 0.9} et doit aussi exécuter δint {0.8}. Il

doit faire un choix. δcon est alors exécutée : max

({0.8} ; {0.7 ; 0,9}). C’est donc δext qui va être

exécutée puis δint. Ces deux fonctions, vont

venir mettre à jour 𝜑 en y appliquant un

prélèvement (Pt) puis une production (Pr), 𝜑t+50

= 𝜑t – Pt + Pr.

Enfin, le coefficient Br de M1 va être mis à jour,

Br = max ({0.8} ; {0.7 ; 0,9})

A t = 100 comme M1(Br) = Max (M2(Br) ;

M3(Br)), le comportement par défaut est

appliqué dans δcon, et 𝜑 est mise à jour 𝜑t+50 =

𝜑t + Pr - Pt.

M1(Br) n’évoluant plus jusqu’à t = 300, le

même comportement est reproduit.

A t = 300, le Br du modèle M1 est modifié par

l’utilisateur pour prendre une valeur supérieure.

Dans ce cas, δext est à nouveau privilégiée par

rapport à δint.

Tableau 9 : Exemple de simulation

4 Conclusions et perspectives

Dans ce travail exploratoire, nous proposons

une approche conceptuelle et théorique pour

aider le modélisateur à lever les ambiguïtés de

conception de modèles PDEVS. Nous posons

les bases d’une approche décisionnelle pour la

simulation de systèmes à évènements discrets

basée sur le formalisme PDEVS. PDEVS

propose deux mécanismes de gestion des

fonctions comportementales. Ce ‘flou’ peut

entraîner une influence non négligeable sur les

résultats d'une simulation. Nous proposons une

solution, consistant à ajouter à chacun des

composants PDEVS un coefficient Br. Un cas

0,0 50,0 100,0 150,0 200,0 250,0 300,0

80,0 φ -Pt+Pr φ+Pr-Pt φ+Pr-Pt φ+Pr-Pt φ+Pr-Pt φ -Pt+Pr

B r 0,8 0,9 0,9 0,9 0,9 0,9 0,95

δcon δext puis δint δint puis δext δint puis δext δint puis δext δint puis δext δint puis δext δext puis δint

δint {0,8} {0,9} {0,9} {0,9} {0,9} {0,9} {0,9}

x b δext {0,7 ; 0,9} {0,7 ; 0,9} {0,8 ; 0,8} {0,8 ; 0,8} {0,9 ; 0,7} {0,9 ; 0,7} {0,95 ; 0,6}

temps

φ
M2 {
Br = 0,7 ;

P = 10% }

M3 {
Br = 0,9 ;
P = 2% }

M1 {

Br = 0,8 ; 𝜑

= 80 }

d'étude est présenté. Au cours de la simulation,

Br est évalué et permet de définir

automatiquement les actions à entreprendre en

cas de conflit et donc d’incertitude.

Nous souhaitons maintenant orienter notre

travail afin de transformer le coefficient Br en

masse de croyance. À partir de la définition

suivante : « Pour modéliser et quantifier la

crédibilité attribuée à des faits, dont on ne

connaît pas la probabilité d’occurrence, on

utilise des fonctions de croyance, qui indiquent

un ordre dans la confiance attribuée à ces

faits. » [14].

Nous pouvons raisonnablement penser que la

théorie des fonctions de croyance est un cadre

formel et/ou théorique pouvant accompagner

notre démarche. Dans ce cas Br deviendrait une

masse de croyance fixant ainsi la confiance que

le modélisateur attribut à son modèle.

Cette perspective soulève d’autres

problématiques : (1) comment estimer le niveau

de croyance des modèles ? (2) et comment

définir l’influence d’un composant du modèle

Fuzzy-PDEVS sur le suivant ? Dans le premier

cas, nous pensons utiliser des travaux

permettant de définir le niveau de validité des

modèles [15], [16]. Il serait aussi possible

d’évaluer le modèle en fonction de nos

connaissances sur le système et sur le cadre

expérimental. Il est également possible de

combiner ces premiers éléments avec un degré

de confiance lié au modélisateur lui-même, et

même dans le cas de modèle à états finis de

définir un Br par état.

Dans le second cas, nous pensons étudier

l’impact de l’utilisation de fonctions

d’agrégation ou de la règle de combinaison de

Dempster [17], [18].

Références

[1] A. C. Chow et B. P. Zeigler, « Revised DEVS : A

Parallel Hierarchical Modular Modeling

Formalism », 2003.

[2] B. P. Zeigler, H. Praehofer, et T. G. Kim, Theory of
Modeling and Simulation, Second Edition. 2000.

[3] Y. Kwon, H. Park, S. Jung, et T. Kim, « Fuzzy-

DEVS Formalisme : Concepts, Realization and

Application », Proc. AIS 1996, p. 227–234, 1996.

[4] P.-A. Bisgambiglia, B. Poggi, et C. Nicolai,

« Models-Based Optimization Methods for the

Specification of Fuzzy Inference Systems in

Discrete EVent Simulation », in Proceedings in the

7th conference of the European Society for Fuzzy

Logic and Technology (EUSFLAT-2011) and (LFA-

2011), 2011, vol. 1‑1, p. 957‑964.

[5] G. Quesnel, R. Duboz, É. Ramat, et M. K. Traoré,

« VLE: A Multimodeling and Simulation

Environment », in Proceedings of the 2007 Summer

Computer Simulation Conference, San Diego, CA,

USA, 2007, p. 367–374.

[6] K. Al-Zoubi et G. Wainer, « Distributed simulation
of DEVS and Cell-DEVS models using the RISE

middleware », Simul. Model. Pract. Theory, vol. 55,

p. 27‑45, juin 2015.

[7] M. Akplogan, Approche modulaire pour la

planification continue : application à la conduite

des systèmes de culture. Toulouse 3, 2013.

[8] P.-A. Bisgambiglia, E. de Gentili, P. A.

Bisgambiglia, et J.-F. Santucci, « Fuzz-iDEVS:

Towards a fuzzy toolbox for discrete event

systems », in Proceedings of the SIMUTools’09,

Rome (Italie), 2009.
[9] B. P. Zeigler, Y. Moon, V. L. Lopes, et J. Kim,

« DEVS approximation of infiltration using genetic

algorithm optimization of a fuzzy system », Math.

Comput. Model., vol. 23, no 11‑12, p. 215‑228, juin

1996.

[10] P.-A. Bisgambiglia, L. Capocchi, P. Bisgambiglia,

et S. Garredu, « Fuzzy inference models for Discrete

EVent systems », in FUZZ-IEEE, 2010, p. 1‑8.

[11] J. F. Santucci et L. Capocchi, « Fuzzy Discrete-

Event Systems Modeling and Simulation with Fuzzy
Control Language and DEVS Formalism », in Sixth

International Conference on Advances in System

Simulation (SIMUL2014), Nice, France, 2014, p.

250‑255.

[12] G. Kim et P. Fishwick, « Validation method using

fuzzy simulation in an object-oriented physical

modeling framework », Enabling Technol. Simul.

Sci. II, vol. 3369, p. 143‑153, 1998.

[13] M. B. Schaefer, « Some aspects of the dynamics of

populations important to the management of the
commercial marine fisheries », Bull. Math. Biol.,

vol. 53, no 1‑2, p. 253‑279, 1991.

[14] B. Bouchon-Meunier, Logique floue et ses

applications. Addison-Wesley, 1995.

[15] D. Foures, V. Albert, et A. Nketsa, « Simulation

validation using the compatibility between

Simulation Model and Experimental Frame », in

Proceedings of the 2013 Summer Computer

Simulation Conference, 2013, p. 55.

[16] M. Olsen et M. Raunak, « A Method for Quantified

Confidence of DEVS Validation », in Proceedings
of SpringSim TMS/DEVS. 2015, USA, 2015.

[17] G. Shafer, A mathematical theory of evidence. 1976.

[18] P. Smets et R. Kennes, « The transferable belief

model », Artif. Intell., vol. 66, no 2, p. 191‑234, avr.

1994.

