
HAL Id: hal-01293037
https://hal.science/hal-01293037v1

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D3PART: A new Model for Redistribution and
Plasticity of 3D User Interfaces

Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Éric Maisel, Jérôme Royan

To cite this version:
Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Éric Maisel, Jérôme Royan. D3PART: A new Model
for Redistribution and Plasticity of 3D User Interfaces. 3DUI 2016 : IEEE symposium on 3D User
Interfaces Summit, Mar 2016, Greenville, SC, États-Unis. pp.23-36, �10.1109/3DUI.2016.7460026�.
�hal-01293037�

https://hal.science/hal-01293037v1
https://hal.archives-ouvertes.fr

DRAFT
D3PART:

A new Model for Redistribution and Plasticity of 3D User Interfaces
Jérémy Lacoche∗

IRT b<>com
UMR CNRS 6074 Irisa - Inria Rennes

Thierry Duval†

UMR CNRS 6285 Lab-STICC
Telecom Bretagne

IRT b<>com

Bruno Arnaldi‡

UMR CNRS 6074 Irisa - Inria Rennes
INSA de Rennes

IRT b<>com

Eric Maisel§

UMR CNRS 6285 Lab-STICC
ENIB

IRT b<>com

Jérôme Royan¶

IRT b<>com

ABSTRACT

In this paper we propose D3PART (Dynamic 3D Plastic And Redis-
tribuable Technology), a model to handle redistribution for 3D user
interfaces. Redistribution consists in changing the components dis-
tribution of an interactive system across different dimensions such
as platform, display and user. We extend previous plasticity models
with redistribution capabilities, which lets developers create appli-
cations where 3D content and interaction tasks can be automatically
redistributed across the different dimensions at runtime.

Keywords: Plasticity, Redistribution, 3D User Interfaces

Index Terms: H.5.1 [Information interfaces and presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H.5.2 [Information interfaces and presentation]: User
Interfaces—Graphical user interfaces (GUI)

1 INTRODUCTION AND RELATED WORK

Today, users have access to a wide variety of platforms such as
mobile devices, desktop computers and immersive systems. There-
fore, users are more frequently confronted with situations where
they have to move from one platform to another [7]. Moreover,
combining different platforms can give new interactions prospects
to users. These possibilities directly refer to ”distributed user inter-
faces” (DUI) and redistribution. A DUI is a user interface whose
components are distributed across different dimensions [8]. For 3D
user interfaces we consider three dimensions of distribution from
the ones described in [8] and [15]:

• Display. The application content is displayed on one or multiple
devices. Common examples in 3D for this kind of distribution
are multiple display systems.

• Platforms. The application runs on a single computing platform
or is distributed across multiple ones. These platforms may be
homogeneous or heterogeneous (operating system, computing
power, plugged devices). For instance, cluster approaches com-
bine connected homogeneous computers to run a VR application
with high performances.

∗e-mail: jeremy.lacoche@b-com.com
†thierry.duval@telecom-bretagne.eu
‡e-mail: bruno.arnaldi@irisa.com
§maisel@enib.fr
¶jerome.royan@b-com.com

• Users. The application is shared by multiple users. This di-
mension is directly linked to the two other ones as the different
participants can use different displays and platforms. In 3D, this
dimension refers to Collaborative Virtual Environments (CVE).

Redistribution consists in changing the distribution of an inter-
active system on these dimensions. It can be system-initiated, user-
initiated, or mixed-initiated [7]. Redistribution can be performed
at runtime or between sessions and its granularity may vary from
application to pixel level [4]:

• At application level, on the platform or user dimension, the ap-
plication is fully replicated or fully migrated on a distant plat-
form. The application may be adapted to its new context of use.
Full replication implies state synchronization to maintain consis-
tency between the different instances of the application , while
for a full migration no synchronization is performed.

• At workspace level, workspaces can be redistributed on the three
dimensions. A workspace is an interaction space that groups to-
gether interactors that support the execution of a set of logically
connected tasks. For instance, the painter metaphor [16] includes
two workspaces: the palettes of tools on a mobile device and the
drawing area on an electronic white board.

• At domain concept level, physical interactors can be redis-
tributed on the different dimensions. In 3D, it corresponds to the
interaction techniques and widgets. In [14], physical interactors
for navigation, pointing and application control are distributed
on a tablet in order to interact in an immersive system.

• At pixel level, view continuity is ensured across different dis-
plays with a distribution on the display and the platform dimen-
sions. For instance, an application can be distributed on a cluster
of PCs and rendered on multiple displays with view continuity.

Redistribution is one mean of adaptation addressed by plasticity
which is the capacity of an interactive system to withstand varia-
tions of both the system physical characteristics and the environ-
ment while preserving its usability [18]. The second mean of adap-
tation addressed with plasticity is recasting which consists in mod-
ifying locally the application components in order to fit a given
context of use, such as interaction techniques adaptations or con-
tent presentation modifications. Recasting is needed to handle re-
distribution, because input and output capacities variations from a
platform to another one imply local adaptations of the redistributed
components. In 3D, solutions exist for the creation of reconfig-
urable applications [9], adaptive ones [13] and recent approaches
tend to bring plasticity to 3D with a focus on recasting [12].

In order to handle redistribution, most of the solutions are de-
signed for 2D user interfaces, such as the 4C reference framework

DRAFT
Device model

Task model

Application
Component

model

Previous Models
(Lacoche et al. [12])

D3PART Extension to Plasticity and Redistribution

Adaptation process
for

dynamic recasting

Taken into account

Redistribution
process

Can create a new task distribution
across multiple platforms

Handle Virtual
Environment

replication and
synchronization

Figure 1: D3PART extends our previous plasticity models [12] by
integrating an adaptation and a redistribution process.

[7], the peer-to-peer architecture proposed by Melchior et al. [15],
the PolyChrome framework [2], or the ZOIL framework [19]. So-
lutions to create distributed 3D user interfaces also exist but they
mainly focus on specific cases and do not let the end-user change
the system distribution at runtime. One specific case handled in 3D
is the case of clusters of computers that manage multiple display
systems such as CAVEs [6] or Workbenches. VR Juggler [3] and
MiddleVR1 propose such solutions. The second specific case han-
dled in 3D is the field of CVE which needs a distribution at the
platform and user levels. It implies a state synchronization between
the different users platforms in order to maintain a consistent appli-
cation. Some architectures for CVE are reported in [10].

Our contribution is D3PART (Dynamic 3D Plastic And Redis-
tribuable Technology), a new model for developers to help them
in the creation of 3D user interfaces that can be dynamically re-
distributed across different dimensions: platform, user and display.
The model includes an adaptation process and a redistribution pro-
cess for the creation of plastic 3D applications. We focus on re-
distribution at application, workspace, and domain concept levels.
Pixel level on clusters of PCs is not covered. We present one sce-
nario of redistribution where we combine a tablet and an immersive
system for a furniture planning application. This prototype is de-
veloped with a toolkit that implements the D3PART model.

2 APPLICATION MODEL AND DYNAMIC RECASTING

As shown in Figure 1, in order to design 3D applications that handle
plasticity, recasting and redistribution, D3PART extends our previ-
ous plasticity models [12]. First, this previous work introduces a
device model for the description of any platform. This device model
describes precisely all the devices that can be used for interaction
purposes at runtime. It includes device capabilities, limitations and
representations in the real world. Second, it introduces a model for
developing concrete application components independently from
any 3D framework or 3D devices. These components are deployed
at runtime to achieve high level interaction tasks which are also rep-
resented in a model. For 3D user interfaces, according to Hand [11],
these tasks belong to three categories: selection and manipulation,
application control, and navigation. For instance, an application
component can correspond to an interaction technique or a 3D wid-
get. This model is a modification of PAC [5] and ARCH [1] models.
It divides a component into five facets that decouple its features:

• The Abstraction describes the semantics of the component
and the function it can perform.

• The Rendering Presentation facet is the only facet depending
on a 3D framework. It handles graphics output and physics.
In our examples these facets are developed with Unity3D2.

• The Logical Driver handles devices management. It can im-
plement how an interaction technique is controlled according
to a set of abstract interaction devices. In this facet, the devel-
oper describes all required inputs and outputs units according
to a set of parameters taken from the device model.

1http://www.middlevr.com/middlevr-sdk/
2https://www.unity3d.com/

Application description

Tasks

Application
Components

Comp
1

Comp
2

Comp
3

Platform
description

- Are chosen according to
- Work with

- Interact with

Virtual
Environment

Virtual
Environment

Are
automatically

associated
with

Runtime on a single platform

Loaded

Task
1

Task
2

Task
3

Figure 2: With D3PART, an application is described by a virtual
environment and high level tasks. Compatible applications compo-
nents are deployed to achieve the tasks according to the encountered
context of use.

• The Control ensures the consistency between the rendering
presentation, the logical driver and the abstraction.

• The Supervision Control receives the context modifications at
runtime and then is able to determine if a logical driver is still
possible. It contains all logical driver and rendering presenta-
tion types compatible with the application component.

D3PART uses these models to describe an application and the
context of use. As shown in Figure 2 we define an application with
a set of high level interaction tasks and with a description of the
virtual environment. First, the application developer chooses a set
of tasks to represent at a high level the application behavior and
possibilities. Dependencies between the tasks can be described by
the developer. For instance, an application control task with a menu
will be dependent to a selection task. In our implementation, these
needed tasks and the dependencies must be provided by the ap-
plication developer or the designer in an XML configuration file.
New tasks can be implemented by a developer and added to the list
of possible ones. A task can define different functions (the task
events) that constitute the application logic such as adding an ob-
ject into the scene or loading a new scene configuration, etc. A task
also exposes a list of compatible application components that can
be deployed to achieve it. This list is also edited in an XML file.
These components must be implemented with the application com-
ponent model described in [12]. This previous work gives examples
of possible tasks, application components and logical drivers.

Second, the application is described with its virtual environment.
The virtual environment is composed of visual (3D content) and
sound assets. Its edition is separated from the tasks. It can be edited
separately, for instance in a game engine editor, or loaded with an
X3D file depending on the implementation of the models used. In
our case, as said, we use an implementation based on Unity3D.

The application is launched on a platform described with the de-
vice model previously introduced. Each device corresponds to a
class that inherits from the basic device class. In this class, with the
device SDK, the developer has to complete some functions to fulfill
the input data, trigger the outputs and tell the system when a new
instance of the device is plugged or unplugged.

At runtime, high level tasks are automatically associated with
concrete application components according to the encountered con-
text of use. For these components, the rendering presentation facet
and the logical driver facet are also chosen according to the con-
text. The control facet and the abstraction one do not depend to this
context. The association is performed with an automatic adaptation
process included in D3PART on top of the device and task mod-
els in order to support dynamic recasting. The association is made
with a scoring system that takes into account the platform capabili-
ties and the list of compatible components exposed by each task. Its
goal is to maximize the usability of the application. We won’t give
a full description of this scoring mechanism because it is not the
scope of this paper. The association process is performed at each
context change in order to detect not any longer usable application
components or more adapted ones. It can be described as follows:

DRAFT
Platform 1 Platform 2

Redistribution
Server

Virtual
Environment

Application State

Tasks

Virtual
Environment

Tasks
Application State

Virtual
Environment

Application State

Tasks

Virtual
Environment

Tasks

Application State

1- Connection
to the server

2 -High level tasks
Redistribution

Example :
Task 2 replicated
Task 3 migrated

3- Virtual Environment
Replication

4- State Synchronization

Redist

Redist Task
1

Task
2

Task
2

Task
3

Task
1

Task
2

Task
3

Redist

Redist

Figure 3: The four steps of D3PART redistribution process.
1. A context modification is detected. For example, it can be the

connection of a new device or the add of a task.
2. For each deployed application component, we check if the

associated logical driver is still possible in the current context
of use. It is still possible if the devices that it uses are still
plugged and available. If not, the application component is
destroyed and the associated task is classified as not done.

3. For each not done task, we create a list of all possible triplets
(application component, logical driver, rendering presenta-
tion) that can achieve it. A triplet is can be instantiated if
the logical driver needed device units can be found in the list
of available devices. Only the rendering presentations in the
current 3D framework can be used. A compatibility score is
attributed to each triplet. The one with the best score is de-
ployed. The devices units associated with the logical driver
are set as not available. The task is classified as done.

4. For each done task that has not been processed in the previous
step, we check if we can find a triplet more adapted than the
current one. This optimization is not performed at the same
time than the previous step. Indeed, the priority is given to the
association of application components to the not done tasks.
For this optimization, we check if we can find a triplet with a
better score than the current one. If we find one, we destroy
the current component and we deploy the new best choice.

With this adaptation process, dynamic recasting is supported and
optimal usability of the application is always ensured whatever the
context of use. It will allow the application to handle the different
context changes encountered during the redistribution process.

3 REDISTRIBUTION PROCESS

As shown in Figure 1 D3PART includes a redistribution process
that makes the integration of redistribution capacities totally trans-
parent and automatic for the developer. The process consists of dis-
tributing the high level tasks and the virtual environment across the
different dimensions: platform, display and user. The developer’s
work is to create high level tasks and implement the compatible
application components with the help of the models from [12] pre-
viously described. With the implementation of multiple compatible
components for each task and multiple logical drivers, that use dif-
ferent kinds of devices, for each component, the developer ensures
that his application will be usable on a wide variety of platforms.

We added a built-in high level task and its corresponding applica-
tion component in order to allow any developer to add redistribution
capability to his application. For this component, the abstraction
facet contains the redistribution logic and the rendering presentation
facet contains the parts that are dependent to the target 3D frame-
work. The redistribution process needs a connection mechanism
between the different platforms for state synchronization and plat-
forms discovery. To do so, we use a client/server architecture where
the different platforms can register. For now, this feature is imple-

mented with the network capabilities of the target 3D framework. It
is integrated into the rendering presentation facet. As future work,
this mechanism could become independent of the 3D framework
and be implemented in the abstraction facet. For now, our imple-
mentation does not show apparent latency but being independent
from the 3D framework would let us optimize the network load. As
proposed in the 4C reference framework [7], this component im-
plements an integrated user interface for platform registration and
control redistribution process: the meta-user interface. In our case,
the redistribution is performed at runtime and is user-initiated: the
meta-user interface is proposed to the end-user of the application.
It can be shown and hidden at runtime with a graphical button or a
device button depending on the context of use. The redistribution
process is performed in four steps as shown in Figure 3.

The first step consists in connecting to the redistribution server.
The IP address of the server can be given in the meta-user inter-
face or in the XML task configuration file. This step must be per-
formed on the current used platform and on each platform that must
be available for redistribution. On the distant platforms, an empty
application runs. It contains the framework that implements the
D3PART model and it declares the redistribution task as needed.

The second step consists in configuring the desired redistribution
with the meta-user interface. First, the user chooses the platform on
which the application will be redistributed from a list of available
ones. In our case, the basis of the redistribution process is made on
the platform dimension. However, as each platform may manage
another display and may be used by another person, user and dis-
play dimensions can also be targeted. Then, the user configures the
high level tasks distribution across the two platforms. As shown in
Figure 4, multiple choices are given to the user in the menu:

• Full migration: all tasks migrate. Each platform runs an inde-
pendent version of the application. It can be performed when
the user wants to switch to another platform.

• Partial migration: the user chooses which task(s) will migrate
to the distant platform. The application is distributed and so
shared between the two platforms. It can be performed to
combine different platforms.

• Partial replication: the user replicates some tasks to the distant
platform. He will be able to perform these tasks on the two
platforms within the same shared application.

• Full replication: all tasks are replicated and can be performed
on different platforms in the same shared application. This
kind of redistribution can be used to start a collaboration with
a user on a different platform.

Dependent tasks have to be redistributed together. Therefore, they
are grouped into the menu as shown in Figure 4. In the meta-user
interface we associate a warning icon to a task if it cannot be per-
formed on the distant platform. To do so, we ask the distant plat-
form if an application component can be deployed for each task
according to the platform capabilities. The goal of this feature is
to warn the end user that the application can be degraded if this
task is redistributed. On the other platform, thanks to adaptation
process included in D3PART, an adapted application component is
automatically associated with each redistributed task.

In the third step we replicate the virtual environment to the dis-
tant platform. The goal is to keep the application state during the
redistribution to the target platform. It includes 3D meshes, their
materials, and sound assets. To do so, we consider three solutions:

• Assets are known in the distant platform. Only the names are
transmitted. This is the currently implemented solution.

• Assets are not known but can be downloaded from a distant
server. In this case, URLs are provided.

• Assets are unknown. For instance when a user is editing a new
3D content. Here, assets can be streamed over the network.

DRAFTFigure 4: The meta-user interface enables the user to choose the
new task distribution.

In the last step we synchronize the different platforms. As for
CVEs, a synchronization is performed in order to keep a consis-
tent state between the instances of the same application running on
different platforms. In case of full migration, no synchronization
is performed because each platform runs an independent version.
First, the 3D objects transforms are synchronized in order to main-
tain a consistency between the different 3D worlds. Second, tasks
events are also synchronized. The events constitute the application
logic and have to be synchronously performed on each application
instance. To do so, we use an observer design pattern. The redis-
tribution component observes all task events. When one event is
triggered, it is transmitted with its parameters through the network
as text messages in order to be triggered distantly. During a full
replication, a collaborative context of use can be created. To handle
concurrency when moving objects, the priority to move an object
is given to the first user who grabs it. Other users cannot move an
object until the first user has released it. Other mechanisms could
be integrated as well. We also provide awareness about the activity
of the distant user, for now we only display the view frustums of
each user but avatars and hands could be added too.

4 REDISTRIBUTION FOR PLATFORMS COMBINATION

The implementation of the D3PART model have been used to de-
velop a furniture planning application. Its goal is to help people
to plan the use of particular premises. Here, we demonstrate how
two different platforms can be combined to interact in this applica-
tion thanks to the D3PART model. The application is composed of
three tasks. First, a navigation task is needed in order to navigate
within the room. Second, we need an application control task for
adding furniture into the room with the help of a menu. The add
of an object is defined as an event into the task. Last, we need a
selection and manipulation task for moving furniture and for menu
selections. These two last tasks are defined as dependent: indeed
selection possibilities are needed for interacting with the menu.

In this scenario we use an Android tablet and a CAVE with ac-
tive stereo. MiddleVR is used to handle the different screens and
clustering. Some novice users may not be confident with 3D in-
teractions and may prefer more commons multi-touch interactions.
With D3PART, the user can distribute the selection and manipula-
tion operations on the tablet and the navigation in the CAVE. The
user will be able to interact with the usual and easy-to-use tablet
multi-touch capabilities while being immersed at scale one in the
CAVE. The tablet would act like a remote World-In-Miniature [17].
To do so, the user chooses a partial migration to the CAVE, only the
navigation task migrates to the distant platform. Other tasks remain
on the tablet. This choice is made with the meta-user-interface as
shown in Figure 4. On the tablet, for the furniture control task, a 2D
menu is instantiated with the list of furniture that can be added. For
the manipulation task, an interaction technique based on the multi-
touch capabilities of the tablet is deployed. With this technique the
user can translate the objects onto the floor with one finger and ro-
tate them around the up axis with two fingers. In the CAVE, an
interaction technique based on a walking metaphor controlled with

Figure 5: A combination of a CAVE and a tablet with D3PART.

head tracking and a joystick is deployed for the navigation task.
It places the point of view inside the room in order to immerse the
user in it. At this time the application is distributed on two platforms
and displays as shown in Figure 5. A remote World-In-Miniature
is on the tablet and at the same time the user is immersed at scale
one into the room in the CAVE. The synchronization of the 6 DoF
transforms of the objects between the two platforms ensures con-
sistency when the user moves an object on the tablet. As well, the
command for adding an object into the room is also synchronized.
Both systems runs approximately at 25 fps. The difference of frame
rates does not impact the synchronization. The meta-user interface
is also available in the CAVE. Therefore, the user can migrate back
the full application to the tablet when he has finished.

Other scenarios of redistribution could also be imagined with
D3PART. For instance, a user interacting on a tablet that migrates
all his application to a CAVE in order to continue his work with 3D
interactions. Another possibility is to fully replicate its application
to a colleague platform in order to start a collaboration with him.

5 CONCLUSION AND FUTURE WORK

D3PART is a new model to handle plasticity and redistribution for
3D user interfaces. With D3PART, redistribution can be performed
on the display, platform and user dimensions and can target three
levels of granularity: application, workspace, and domain concept
levels. Redistribution can be performed at runtime by the user with
an integrated user interface: the meta-user interface. Dynamic re-
casting handled by D3PART, with the included adaptation process,
ensures usability continuity whatever the new distribution chosen.

Future work will consist in automating the redistribution process
to make it possibly system-initiated or mixed-initiated, which could
consist in finding the right platform or the right user for each task
according to the platforms capabilities and the user preferences. We
could also consider level of details during the virtual environment
replication as each platform may not have all the same computation
capabilities. Last, we will evaluate the system to assess its interest,
its usability and its acceptability for end users.

REFERENCES

[1] A Metamodel for the Runtime Architecture of an Interactive System:
The UIMS Tool Developers Workshop. SIGCHI Bull., 24(1), 1992.

[2] S. K. Badam and N. Elmqvist. Polychrome: A cross-device frame-
work for collaborative web visualization. In Proceedings of the Ninth
ACM International Conference on Interactive Tabletops and Surfaces,
ITS ’14, pages 109–118, New York, NY, USA, 2014. ACM.

[3] A. Bierbaum, P. Hartling, P. Morillo, and C. Cruz-Neira. Implement-
ing Immersive Clustering with VR Juggler. In ICCSA 2005, pages
1119–1128, Berlin, Heidelberg. Springer-Verlag.

[4] G. Calvary, J. Coutaz, D. B. Thevenin, L., M. Florins, Q. Limbourg,
N. Souchon, J. Vanderdonckt, L. Marucci, F. Paterno, and C. Santoro.
The CAMELEON Reference Framework. Deliverable D1.1, 2002.

[5] J. Coutaz. PAC, on object oriented model for dialog design. In Inter-
act’87, 1987. 6 pages.

[6] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C.
Hart. The CAVE: Audio Visual Experience Automatic Virtual Envi-
ronment. Commun. ACM, 35(6):64–72, June 1992.

DRAFT
[7] A. Demeure, J.-S. Sottet, G. Calvary, J. Coutaz, V. Ganneau, and

J. Vanderdonckt. The 4C Reference Model for Distributed User In-
terfaces. In ICAS 2008, pages 61–69, March.

[8] N. Elmqvist. Distributed user interfaces: State of the art. In Dis-
tributed User Interfaces, pages 1–12. Springer, 2011.

[9] P. Figueroa, M. Green, and H. J. Hoover. InTml: A description lan-
guage for VR applications. In Web3D 2002, page 5358. ACM.

[10] C. Fleury, T. Duval, and V. Gouranton. Architectures and Mechanisms
to Maintain efficiently Consistency in Collaborative Virtual Environ-
ments. In SEARIS 2010.

[11] C. Hand. A survey of 3D interaction techniques. In Computer graph-
ics forum, volume 16, pages 269–281, 1997.

[12] J. Lacoche, T. Duval, B. Arnaldi, E. Maisel, and J. Royan. Plastic-
ity for 3D User Interfaces: new Models for Devices and Interaction
Techniques. In EICS 2015. ACM.

[13] I. Lindt. Adaptive 3D-User-Interfaces. PhD thesis, 2009.
[14] D. Medeiros, F. Carvalho, L. Teixeira, P. Braz, A. Raposo, and I. San-

tos. Proposal and evaluation of a tablet-based tool for 3D virtual envi-
ronments. SBC, 4(2):31, 2013.

[15] J. Melchior, D. Grolaux, J. Vanderdonckt, and P. Van Roy. A toolkit
for peer-to-peer distributed user interfaces: concepts, implementation,
and applications. In EICS 2009, pages 69–78. ACM.

[16] J. Rekimoto. Pick-and-drop: A Direct Manipulation Technique for
Multiple Computer Environments. In UIST 1997, pages 31–39. ACM.

[17] R. Stoakley, M. J. Conway, and R. Pausch. Virtual reality on a WIM:
interactive worlds in miniature. In CHI 1995, pages 265–272. ACM.

[18] D. Thevenin and J. Coutaz. Plasticity of user interfaces: Framework
and research agenda. In Proceedings of INTERACT, volume 99, page
110117, 1999.

[19] M. Zöllner, H.-C. Jetter, and H. Reiterer. ZOIL: A design paradigm
and software framework for post-WIMP distributed user interfaces.
Springer, 2011.

