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Introduction

In this work, micromechanical analysis method is applied to a periodic composite with unidirectional fibers and parallelogram cells. The analytical expressions of the homogenized elastic properties are calculated for two phase composite with hard and soft interfaces. The Asymptotic Homogenization Method (AHM), for two-phase fibrous periodic composites with imperfect adhesion and oblique cell is used for the calculation of the plane elastic effective coefficients. This contribution is an extension of previous works by the authors (Rodriguez-Ramos et al. 2011 [START_REF] Rodríguez-Ramos | Two analytical models for the study of periodic fibrous elastic composite with different unit cells[END_REF], Guinovart-Diaz et al. 2011 [START_REF] Guinovart-Díaz | Influence of parallelogram cells in the axial behaviour of fibrous composite[END_REF]), where only the perfect contact was considered for the antiplane problem. Besides, the present investigation is different of those of Lopez-Realpozo et al. 2011 [START_REF] López-Realpozo | Transport properties in fibrous elastic rhombic composite with imperfect contact condition[END_REF] and Rodriguez-Ramos et al. 2013 [START_REF] Rodríguez-Ramos | Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence[END_REF] since the plane problem is solved for the calculation of the effective coefficients for composites with parallelogram cell. The novelty of the present work is that the imperfection of the interface in the composite with parallelogram cell is taken into account introducing two spring-type stiffnesses   n t K ,K for plane problems.

Using a classical approach [START_REF] Lebon | Modelling adhesion by asymptotic techniques[END_REF], the spring parameters can be identified from a three phase problem where the interphase coating the fiber is very thin. The paper is organized as follows. In the first part of the paper the derivation of the contact law mechanically equivalent to the interphase coating the fiber is reviewed on the basis of an energy method [START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF]. The method allows obtaining the spring-type interface law for a general anisotropic behavior of the interphase and the interface parameters   n t K ,K are explicitly given in terms of the elastic constants of the interphase.

The results of the micromechanical analysis presented in the second part of this paper are mainly focused on the impact of the arrangement of the fibers and the mechanic imperfection at the interface on the plane properties in the composites. Moreover, the theoretical approach is validated with some theoretical models.

Modeling of imperfect contact

assumed to be symmetric, with the minor and major symmetries, and positive definite.

The adhesive is assumed to be soft, i.e. ijkl ijkl C C    with ijkl C independent of  .

The adherents are subjected to a body force density The approach used in [START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF] to obtain the contact law is based on the fact that stable equilibrium configurations of the composite assemblage minimize the total energy:

        1 2 g 1 2 ijkl i,j k,l i i x ijkl i,j k,l i i x i i x S S ijkl i, j k,l x B 1 1 E u C u u f u dV C u u f u dV g u dA 2 2 1 C u u dV , 2                 
in the space of kinematically admissible displacements:

    3 u V u H S ; : u 0 on         ,
Where  

H S ;

  is the space of the vector-valued functions on the set S  which are continuous and differentiable as many times as necessary. Under suitable regularity assumptions, the existence of a unique minimizer u V   is ensured [START_REF] Ciarlet | Mathematical Elasticity. Volume I: Three-dimensional Elasticity[END_REF].

For the asymptotic analysis, it is convenient to introduce the following change of variables

    1 2 3 1 2 3 p : x , x , x z ,z ,z 
in the adhesive:

1 1 z x  , 2 2 z x  , 3 3 z x   , which gives 1 1 z x      , 2 2 z x      , 3 3 z x       . A change of variable     1 2 3 1 2 3 p : x , x , x z ,z ,z 
is also introduced in the adherents:

1 1 z x  , 2 2 z x  ,   3 3 z x 1 2 1    ,
where the plus (minus) sign applies whenever   1 2

x S x S     and one has

1 1 z x      , 2 2 z x      , 3 3 z x      .
After the change of variables p , the interphase occupies the domain

      3 1 2 3 1 2 B z ,z ,z : z ,z A, z 1 2      ,
and the adherents occupy the domains  

1,2 1,2 3 S S 1 2 1 i     . The sets       3 1,2 1 2 3 1 2 3 z ,z ,z : z ,z A,z 1 2       
are taken to denote the interfaces between B, and 1,2 S and Using the changes of variables given by p , p and denoting

1 u u p     and 1 û u p    
the displacement fields from the rescaled adhesive and adherents, respectively, the total energy takes the rescaled form:

        1 2 1 2 ijkl i i, , j j i k,,jl i i i, j z ijkl i i, , j j i k,,jl i i i, j z i i i z S S 1 33 3 3 ki k,3 i,3 ki i,3 k, ki i, k, 1 1 Ê u , u C u u f u dV C u u f u dV g u dA 2 2 1 ˆˆˆˆˆK u u 2K u u K u u 2                                      z B dV ,  
where the matrices jl K (with j,l 1, 2,3  ) are defined by the relation:

jl ki ijkl K : C  .
In view of the symmetry properties of the elasticity tensor ijkl

C it results that   T jl lj K K  , j,l 1, 2,3  .
Next, the existence of asymptotic expansions of the displacement fields with respect to the small parameter  is assumed:

  0 1 2 2 2 u u u u o       ,   0 1 2 2 2 ˆˆˆû u u u o       ,   0 1 2 2 2 u u u u o         .
Substituting these expansions into the rescaled energy, one obtains

      0 0 0 ˆÊ u ,u E u ,u o 1      , with         1 2 0 0 0 1 0 0 0 2 0 0 0 0 ijkl i i, , j j i k,,jl i i i, j z ijkl i i, , j j i k,,jl i i i, j z i i i z S S 1 33 0 0 ki k,3 i,3 z B 1 1 Ê u , u C u u f u dV C u u f u dV g u dA 2 2 1 ˆK u u dV . 2                The energy   0 0 0 Ê u , u is now minimized with respect to couples   0 0
û , u in the set of the rescaled admissible displacements:

        ^0 3 3 1,2 u 1,2 ˆV u, u H S ; B; : u 0 on , u u on .         
Using standard arguments, the following equilibrium equations are obtained:

  1,2 0 ijkl k,l i 1,2 , j C u f 0 in S   ,   1,2 0 ijkl k,l j i g C u n g on   ,   1,2 0 ijkl k,l j 1,2 C u n 0 on S     g u 1 , 2      ,   33 0 jk k,l ,3 K u 0 in B  ,   1,2 0 33 0 ijkl k,l ir r,3 1,2 Ĉ u K u on   ,
where n is taken to denote the outward normal. The first three equations are the equilibrium equations of the adherents at the order zero, with the suitable boundary conditions.

The remaining two equations imply the continuity of the traction vector, say

  0 1 , 2 0 3 3 i : C u i  
at the order zero across the rescaled interphase, i.e.

0 3 i 0   ,
where

    1 2
     indicates the jump in the quantity  across the rescaled interphase B . After integration of equation  

33 0 jk k,3 ,3 K u 0  with respect to 3 z , using the natural condition 1,2 0 33 0 i3kl k,l ir k,3 Ĉ u K u  on 1,2
 and the continuity of the displacement vector fields at the surfaces 1,2  , one obtains

0 3 3 0 3 i K u   ,
which represents the classical law for a soft interface. In [START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF] it is shown that this law can be rephrased in the composite's limit configuration obtained as 0   . In this case one obtains:

  0 3 3 0 3 i K u   ,
where    indicates the jump of  across the surface  defined on the adherents' limit configuration as 0   and 0 3 i  is the traction vector field defined on the same limit configuration.

Spring-like interface law for a plane anisotropic adhesive

The elastic coefficient of the adhesive's material enter the interface law through the matrix 33 K .

For the general case of anisotropic (triclinic) material, the matrix 33 K has components 

C 0 C K 0 C 0 C 0 C            .
If the adhesive is monoclinic with symmetry plane orthogonal to 3 i , then 33 K is diagonal:

3 1313 33 monoclinic,i 2323 3333 C 0 0 K 0 C 0 0 0 C            .
The same holds if the adhesive is orthotropic and the coordinated planes are the symmetry planes of the material.

For an orthotropic adhesive, the non-vanishing coefficient in 3 33 monoclinic,i K can be expressed in terms of the engineering constants as follows [START_REF] Jones | Mechanics of Composite Materials[END_REF]:

1313 31 C G  , 2323 23 C G  , 12 21 3333 1 2 1 C E E      ,
where 31 G , 23 G are the shear moduli in the (3,1) and (2,3) planes, respectively

; i E , i 1,2,3  is the Young's modulus in the i-direction; ij  , i, j 1, 2,3  are the Poisson's ration,
and they satisfy the three reciprocal relations 

ij ji i j E E    , i, j 1, 2,3  , i j  ,
1 2 3 1 2 E E E                .
If the material is transversely isotropic and 3 i is the direction of the axis of transverse symmetry, then 33 K is diagonal and 1313 2323 C C  . Finally, for an isotropic material, one has

33 isotropic 0 0 K 0 0 0 0 2                 , with ,   the Lamé constants. In terms of the engineering constants, E, ,G  one has G   ,      E 1 2 1 1 2           .

Contact law modeling a curved anisotropic thin adhesive

The spring-like interface laws obtained in the previous sections are local and thus they can be locally applied to curved thin adhesives. In particular, it is introduced a local reference system with axes parallel to the tangential t and the normal n direction of the adhesive midline let s denote the third direction, orthogonal to the adhesive's plane. Based on the previous analysis, one could propose a contact law of the form

      n n t t s s T u T K u T u                     
, with u the displacement, 0 3 T i   the traction vector and 33 K K  the spring stiffness, given as shown in the previous section. In particular, the case of K with constants coefficients would correspond to an adhesive material whose symmetry properties are independent of the directions, as represented in Figure 1.a.

However, one could also imagine an adhesive whose properties are "globally" constant, i.e.

they are fixed with respect to a global frame, a case schematized in Figure 1.b. In this second case, the matrix K entering the above interface law, which is written in the local frame, can be obtained by applying a transformation from the global reference frame properties "globally" constant.

General considerations for heterogeneous structures with imperfect contact

A two phase uniaxial reinforced material is considered here in which fibers and matrix have transversely isotropic elastic properties; the axis of transverse symmetry coincides with the fiber direction, which is taken as the 3 Ox axis. The fibers cross-section is circular.

Moreover, the fibers are periodically distributed without overlapping in directions parallel homogeneous medium (Fig. 2).

The overall properties of the above periodic medium are sought using the well-known AHM [START_REF] Bakhvalov | Homogenization Averaging Processes in Periodic Media[END_REF][START_REF] Pobedria | Mechanics of Composite Materials[END_REF], and the following considerations are assumed. Two variables are introduced, i.e. x and   y x . They are referred as the slow or macroscopic and fast or microscopic variables, respectively, where l L   is a small dimensionless parameter, L is a linear dimension of the body and l is the diameter of the unit cell.

Then, it follows that in terms of the fast variable y , the appropriate periodic unit cell S is taken as a regular parallelogram cell in the 1 2 y y  plane so that S S    , where the domain 2 S is occupied by the matrix and its complement 1 S (fiber) is considered by a circle of radius R and center at the origin O (Fig. 2). The common interface between the fiber and the matrix is denoted by  . 

      ij ijkl k,l , C ,    x y y x y ,
where ij  , ij  are the stress and strain tensors respectively, related to the small parameter  . Assuming zero body forces the elastic equilibrium equation is

ij, j 0   in  ,
where the subscript comma denotes partial differentiation. The gradient equations, which are the strain-displacement equations

k l kl l k 1 u u 2 x x              ,
where

  i i u u , 
x y are the components of the mechanic displacement related to the small parameter  . Replacing and into a system of partial differential equations with rapidly oscillating coefficients can be obtained

      ijkl k,l , j C u , 0  y x y in  .
Equation represents a system of equations for finding i u  . For a complete solution, it is necessary to assign suitable boundary and interface conditions, for instance

0 i i u u  on u  ; 0 ij j i n S   on T  ,
where  imperfect interface. This may be due to the presence of an interphase but also due to interface bond deterioration caused for different reasons, such as fatigue damage or environmental and chemical effects. Within this approach, the composite is modeled as a two-phase material with imperfect interface conditions.

The vanishing value of n K  , t K  and s K  corresponds to pure debonding (normal perfect debonding), in-plane pure sliding, and out-of-plane pure sliding, respectively. The status of the mechanical bonding is completely determined by appropriate values of these constants.

For large enough values of the constants, the perfect bonding interface is achieved.

Using the vector notation and defining the mechanical displacement u , the traction vector T and the spring stiffness matrix K in the following manner,

n n n t t t s s s u T K 0 0 = u , = T , = 0 K 0 , u T 0 0 K                                  u T K
the mechanical imperfect condition ( [START_REF] Pobedria | Mechanics of Composite Materials[END_REF], [START_REF] Rodriguez-Ramos | Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents-I. Elastic and square symmetry[END_REF]), in general, may be expressed as:

          1 1 2 0 , 1       T T T K u on  .
In the relation, the symbol  

    1 2 g g g  
indicates the jump in the quantity g at the common interface denoted by  between the fiber and the matrix. The superscripts in brackets   , 1,2    denote the matrix (1) and fiber (2), respectively. The magnitudes n u , t u , s u are the tangential and normal components of the mechanical displacement vector; n T , t T , s T are the tangential and normal components of the traction vector T  

I i j j T u n 
and n is the outward unit normal on  .

In order to study the imperfect contact conditions, the relations between the mechanic displacement and traction vectors are related to Cartesian mechanic displacement   i u and the traction   i T vectors respectively (Fig. 3) by the following expressions, 

                                                                       
Fig. 3. The coordinate system in each point P   of the interface.

Two scale asymptotic homogenization method

By means of the asymptotic homogenization method, the original constitutive relations with rapidly oscillating material coefficients -are transformed into equivalent system

  * 0 ijkl l,kj C u 0  on  ,
with the boundary conditions

  0 0 i i u u  on u  ;   0 0 ij j i n S   on T  ,
with constant coefficients * C , which represent the elastic properties of an equivalent homogeneous medium. They are called as effective coefficients of the composite  .

In order to obtain average coefficients * C the periodic solutions of six pq L local problems on S in terms of the fast variable y , where p,q 1, 2,3  are found. Each local problem uncouples into sets of equations, i.e. plane-strain and antiplane-strain systems.

The pq L problem consists to find the displacements

    pq N  y in S  , 1, 2  
(double periodic functions with periods 1 w , 2 w ) as solution of the following system of partial differential equations,

  pq i , 0      in S  , (1) 
where,

      pq i , i k pq k, C N          , (2) 
the comma notation denotes a partial derivative relative to the y  component, i.e., , U U y

 
   the summation convention is also understood for Greek indices, which run from 1 to 2; no summation is carried out over upper case indices, whether Latin on Greek.

Thus, the eq. on  for the pq L problem can be expressed in the following indicial form,

    1 2 pq pq 0   T T , (3) 
    1 pq n n pq n T 1 K N          ,     1 pq t t pq t T 1 K N          ,     1 pq s s pq s T 1 K N          , (4) 
where pq n N , pq t N , pq s N and pq n T , pq t T , pq s T have the same meaning as , but adequate to pq L problems. To assure the only one solution of the pq L problems, the functions also satisfy that pq k N 0  . In the calculations the following relations are used:

  1 n 1212 n K C K R   ,   1 t 1212 t K C K R   and   1 s 1212 s K C K R  
where n K  , t K  and s K  are dimensionless imperfect parameters. The symmetry between the indices p and q shows right away that at most six problems needs to be considered. Once the local problems are solved, the homogenized moduli * ijpq C may be determined by using the following formulae

* ijpq ijpq ijkl pq k,l C C C N   .
The potential method of complex variables N  in S  of the problem defined by equations ( 1)-( 4) must be found among doubly periodic functions of half periods 1 w , 2 w (Fig. 2). Each local problem (1)-( 4) uncouples into sets of equations. An in-plane strain system for

  pq N   , 1, 2  
and an out-of-plane strain Laplace's equation for

  pq 3
N  has to be solved. Then the solution of the in-plane (outof-plane) strain problems involves the determination of the in-plane (out-of-plane) displacements, strains and stresses over each phase S  of the composite. Due to the non- vanishing components of the elastic tensors   ijpq C  , the only non-homogeneous problems, that have a non-zero solution, correspond to the four in-plane strain problems L  ,   1, 2,3   and 12 L , and the two out-of-plane strain ones 23 L and 13 L . Therefore, the solutions of both (in-plane and out-of-plane) local problems ( [START_REF] Rodriguez-Ramos | Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents-I. Elastic and square symmetry[END_REF], [START_REF] Guinovart-Diaz | Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents -I. Elastic and hexagonal symmetry[END_REF]) (six pq L problems need to be considered due to the symmetry between p and q ) lead to obtain the average coefficients of the composite given in Fig. 2. Imperfect contact for out-of-plane problem is well described in [START_REF] López-Realpozo | Transport properties in fibrous elastic rhombic composite with imperfect contact condition[END_REF]- [START_REF] Rodríguez-Ramos | Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence[END_REF] where the imperfect parameter

  1 s 1212 s K C K R   is considered.
Therefore, from now on, only the solution of the plane local problems L  ,   1, 2,3   and 12 L are studied where the imperfect parameters Therefore, the methods of a complex variable z in terms of two harmonic functions

  1 n 1212 n K C K R   ,   1 t 1212 t K C K R   are involved..

Solution of plane problems L

  z   and   z  
, the Kolosov-Muskhelishvili complex potentials, are applicable. The potentials are related to the displacement and stress components by means of the formulae 

                                    / 1212
2C N z iN z z z z z , 2 z z , 2i 2 z z z ,                                                    where     3 4       ,         1122 1111 1122 C . C C        A relevant representation of the complex potentials   z   and   z   of periods 1 w and 2 w is       p p k * * * * 1 0 p k pk 2 k p 1 k 1 p 1 k 1 p p k * * * * 1 0 p k pk 2 k p 1 k 1 p 1 k 1 z R z z z a a a , z c , R z R R z R z z (z) b b b , z d . R z R R                                                                                 
After some algebraic manipulations, a system of infinite equations is obtained for 

                                    a a a a a a a a a a where   2 a R      a ,   12 12 a R m  a ,     2 * 1212 1 1212 C C   , 1 2 2 1 1 1 2 1 2 w w A w w        , 1 2 2 1 2 1 2 1 2 w w A w w w w      , , 1 2 2 1 3 1 2 1 2 w w A w w w w      , 1 2 2 1 4 1 2 1 2 w w A w w w w      ,   (1) 2 2 2 1p 3 1p 1 1p 1 1p Ĥ BA R A A R CR        ,   2 2 2 2p 4 1p 1p 1 1p 1 Ĥ A BR A R ACR       ,   2 0 kp 1p 1 1p k1 k kp ˆŴ AR C B Cr       ,       0 n p 2 0 kp 1p 1 1p k1 kp p k 2p k p 2 0 p K B ˆM AR C BG D A             ,             * * 2 3 n 1 3p 1p 1p 1 1p 0 p 2 2 K 2 p ˆĤ R A R P A                  ,   * 1 0 4p p 1p n 2 Ĥ 1 A K             ,   * 1 * 0 p n 2 p B 1 A K            , * (1) 
* (2) * n 0 1 4 K ˆĈ B 2            ,         (2) * 4 0 n 0 2 ˆB 1 2B P 1 ˆ2 K                      ,     p k p kp k 2p p k p k k p 2 G p 2 k kR C T            ,   * kp i 2 p k i 2 i 1 r         ,     1 * n t k 0 k k K K 1 D D E     ,           1 * ( 2 ) * * n t n p 0 * (1) * p n p K K 1 K 2 p 2 D A K 1 2 p E                     ,         (2) * * n t n p 1 0 * p n p K K K 2 p 2 B B 1 K E                        ,     1 * n t k 0 k k K K 1 B C 1 E     ,         * * * p n t n t n t A K K p 2 p 1 K K p K K p 2                     ,     * * p t n n t B K K 1 K K p      ,         2 * * p n t n t n t C K K K K p K K p 2              ,   * p n t D K K p    , p p p p p A B E C D   ,         2 2 3 * 2 0 3 (1) Re A R 1 1 i I mA R 1 2                ,     2 3 * 2 0 3 (1) Re A R 1 1 ˆ1 Re A R ˆ1 2 F                   , (2) 
* n 1 F 1 4 K      ,           1 2 2 1 1 2 2 2 2 1 1 1 1 2 C C C C           ,           1 2 1 2 2 1 1 1 1 2 2 2 2 2 C C C C              ,       2 2 3 2 2 1 1 2 C C       y       2 2 4 2 2 1 1 2 C C        .
We can write from the expression, 
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and the following effective coefficients can be calculated using the average operator, applying the Green theorem and considering

        2 1 1 , 1,2,3            ,     1111 1122 2k C C      and   1212 m C    we obtain                   * ( 1 ) * 2 1 2 1111 1111 2 11 1 1 1 n 1 k 1 m 2V k k k C C V k Re 1 2 Re 1 , m k K m k                            a                   * ( 1 ) * 2 1 2 2211 2211 2 11 1 1 1 n 1 k 1 m 2V k k k C C V k Re 1 2 Re 1 , m k K m k                            a               1 * * 2 1133 2 3311 1133 2 1133 1 1 n 1 1 2V k C k C C V C k Re 2 Re 1 m K m k                        ,     * ( 1 ) 1211 2 11 1 C V k Im 1        a ,                   * ( 1 ) 1122 1122 2 22 1 1 * 2 1 2 1 n 1 k 2 m C C V k Re 1 m k 2V k k k 2 Re 2 K m k                             a ,                   * ( 1 ) 2222 2222 2 22 1 1 * 2 1 2 1 n 1 k 2 m C C V k Re 1 m k 2V k k k 2 Re 2 K m k                             a ,               1 * * 2 1 1 3 3 2 3322 3322 2 2233 1 1 n 1 2 2V k C k C C V C k Re 2 Re 2 m K m k                        ,       * ( 1 ) 1222 2 22 1 C V k 1 Im    a ,                 * ( 1 ) 1133 1133 2 1133 33 1 1 2 2 1 1 3 3 1 * 1133 1 n 1 1133 k 3 C C V C Re 1 m 2V C k C 2 Re 3 , K m C                                a                 * ( 1 ) 2233 2233 2 2233 33 1 1 2 2 2 2 3 3 1 * 2233 1 n 1 2233 k 3 C C V C Re 1 m 2V C k C 2 Re 3 , K m C                                a             1 2 2 * * 2 1133 1133 3333 3333 2 1133 1 1 n 1 1133 3 2VC C C C V C Re Re 2 3 m K m C                     ,      * ( 1 ) 1233 2 1133 33 1 C V C 1 Im    a ,             (2) * 2 2 * ( 1 ) 2 2 1112 2 12 1 2 1 n1 k 4k m V C m V Re 1 Re m Km                    a ,             (2) * 2 2 * ( 1 ) 2 2 2212 2 12 1 2 1 n1 k 4k m V C m V Re 1 Re m Km                     a ,        (2) * * 2 2 2 2 3312 2 2 1 n1 4 m l V C m l V Re Re m Km               ,       1 * ( 1 ) 1212 1212 2 12 1 C C m V Im 1         a , where                 2 1 * * * 2 0 k1 k 1 1 k 1 1 2 * 2 1 2 * * * 2 0 k1 k 1 1 0 k 1 2 C 1 A R B 1 , ˆ2 1 2 C P 1 A R 1 2 ˆB B                                                                                          a a a a             2 1 * * 2 * 0 1 1 2 1 k 11 2 k k 1 2 2 * 2 1 * * 2 * 0 1 1 2 1 k 11 2 k k 1 2 C 1 A R B 1 2 1 2 C 1 A R B                                                                                a a a a
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Numerical results

As a validation of the present model in Fig. 4 The material parameters used in the calculations are given in Table 1 2010 [START_REF] Otero | Semi-analytical method for computing effective properties in elastic composite under imperfect contact[END_REF].

In Tables 2345we consider the effective coefficients of the composite. Table 2 shows the behavior of the composite with perfect contact ( 

Conclusions

Two-scale asymptotic homogenization technique was used for effective coefficients calculation of an circular elastic fiber reinforced composite with imperfect bonding



  are assumed to be located far from the interphase and the fields of the external forces are sufficient regularity to ensure the existence of equilibrium configuration.

    is called the rescaled configuration of the composite body. Lastly, u  and   indicate the images of u

Fig. 1 .

 1 Fig. 1. (a) Adhesive properties independent of the directions n and t . (b) Adhesive

  complex numbers, which define the parallelogram periodic cell of the two phase composite. Therefore, the composite  consists of a parallelogram array of identical circular cylinders embedded in a

Fig. 2 .

 2 Fig. 2. Fibrous composite material and regular parallelogram cell with circular cell

  prescribed displacement, force on the boundary of the composite. An adhesive with monoclinic symmetry and constant elastic moduli is considered in the homogenization analysis via a layer of mechanical springs of zero thickness. The spring constants 33 K K  are the measures for the magnitude of the associated continuities on  , where n K  , t K  and s K  are the diagonal spring constant parameters, which have dimension of stress divided by length, as seen in previous sections. These constants are called the interface parameters and they are written with another notation for the monoclinic case in the diagonal matrix 33 K given in page. 7. It is seen that infinite values of the parameters imply vanishing of displacement jumps and therefore perfect interface conditions. At the other extremity, zero values of the parameters imply vanishing of interface tractions and therefore disbond. Any finite position values of the interface parameters define an

 and 12 L

 12 . Effective coefficientsThe aim of this work is to obtain the coefficients L for composites with parallelogram arrays.

Fig. 4 .

 4 Fig. 4. Comparison between the AHM-spring model and differential scheme reported in[START_REF] Guinovart-Díaz | Effective elastic properties of a periodic fiber reinforced composite with parallelogram-like arrangement of fibers and imperfect contact between matrix and fibers[END_REF].

Table 1 .

 1 . Material constants of the constituents used in the composite taken from Otero et al.

		1111 C	1122 C	1133 C	1212 C
	Matrix -Al	94.23	40.38	40.38	26.92
	Fibra -SiC	483.68 99.07	99.07	192.31

Table 2 .

 2  show the performance of the composite for different values of in-plane imperfect parameters for diverse volume fractions and different angle of the cell. Similar effect of the angle of the cell in the value of the effective coefficients is observed. Behavior of the composite with perfect contact (

	n K 10 	6	and	t K 10 	6	), different volume

Table 3 .

 3 Comportment of composite for different values of in-plane imperfect parameters for diverse volume fractions and different angle of the cell.

				n K 10 	6	,	t K 50 
	Vf		0.05	0.2		0.35	0.55	0.75
	90	0	1.054961 1.256744 1.533481 2.090600 3.088266
	* 1111 C					
	0 75	1.054739 1.252523 1.518770 2.048378 2.985805
	90	0	1.042007 1.165717 1.283256 1.446467 1.837369
	* 1122 C					
	0 75	1.042570 1.176434 1.320523 1.544647 1.951860
	90	0	1.022294 1.100148 1.200096 1.391695 1.747719
	* 1133 C					
	0 75	1.022300 1.100262 1.200482 1.391651 1.731405

Table 4 .

 4 Comportment of composite for different values of in-plane imperfect parameters for diverse volume fractions and different angle of the cell.

					n K 10 	,	t K 50 
	Vf			0.05	0.2		0.35	0.55	0.75
	1111 C *	90	0	1.026128 1.118309 1.233205 1.418272 1.628926
		0 75	1.025962 1.115538 1.225215 1.404864 1.625590
	1122 C *	90	0	0.988111 0.926652 0.822606 0.628191 0.400022
		0 75	0.988509 0.933313 0.841944 0.661499 0.411230
	1133 C *	90	0	0.991006 0.962850 0.932785 0.889275 0.841009
		0 75	0.991004 0.962814 0.932658 0.888904 0.840381
	3333 * C	90	0	1.194071 1.776466 2.359162 3.136628 3.914840
		0 75	1.194071 1.776466 2.359161 3.136618 3.914793
		90	0	1.051650 1.215785 1.412449 1.803788 2.699235
	* 1212 C					
		0 75	1.052204 1.223664 1.433339 1.833875 2.647238

Table 5 .

 5 Comportment of composite for different values of in-plane imperfect parameters for diverse volume fractions and different angle of the cell.
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between constituents and parallelogram periodic cell. Analytical expressions are obtained for all effective coefficients considering two different n K and t K (normal and tangential) values of imperfect mechanic parameters. The numerical computations for all effective coefficients are shown for different values of the aforementioned imperfect parameters and inclination angle of the cell. The influence in the effective coefficient behavior of the imperfect adhesion and the inclination angle of the cell is significant and this is reported. In order to generalize the present work to more general fibers shape, the study of fibers with elliptic shape could be the object of a future work.