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Among the many fascinating examples of collective behavior
exhibited by animal groups, some species are known to alternate
slow group dispersion in space with rapid aggregation phe-
nomena induced by a sudden behavioral shift at the individual
level. We study this phenomenon quantitatively in large groups of
grazing Merino sheep under controlled experimental conditions.
Our analysis reveals strongly intermittent collective dynamics
consisting of fast, avalanche-like regrouping events distributed
on all experimentally accessible scales. As a proof of principle, we
introduce an agent-based model with individual behavioral shifts,
which we show to account faithfully for all collective properties
observed. This offers, in turn, an insight on the individual stimulus/
response functions that can generate such intermittent behavior. In
particular, the intensity of sheep allelomimetic behavior plays a key
role in the group’s ability to increase the per capita grazing surface
while minimizing the time needed to regroup into a tightly packed
configuration. We conclude that the emergent behavior reported
probably arises from the necessity to balance two conflicting imper-
atives: (i) the exploration of foraging space by individuals and (ii) the
protection from predators offered by being part of large, cohesive
groups. We discuss our results in the context of the current debate
about criticality in biology.

sheep herds | collective behavior | self-organization |
computational modeling | Allelomimetism

The social interactions and behavioral mechanisms involved
in the coordination of collective movements in animal groups

largely determine the animals’ ability to display adapted responses
when they face challenges, such as finding, efficiently, food sources
(1–4) or safe resting places (5–7) or avoiding predators (8–13).
Thus, the diversity of collective motion patterns observed in group-
living species reflects the multiple forms of interactions individuals
use for coordinating their behavioral actions (14, 15). Deciphering
these interactions, their relation with the patterns emerging at the
collective level, and their connections with the physiological and
ecological constraints peculiar to each group-living species is crucial
to understanding the evolution of collective phenomena in bi-
ological systems (16–18). So far, only a handful of quantitative
datasets have been gathered for large animal groups (19–21). Most
of them have focused on elementary cases where the prevailing
biological imperative seems to be group cohesion, either to gain
protection from potential predators, such as for the spontaneous
collective motion exhibited by starling flocks (19, 22) and some fish
schools (23–25), or for reproductive purposes, as in swarms of
midges (21, 26).
One important and, so far, often neglected aspect of collective

motion is the existence of individual-level behavioral shifts,
which, in turn, may trigger a transition at the collective level. For
instance, in many species of fish, groups regularly alternate be-
tween a swarming state, in which fish simply aggregate with a low
level of polarization, and a schooling state, in which individuals
are aligned and move in the same direction (27, 28). This tran-
sition is elicited by a sudden change in the velocity of a single or a

few individuals that propagates to the whole group. In many
cases, the behavioral shift occurs without any perceived threat in
the neighborhood, resulting in a spontaneous transition at the
collective level that can be interpreted as a consequence of ran-
dom individual decisions. Such alternating behavioral phases at
the collective level have also been reported in refs. 29, 30.
Here, we report a quantitative study of the collective behavior

of large groups of Merino sheep (Ovis Aries), a highly gregarious
domestic breed (31), under controlled experimental conditions.
Our analysis reveals an intermittent collective dynamics where
long dispersion phases—during which grazing sheep slowly spread
out, exploring the foraging field—are punctuated by fast packing
events, triggered by an individual-level behavioral shift. We find
that these events are distributed on all experimentally accessible
scales. To gain insight on the sheep individual stimulus/response
function, we introduce an agent-based model that explicitly
includes behavioral shifts and strong allelomimetic effects. Our
model results suggest that the observed collective behavior can
be generated when parameters quantifying allelomimetic behavior
are sufficiently large. In this parameter range, sheep regrouping
time is minimized, and a large per capita grazing surface is at
sheep disposal during dispersion phases.

Experimental Results
We first observed the activities of large groups (n = 100) of
same-age female sheep in an enclosed, flat, and spatially ho-
mogeneous square arena of 80 × 80 m. Five different 1-h-long
trials were realized, during which sheep movements were recorded
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by taking high-resolution pictures of the arena at a rate of one
frame per second, from the top of a 7-m-high tower located
outside one of the arena corners (details can be found in Mate-
rials and Methods, see Fig. S1). Quickly after their introduction
in the arena, sheep started grazing and moving around. While
grazing, the herd spreads apart in smaller groups, with an ex-
panding leading front (see Movie S1). This slow dispersion dy-
namics was brought to an end by fast packing events. These
events are typically triggered when an individual located at the
group periphery starts running toward the center of the group,
recruiting more and more sheep into a compact, fast-moving
herd before finally stopping almost synchronously, leaving a
rather dense herd that then resumed grazing. The whole scenario
repeated itself with a varying proportion of sheep involved in the
packing and running events, with a typical timescale of about
15 min between the largest ones. No discernible external stim-
ulus that could have triggered the behavioral switch to running
was observed. Note that no audible vocalization occurred
before or during packing events that could have been used as
an alarm signal.
Because only a few of such group-spanning events can be observed

in 1-h-long sessions, we performed a longer experiment (3.5 h) with
the same group size to quantify and analyze the phenomenon with
more accuracy (seeMovies S2A and S2B). During this period, sheep
kept their grazing behavior punctuated by fast packing events. In
images taken from the watchtower, many sheep are partially hidden
by others, making automated tracking impossible. Therefore, the
location r ti and heading sti (with jsj= 1) of every sheep have been
identified manually with a sampling rate of 1 min (except for a single
packing event studied with a 1-s sampling rate; see below). To also

measure instantaneous sheep velocities vti = ðr t+Δti − r ti Þ=Δt, we
actually processed, at the same 1-min sampling rate, two con-
secutive images (separated by Δt= 1  s, our data-taking time step).
We estimate a maximum experimental error of aroundΔr= 0.2 m
on sheep position and Δv= 0.3 m/s on sheep speed (for a com-
plete discussion of tracking errors, see Materials and Methods).

Collective Motion Patterns. We have quantified the alternation of
slow grazing expansion and fast packing runs. The most direct
measurement is the group area SðtÞ covered by the herd at time t.
We define SðtÞ as the surface of the convex hull defined by the
sheep positions. (The convex hull of a set of points is the smallest
convex polygon including all of the points. It gives a feasible
approximation of the foraging area controlled by the group at
any instant.) The time series of SðtÞ shown in Fig. 1A, reveals the
12 major spread/packing events observed. Its autocorrelation
time can be estimated to be around 5 min, being significantly
larger than our chosen sampling time of 1 min, so that no sig-
nificant information is lost due to our sampling choice.
The timescale of packing events can be characterized by the

change of the group area over 1 min, dSðtÞ≡ SðtÞ− Sðt− 1Þ. The
time series is characterized by large negative spikes, indicating
that the global contraction events take place on a much faster
timescale than the slow spreading observed during grazing.
Moreover, the parametric plot of dSðtÞ vs. SðtÞ for the major
packing events shows that their dynamics, although being char-
acterized by a rather strong stochastic component, tend to be all
of the more abrupt as the maximum group area reached is larger
(see Fig. 1C). The densest configuration observed covers about
75 m2, whereas the most diluted state stretches over 2,329 m2,

Fig. 1. (A) Experimental time series of the group area SðtÞ (×  1,000 m2) and its changes over 1 min dSðtÞ (×  1,000 m2) as a function of time. SðtÞ displays the
intriguing ratchet-like temporal patterns with slow increases, corresponding to dSðtÞ≥ 0 (in black), abruptly interrupted by fast packing events corresponding
to dSðtÞ � 0 (in red). (B) Same quantities as obtained from a typical simulation of our model (see Numerical Simulations). (C) Parametric plot of dSðtÞ vs. SðtÞ
for the major packing events (dSðtÞ≤ − 0.35× 1,000 m2). The dashed line marks linear regression with a linear coefficient equal to −0.27 (with a P value of
0.07Þ. (D) Empirical CCDF of SðtÞ (black), compared with the model one extracted from B (red). (Inset) CCDFs of experimental dSðtÞ (black) and model pre-
diction (red). (E) Two typical experimental snapshots are shown within paddock boundaries (fence, dotted line): a dispersed group (at t = 110min, black dots)
immediately precedes a packing event, and a compact one (at t = 112 min, orange dots) follows it. (F) Trajectory of the center of mass of the experimental
group. The red dots mark the starting position of the major packing events. The observation tower is located outside the fence, near the bottom left corner of
E and F. Error bars for S, dS, and the center of mass positions due to individual sheep tracking errors are negligible on the shown scales.
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yielding an extension ratio of about 30 (i.e., sheep density varied
from 1.3 individuals per square meter up to around 1 sheep in
23 m2). After each packing event, the herd is dense and homoge-
neous, with an interindividual distance of about 1 m. In the dis-
persed configurations, on the other hand, sheep are not homoge-
neously distributed. Typical diluted and dense configurations are
shown in Fig. 1E. The maximum surface occupied is only about
37% of the arena surface, indicating that packing events are likely
not induced by the group saturating the available grazing area. Over
time, the group explored the entire arena, and the location of
packing events changed, indicating that they are not correlated with
a preferred spot on the field or its boundary (see Fig. 1F).
Individual sheep velocities allow for further analysis. Not

surprisingly, their orientation coincides rather well with the in-
stantaneous headings sti (Pearson correlation coefficient c= 0.64,
with a P value smaller then 10−6), the mismatch being due to
tracking errors and the discrete-time sampling. The speed of the
center of mass (or the group speed), measured by the average
speed vtcm =

��hvtii�� (where h · i indicates average over the entire
group), also shows spiking behavior (see Fig. 2A), strongly cor-
related with the fast contractions of the group area (its correla-
tion coefficient with dS being c=−0.47, P value less then 5 · 10−6;
see also Additional Data Analysis). Note that, assuming statistical
independency of the individual sheep tracking errors, one esti-
mates the total error on group speed to be Δv=

ffiffiffiffiffiffiffiffi
100

p
= 0.03 m/s.

Because large spikes in vtcm can only be generated by the co-
ordinated run of many sheep, they are a good proxy for the
amplitude of packing events. [It is better, for instance, than the
macroscopic polarization Pt = hstiii of the herd, which shows
smaller correlation with the packing events (see Fig. S2).] The
probability distribution of vcm shows packing events on practi-
cally all accessible scales (Fig. 2B) given a maximum recorded
individual speed of about 1.5 m/s. Its functional form is com-
patible with a shoulder at small speed followed by a power-law
tail with exponent γ =−2.3ð2Þ. Given the limited amount of data
and the strong intrinsic noise, one has to cautiously consider this
algebraic decay. Indeed, considering instead the complementary
cumulative distribution function (CCDF) in lin–log scales reveals

the possible superposition of two exponentials (Fig. 2C). [The
CCDF FvðvcmÞ=Pðv> vcmÞ gives the probability that the ob-
served variable v takes a value greater than vcm.] On the other
hand, in log–log scales, the CCDF still shows a believable al-
gebraic tail (Fig. 2D), albeit with an estimated decay exponent
ðγ + 1Þ=−1.6ð2Þ (see Discussion). Finally, for a discussion of the
herd center of mass displacement we refer the reader to Fig. S3A.

Spatial Analysis of a Packing Event and Quantification of Individual
Behavior. To gain insight on the local, individual mechanisms in-
volved, we analyzed the spatial structure of packing, fast-moving
events. We first established a simple quantitative criterion for
distinguishing, at each time step, the individuals actively taking
part in the packing events from those exhibiting grazing be-
havior. To this aim, we analyzed the total distribution of in-
dividual speeds vi = kvik. It clearly comprises three parts, allowing
not only the sorting out of the fast-moving individuals but also the
distinguishing of walking from stationary sheep: On average, a
large majority (74%) of sheep are actually motionless (v= 0 at
our resolution). The probability distribution PðvÞ of the speed of
moving sheep shows a primary peak at v≈ 0.1 m/s and a secondary
shoulder around v≈ 0.66 m/s (see Fig. S4A). It can be fitted nicely
by the sum of a Poissonian and a (skewed) Gaussian distribution,
corresponding, respectively, to walking and running individuals.
We can use the crossing value of these two distributions, at
~v ’ 0.41 m/s, as a practical threshold to distinguish walking from
running individuals. Thus, a given sheep can be found in any of
three well-defined behavioral states, stationary, walking, or run-
ning, switching frequently between them. An analysis of packing
events in terms of the fraction of running individuals bears the
same intermittent behavior as the one exhibited by the group
center of mass speed, testifying to the consistency of our behav-
ioral classification (see Fig. S4 B–D).
We performed a complete second-by-second tracking of one

of the largest and fastest packing events. In Fig. 3, we show five
configurations extracted from this sequence. (The full 2-min
sequence is available as Movie S3.) Sheep are colored according
to their speed, corresponding to the stationary, walking, or run-
ning state. Just before the beginning of the event (t≈ 4,790 s),
the herd is spread over a large fraction of the arena, with, in
particular, a characteristic “exploring front” (near the top on Fig.
3, Left). Soon after, a few of the outermost individuals turn back
toward the center of the group and start running, quickly but
progressively recruiting more and more individuals in the run-
ning state, as in some local imitation process (t= 4,794,   4,802 s).
[Note that this is reminiscent of the collective decision-making
mechanism exhibited by starling flocks in turning events (32).] At
t= 4,818 s, almost the entire group is running as a dense herd.
Sheep then stop rather quickly and synchronously, leaving a
compact herd, which then slowly resumes grazing (t= 4,842 s).
The wavelike propagation of recruitment into the running group
and the coordinated halt of the herd when it gets closely packed
suggest that (i) allelomimetic effects based on local interactions
play a role in both the initiation and the inhibition of the packing
event and (ii) running behavior is inhibited when neighbors be-
come close enough. Time series of several dynamical descriptors
during the packing event, confirming this observation, can be
found in Fig. S5. Visual inspection of the whole raw data in-
dicates that the features uncovered above are not specific to the
particular event studied in detail.

Individual-Based Model for Sheep Collective Behavior
To better understand the role of individual interactions in the
emergence of the collective dynamics described above, we pre-
sent a simple agent-based model that faithfully accounts for the
observed density oscillations and the intermittency features of
sheep collective dynamics.

A

B C D

Fig. 2. (A) Center of mass speed vcm (meters per second) vs. time (in min-
utes). (B) Log–log plot of the PDF of vcm. Black dots have been obtained by
differencing the CCDF obtained by a proper ordering of the data of A, and
they do not depend on binning procedure or any other data treatment.
Green dots represent a logarithmic binning of the same data. Red dashed
line is best power-law fit (with vcm ≤ 0.07) with exponent −2.3ð2Þ. (C) CCDF in
lin–log scale (black dots). Red dashed lines are exponential fits below and
above vcm = 0.23 with respective characteristic scales ∼ 0.086 and ∼ 0.27. (D)
CCDF in log–log scales (black dots). Red dashed line is best power-law fit for
vcm ≥0.07 with exponent −1.6ð2Þ.
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Current models for the collective motion of animals cannot re-
produce the complex avalanche dynamics highlighted by our ob-
servations. They assume that social interactions between individuals
are local and can be expressed as a combination of alignment (33–
35) and attraction/repulsion forces (36–38). If attraction is too weak,
groups in open space are not able to maintain cohesion, and they
eventually disperse in a diffusive manner. Strong enough attraction/
repulsion forces, on the other hand, stabilize group size and typically
yield a well-defined mean interindividual distance.
The model we present below is different. Although we do not

claim that its rules are the only ones able to reproduce our exper-
imental observations, or even that they faithfully correspond to the
biological stimulus/response function of individual Merino sheep, it
is useful as a proof of principle; that is, it offers insights on the kind
of simple local individual interaction rules from which the sheep
collective behavior may emerge. All of the rules encoded in the
equations below directly follow from our observations.

Sheep Motion. Sheep are represented by point-like agents able to
perceive and respond to their local environment. The state of the ith
sheep is given by its position rti, its heading orientation θti, and its
behavioral state qti ∈ f0,1,2g, coding, respectively, for stationary,
walking, and running. Stationary sheep do not move or change their
orientation, but walking and running sheeps’ position and heading
evolve according to a set of Vicsek-like discrete-time equations,

rt+Δti = rti +Δt  v
�
qti
�
  st+Δti , [1]

θt+Δti =Arg

" X
j∈Mi

stj

#
+ ψ t

i

�
if   qti = 1

�
, [2]

θt+Δti =Arg
X
j∈Vi

h
δ2,qtj   s

t
j + β  f

�
rtij
�
etij
i �

if   qti = 2
�

[3]

where sti = ðcos θti, sin θtiÞ is the heading vector, Δt is the discrete
time step, and sheep speed vðqÞ in Eq. 1 depends on the behav-
ioral state, vð2Þ � vð1Þ> vð0Þ= 0. Walking sheep (q= 1, Eq. 3)
follow a classic Vicsek dynamics: Sheep i tries to align its heading
with that of its metric neighbors in Mi, the set of all sheep closer
than the interaction distance r0 against a “noise” term ψ t

i (a ran-
dom, delta-correlated angle chosen from a uniform distribution in
½−ηπ, ηπ�). (For simplicity, steric repulsion is not implemented
explicitly here since the noise avoids individuals to stay ”on top
of each other.”) Eq. 2 leads to the formation of weakly polarized
local subgroups of grazing sheep that disperse diffusively in space,
creating patterns similar to those observed in the experiments.
Running sheep, on the other hand, follow a more complex

heading dynamics, which combines alignment interactions (with
other running sheep only) with attraction/repulsion as in ref. 38:
In Eq. 3, eti,j is the unit vector oriented from sheep i to j and

f ðrÞ=minð1, ðr− reÞ=reÞ is an attraction/repulsion pairwise force,
with equilibrium distance re. Because packing events typically occur
when sheep are widely spread out, a fixed metric interaction range
is not suitable to describe the collective dynamics of running sheep.
Recent results in bird flocks (19), fish schools (25), and pedestrians
(39) indicate that social vertebrates interact with neighbors chosen
according to “topological” (metric-free) rather than metric criteria,
such as the closest k neighbors (irrespective of their distance). Here
we use the first shell of Voronoi neighbors to define V i in Eq. 3,
which then contains almost always the same number of agents,
independently of the local density. (See refs. 25 and 40 for details.)

Behavioral States.We finally define the rules for the update of the
behavioral state qti, that is, the way sheep change their behavior
according to local stimuli. We describe these changes by a set of
transition rates between the different behavioral states. Previous
experiments conducted on small groups (41, 42) have shown that
the probability p0→1 for a stationary individual to start walking is
considerably enhanced by the presence of moving neighbors.
Here, for the sake of simplicity, we ignore the weaker suppres-
sion effect of stationary neighbors and we also assume that p1→0,
the inverse transition, possesses the same structure, as suggested
in ref. 43. Transitions rates between the stationary and the walk-
ing state are thus given as

p0→1ði, tÞ= 1+ α  nt1ðiÞ
τ0→1

, p1→0ði, tÞ= 1+ α  nt0ðiÞ
τ1→0

, [4]

where τ0→1 and τ0→1 are spontaneous transition times, α mea-
sures the strength of mimetic effects, and nt0ðiÞ, nt1ðiÞ is the num-
ber of stationary and walking metric neighbors, respectively.
The transitions to and from the running state are similar, but

they depend on the number mR of running topological neighbors,
with the allelomimetic effect strengthened by an exponent δ> 1,

p0,1→2ði, tÞ= 1
τ0,1→2

�
ℓti
dR

�
1+ α mt

RðiÞ
�	δ

  , [5]

where ℓti is the mean distance to all topological neighbors of sheep i,
and dR is some characteristic length scale. The ratio between these
two scales ensures that spread-out groups are much more likely to
trigger a packing event than high-density ones.
Finally, for simplicity, running sheep can only transit to the

stationary state with a rate p2→0ði, tÞ enhanced by mS, the number
of their stopping topological neighbors, i.e., those that switched
from running to stationary in the previous time step,

p2→0ði, tÞ= 1
τ2→0

�
dS
ℓti

�
1+ α mt

SðiÞ
�	δ

  , [6]

where dS < dR is a second characteristic length. The positive feed-
back with the stopping neighbors leads to sudden stopping of the
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Fig. 3. Details of a single packing event: Five consecutive snapshots are shown, taken at different time steps between t = 4,786  s and t = 4,842  s. Colors
encode sheep behavior according to their speed v: blue sheep are stationary, green ones are walking (0< v ≤ ~v = 0.41 m=s), and red are running v > ~v. Indi-
vidual sheep orientations are marked by small arrows. The dashed black line marks the position of the fence. Note that the packing event is initiated by
individuals far from the fence.
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group. Notice that now, here, ℓi plays a role opposite to that it had in
Eq. 5: The stopping transition rate is enhanced when the topological
neighbors are located at a short distance. We now briefly comment
on metric and topological neighbors. Metric neighbors can be asso-
ciated with the immediate surroundings of the animal and with social
interactions characteristic of the grazing phase. Voronoi neighbors,
on the other hand, can be thought as the first shell of individuals that
can be visually perceivedwithout obstruction from interposing sheep.
Our model reflects the fact that sheep are particularly sensitive, in
terms of alignment and recruitment into packing runs, to other run-
ning individuals that enter their visual range, an event that should
trigger some alarm in a species subject to potential predators.

Parameter Estimation and Comparison with Experimental Data.
Many model parameters are readily given from experimental
data or estimated from orders of magnitude considerations, as de-
tailed in Agent-Based Model. In the following, we fix v1 = 0.15 m=s,
v2 = 1.5 m=s, τ1→0 = 8  s, τ0→1 = 35  s, τ0,1→2 = τ2→0 =N   s, dS =
6.3 m, dR = 31.6 m, re = r0 = 1 m, β= 0.8 and η= 0.13 (see Sup-
porting Information for more details). This being done, we are left
with two unknowns, the allelomimetic parameters α and δ. Sim-
ulations with 100 sheep reveal that dynamics similar to the one
observed experimentally, with slow spreading periods followed by
much shorter packing events, can be recovered only when there is
a high level of imitation, namely when α> 5 and δ> 2.
Numerical inspection in the parameter range α∈ ½5,25� and

δ∈ ½2,5� reveals that the experimental data are best described with
α ’ 15 and δ ’ 4. Time series of the occupied surface display the
same fast packing events and the typical burst pattern of dSðtÞ (see
Fig. 1B). The corresponding CCDFs match well the experimental
ones (Fig. 1D). (Note that themodel was simulated in open space, an
additional point in favor of the negligible role of the fence in the
experiments.) Movie S4 shows a typical run. The model at these
optimal parameters also reproduces the intermittency of the center
of mass speed vcm (see Fig. S6A). Cumulated over a number of
events similar to that contained in the experimental data, the prob-
ability distribution function (PDF) of vcm shows the same noisy,
possibly power-law tail with decay exponent −2.2ð2Þ (Fig. 4B), and
the CDF is also compatible with the superposition of two expo-
nentials. However, simulated over a very large number of events,
power laws are ruled out, whereas the exponential fits become very
good (Fig. 4C). Pending the discussion of these findings below, a
general comment holds: The fact that our model is able to capture
the statistical features of density fluctuations as well as the qualitative
statistics of the aggregation events, with a single set of parameter
values, indicates that our description captures the essential features
of the stimulus–response function of individual Merino sheep.
Our main parameters α and δ both control the mean maximum

group area SM reached by the group before a packing event, and
the mean time τP needed to regroup to a packed configuration.
Our simulations (see Fig. 4A) show that, for any δ> 2, τP yields a

minimum as a function of α, with a global minimum located in
the parameter range δ∈ ½3,4� and α= ½12,17�. SM, on the other
hand, does not display a global maximum, being a growing
function of δ, but our chosen parameter values δ= 4, α= 15 seem
to represent a good compromise between the competing needs
discussed above. We finally note that the two-state grazing dy-
namics is more important than it may appear at first sight: A
simpler dynamics in which all grazing sheep are walking (corre-
sponding to the limit case τ1→0 � τ0→1) produces far too spatially
homogeneous configurations and does not yield a distribution of
packing events consistent with the experimental data.

Discussion
We have shown that Merino sheep balance the conflicting needs
of social protection and reduced competition when feeding by
alternating gentle group-spreading grazing phases with fast
packing events that dramatically increase the group density by up
to a factor 30. Social cohesion is not reached by settling down to a
steady group density but rather is maintained through sudden
regroupings. Although such dynamics may be not completely un-
known to field biologists, this is, to our knowledge, the first
quantitative study of a large group of social herbivores in a well-
controlled homogeneous feeding environment. By using homoge-
neous pastures, we minimize as much as possible the effect of
environment heterogeneity (44). Direct predation disturbances that
may be invoked to explain increases in group density (12, 13, 45)
are also ruled out in this context. Therefore, we are able to argue
that this collective behavior mainly results from socially driven
individual decisions.
The combination of experimental analyses with the numerical

study of a spatially explicit model offers insights on the individ-
ual-level stimulus/response functions that can underlie such
complex collective phenomena. In particular, our work points to
a local origin for packing events: Danger/fear increases with the
typical distance to visual/topological neighbors, up to a threshold
beyond which running is triggered. A few sheep initiate a wave of
recruitment into a running (sub) group, in agreement with earlier
observations that vigilance is increased for individuals at the
edge of a group (46, 47). Our model shows that local but metric-
free interactions, together with strong allelomimetic behavior,
are sufficient to generate such complex collective intermittent
dynamics. Its main free parameters, α and δ, quantify the gre-
garious character of our sheep. That they must be chosen with
large numerical values to reproduce experimental observa-
tions is a measure of the strong allelomimetic behavior of Merino
sheep. In this parameter range, spotting a single running individual
is often enough to induce a run in other sheep, surely a useful trait
in a social animal subjected to predation risks. Moreover, we have
shown that these parameter values offer a reasonable compromise
between the need to cover a large grazing area and to minimize the
time to regroup. Thus, one may conjecture that the ability of sheep

A B C

Fig. 4. Model analysis for N= 100. (A) Packing time
τP (Top) and maximum group area SM (Bottom) as a
function of α for different exponents δ. (B) PDF of
center of mass speed vcm for α= 15 and δ= 4 obtained
as in Fig. 2. Red dashed line is power-law fit with ex-
ponent −2.2. (C) Corresponding CCDF in lin–log scales.
Red dashed lines are exponential fits with character-
istic scales 0.02 and 0.08. Simulations details are given
in Supporting Information.
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to maintain cohesion through such self-organized density oscilla-
tions could be linked to a behavioral optimization process within a
social context. Such an optimization process could have tuned the
strength of allelomimetic interactions between sheep so as to en-
sure, at the individual scale, a fine balance between (i) the need to
explore the maximum area of space to avoid interindividual com-
petition when foraging and (ii) the need to keep contact with the
other group members to ensure cohesion and protection.
Given the elementary nature of the decision-making rules

studied here, it is likely that the same phenomenon is present in
other social species (48) whenever imperatives for mutual pro-
tection and foraging/exploration compete.
We finally discuss the statistics of packing events. Both ex-

periments and model show that they are distributed over all
accessible scales. The precise functional form of this distribution
remains unclear: A power-law tail remains possible for the field
data but is excluded for the model data, which are best accounted
for by the superposition of two exponentials. It is thus difficult to
decide between two alternatives for the field data: Either they do
exhibit power-law behavior (albeit with a decay exponent leading
to a well-defined mean event size) and the model is incomplete

or they are also best described by the superposition of several
exponentials. Further data, especially on larger groups, would thus
be highly desirable to shed more light on this point. Note that, to
invoke a true self-organized criticality scenario (49), the timescales
separation inherent to the behavioral mechanisms described here
should likely grow with group size. On the other hand, it has been
recently argued that some animal groups, although not truly crit-
ical in the rigorous sense, might operate at the maximally critical
regime allowed by their (ineluctably) finite size (50).
At any rate, this may be of little biological importance: For all

practical purposes, the large sheep herds studied here show the
ability to fluctuate and respond fast on a wide range of scales, in
line with the general idea that certain biological systems operate
in some self-organized, marginally stable regime.
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