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ethodology to solve an analytical model of a heterogeneous elastic problem for
ures, using the two scales asymptotic homogenization method (AHM). The local
ical properties of the local functions were derived. The analytical modeling for
m considering quasi-periodic multi-layered curvilinear composites and the
zed problem were obtained. The analytic expression of the effective stress for
presented. In order to validate the presented model, comparisons with a

and experimental results for Fibonacci laminated composite and wavy lami-
. The methodology is applied to composites with thickness variation where the
e computed and a comparison between the results reported by AHM and nu-
finite element method (FEM) is presented. Finally, the aorta is studied as a

ell composite and the above results were used to determinate the effective
and unhealthy aorta using AHM and FEM.
1. Introduction

The composite materials have been very popular for the last
years due their exceptional mechanical properties. The laminated
shell and sandwich composites had an important application in
aerospace industry, automotive engineer [1e4] and textile
manufacturing [5e7]. The composite conical shells have been
widely used in various fields of technology as important structural
components due to their special geometric shapes [8,9]. The use of
the curvilinear composite structures in new engineering applica-
tions is significantly facilitated if the effective properties such as
elastic, piezoelectic, thermo-elastic etc., can be predicted.

Homogenization is a useful mathematical method for solving
boundary value problems in media with fine periodic structure.
Two scale homogenization techniques have been used to solve
, rerora2006@gmail.com
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periodic heterogeneous problems [10e12]. Other homogenization
method is related to the concept of H-convergence [13,14]. The
fourth order heterogeneous constitutive tensor H-converges to the
effective tensor when the solution of the corresponding heteroge-
neous elasticity problem converges weakly to the effective
displacement.

The development of newmathematical models and mathematic
techniques helps to study the elastic properties of a laminated shell
composite and bio-composite (cornea, aorta). Composites with
periodic structure are often encountered in structural mechanics, in
particular shell composites, [15e17]. The homogenization
[10,18e21] and finite elements [7,22,23] techniques for shell are
very used in these problems. Some recent works have been pub-
lished related to effective properties of the smart composite shells
[12,18,19] and wavy laminated shell composite [13,24], among
others. In particular, behaviors of bio-composites are being
analyzed with mathematical shell methods. Three dimensional
models of human cornea [25,26], and the aorta [27], are important
motivation for this work.



In this contribution, elastic composites in which the material
coefficients are assumed to be rapidly oscillating periodic functions
of a curvilinear coordinates system is studied and the two scales
asymptotic homogenization method is used to solve the hetero-
geneous elastic problem. The novelty of this research is to obtain a
homogenized problem with effective coefficients for a curvilinear
laminated composites as extension of previous works [13,28e30].
Besides, the local problems and the general analytic expression for
the effective coefficients are derived and the effective properties in
Refs. [10,13] are obtained as particular case. The results presented in
Ref. [31] for a Fibonacci laminated composite are compared with
the results obtained by AHM for a quasi periodic shell composite.
The effective coefficients reported in Ref. [13] for two waviness
layers composite were compared with a laminated wavy structure
with soft/hard interface between the layers. As an example of
stratified structure, a composite with thickness variation is
considered and the effective coefficients were computed using
AHM (Asymptotic Homogenization Methods) and FEM (Finite Ele-
ments Method). The paper gives a methodology to analyze the
heterogeneous elastic problem in curvilinear structures. This
methodology is used to determinate the effective properties of the
aorta and analyze the artery as a laminated shell composite.
Comparisons between the effective coefficients for healthy and
unhealthy (due to the presence of plaques) artery is presented. The
present model is validated with Finite Element Method.
2. Elastic problem for curvilinear structure

2.1. Curvilinear structures

In the present work, a quasi-periodic elastic structure is un-
derstood, if there is a coordinate system x ¼ ðx1; x2; x3Þ2U3ℝ3

such that the operator s ¼ Fðε; x; yÞ who related stress (s) and
strain (ε) is regular in x and Y-periodic in y, where y¼ x/ε2Y (Y unit
cell) and ε is a very small parameter.

Additionally, for certain structure there is an oscillation in its
geometrical configuration and a stratified function is used to
describe the geometry of the composite [13]. Also, in this sense a
variation of the thickness of the unit cell can be considered. A
generalization of these ideas is presented in further sections.

In the case when the operator s ¼ Fðε; x; yÞ is regular in x and Y-
periodic in y, where y ¼ 9ðxÞ=ε and 9 : ℝ3/ℝ3, it defines an elastic
curvilinear structure.

The particular case when the function 9≡I (identity function)
the curvilinear structure is a quasi-periodic structure. Another
important example are the shell composites; for this one, the
function 9, called stratified function, has the property 9 : ℝn/ℝp

where n > p, [13], see Fig. 1.
2.2. Statement of the elastic problem for curvilinear structures

Consider a certain curvilinear heterogeneous structure U
bounded by S ¼ S1∪ S2 in the coordinate system x ¼ (x1,x2,x3) and
a periodic function 9 ¼ ð91ðxÞ; 92ðxÞ; 93ðxÞÞ. The aforementioned
operator F in this structure is the Hooke's law

sε ¼ Cε

�
9ðxÞ
ε

; x
�

: εε; (1)

where C
ε
is regular in x and Y-periodic in y, where y ¼ 9ðxÞ=ε is the

fast curvilinear coordinate system.
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The equilibrium equation of the elastic theory has the following
expression

divsε þ f ¼ 0 on U; (2)

with boundary conditions

uε ¼ u0on S1; sε$n ¼ S on S2; (3)

where uε is the displacement, u0 is the known displacement on S1, S
is the stress vector on S2 and n is the external normal vector of S2.

The coordinate system x is curvilinear and considering the
Einstein's summation rule, where the Latin index run from 1 to 3,
the expression of the equilibrium equation can be written

sij
������
j
þ fi ¼ s

ij
;j þ Gi

jks
kj þ G

j
jks

ik þ f i ¼ 0 on U; (4)

where f$g
������
j
denotes the covariant derivate, f$g;j ¼ v

vxj
f$g the

derivation respect to the slow or global curvilinear coordinate and
Gi
jk the Christoffel's symbols of second type.
Considering the Cauchy's formula, who related the strains and

the displacements εmn ¼ 1=2ðum
����
n þ un

����
mÞ and substituting into

(1) yields

sij ¼ Cijmnum
��
n ¼ Cijmn

�
um;n � Gk

mnuk
�
: (5)

Replacing (5) into (4), the generalized equilibrium problem of
elasticity theory takes the following expression

�9k;j
ε

Cijmn
jk þ Cijmn

;j þ Gi
jkC

kjmn þ G
j
jkC

ikmn
��

um;n � Gr
mnur

	
þ Cijmn

�
um;nj � Gr

mn;jur � Gr
mnur;j

�
þ f i ¼ 0 on U; (6)

with boundary conditions

ui ¼ u0i on S1

�
Cijmn�um;n � Gr

mnur
	�

nj ¼ Si on S2; (7)

where f$gjj ¼ v
vyj

f$g denotes the derivation respect to the fast or
local curvilinear coordinate.
3. Asymptotic homogenization method

In order to solve the problem (6) and (7) with fast oscillating
coefficients, the two scales Asymptotic Homogenization Method
(AHM) is used.

The general asymptotic expansion is

uðεÞm ¼ vm þ ε$vl
��
kN

lk
m þ ε

2$svl
��
kjN

lkj
m þ…; (8)

where vm ≡ vm(x), and the local functions Nlk…
m ≡Nlk…

m ðx; yÞ are y-
periodic functions and hNlk…

m i ¼ 0, where h4i ¼ 1
VY

R
Y
4

ffiffiffi
g

p
dy; VY

volume of Y,
ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½gij�

q
and [gij] is the metric tensor [16].

In order to obtain the effective coefficients, the following
expansion is proposed,



Fig. 1. Laminated shell structures and the transformation 9: a) unit cell with a wavy transformation, b) unit cell with a thickness variation.
uðεÞm ¼ vm þ ε$vl
��
kN

lk
m þ oðεÞ ¼ vm þ ε

�
vl;k � G

p
lkvp

�
Nlk
m þ oðεÞ;

uðεÞm ¼ vm þ ε

h
Np
ð0Þmvp þ Nlk

ð1Þmvl;k
i
þ oðεÞ;

(9)

where Nlk
ð1Þm≡N

lk
m is the local function for the first order approach

and Np
ð0Þm ¼ �G

p
lkN

lk
ð1Þm.

Replacing (9) into the equilibrium Equation (6), grouping and
analyzing the coefficients for different powers of the parameter ε, a
sequence of problems is obtained. From the continuity of (9), the
coefficient of ε�1 is equating to zero and yields the following two
local problems on Y�
9q;jC

ijlk þ 9p;nC
ijmnNlk

ð1Þmjp9q;j
�
jq
¼ 0; (10)

�
� 9l;jC

ijmnG
p
mn þ 9l;jC

ijmn9t;nN
p
ð0Þmjt

�
jl
¼ 0: (11)

These two local problems are related considering the fact that
Np
ð0Þm ¼ �G

p
lkN

lk
ð1Þm.

Applying the average operator to the coefficient of ε
0 and

grouping the coefficients of vk,jl, vk,l and vl the general expression of
the effective coefficients are obtained

Cijkl
e ≡bhijkl ¼

D
Cijkl þ Cijmn9p;nN

kl
ð1Þmjp

E
: (12)

In general the effective coefficients (12) are functions that
depend on x through 9p;n. The Equation (12) coincides with the
effective coefficient reported in Ref. [21] for 9p;n ¼ dpn.

The homogenized coefficients for the elastic problem are

bhilk ¼ bhijlk
;j � Gl

mn
bhikmn þ Gi

jn
bhnjlk þ G

j
jn
bhinlk

; (13)
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bhil ¼ �
�
Gl
mn

bhijmn�
;j
�
�
Gi
jk
bhkjmn þ G

j
jk
bhikmn�

Gl
mn; (14)

bhijl
� ¼ �Gl

mn
bhijmn

: (15)

A particular form for the homogenized coefficients is obtained
from (13)e(15) when the periodicity function 9ðx1; x2; x3Þ is the
identity. In this case

bhikl ¼ �bhikmn
Gl
mn þ

�
Gi
jr
bhrjlk þ G

j
jr
bhirlk�

; (16)

bhil ¼ �bhijmn
Gl
mn;j �

�
Gi
jr
bhjrmn þ G

j
jr
bhrimn�

Gl
mn; (17)

bhijl
� ¼ �bhijmn

Gl
mn: (18)

The results given by (16)e(18), are obtained in Ref. [10] for
quasi-periodic structures.

The homogenized coefficients (16)e(18) are zero in case of a
rectangular coordinate system, because Gl

ij ¼ 0, for all l,i,j.
An equivalent problem to (6) and (7) with constant coefficients

can be formulated using the results obtained in (12)e(15),

bhil
vl þ bhikl

v½l;k� þ bhimln
vl;nm þ fi ¼ 0 on U; (19)

with boundary conditions

vi ¼ u0i on S1

�bhijl
� vl þ bhijlk

vl;k

�
nj ¼ Si on S2; (20)

where v[l,k] ¼ 1/2(vk,l þ vl,k).



The problem (19) and (20) is called the homogenized problem
and the notation “bh” means the homogenized coefficients for the
curvilinear structures.

Substituting the Equations (12), (16) and (17) into (19) the
following equation is obtained

s
ij
e

������
j
þ fi ¼ 0; (21)

where

s
ij
e¼

D
Cijmn9p;nN

kl
ð1ÞmjpþCijkl

E
vk;lþ

D
Cijmn9p;nN

r
ð0Þmjp�Gr

mnC
ijmn

E
vr:

(22)

The expression (22) is rewritten taking into account the relation
Np
ð0Þm¼�G

p
lkN

lk
ð1Þm and Equation (12)

s
ij
e ¼

D
Cijmn9p;nN

kl
ð1ÞmjpþCijkl

E
vk;l�Gr

kl

D
Cijmn9p;nN

kl
ð1ÞmjnþCijkl

E
vr

¼
D
Cijmn9p;nN

kl
ð1ÞmjpþCijkl

E�
vk;l�Gr

klvr
	

¼Cijkl
e vk

��
l:

(23)

4. Curvilinear structures with isotropic layers

Now a laminated curvilinear structure is considered, where the
geometry is described using a curvilinear coordinate system with
orthogonal components. In this case the metric tensor has the
expression

h
gij
i
¼

24 g11 0 0
0 g22 0
0 0 g33

35: (24)

Now we assume that the elastic components of the laminated
curvilinear structure are isotropic. Thus the elastic tensor can be
written as

Cijkl ¼ lgijgkl þ m
�
gikgjl þ gilgjk

�
; (25)

where [gij] ¼ [gij]�1. In case of rectangular coordinate system, the
expression (25) is the usual elastic tensor [16].

Besides, for the stratified laminated composites the periodicity
(stratified) function 9 has the property: 9 : ℝm/ℝ1 with m ¼ 2,3
(see Fig. 1) [13].

4.1. Curvilinear coordinates and the projection on x3

As an illustration of the above mentioned, we consider a
certain orthogonal curvilinear coordinate system. The elastic
tensor is obtained from the Equations (24) and (25). Now, the
stratified function as the projection 9 : ðx1; x2; x3Þ/x3 and
substituting into Equation (12), the following nonzero coefficients
are obtained
4

C1111
e ¼

*
C1111

+
þ
�
C1133

C3333

�2��
C3333

��1
��1

�
*�

C1133	2
C3333

+
;

C1122
e ¼

*
C1122

+
þ
*
C1133

C3333

+��
C3333

��1
��1

*
C2233

C3333

+

�
*
C1133C2233

C3333

+
;

C1133
e ¼

*
C1133

�
C3333

��1
+��

C3333
��1

��1

;

C2233
e ¼

*
C2233

�
C3333

��1
+��

C3333
��1

��1

;

C2222
e ¼

*
C2222

+
þ
�
C2233

�
C3333

��1
�2��

C3333
��1

��1

�
*�

C2233
�2�

C3333
��1

+
;

C3333
e ¼

��
C3333

��1
��1

C2323
e ¼

��
C2323

��1
��1

C1313
e ¼

��
C1313

��1
��1

;C1212
e ¼

*
C1212

+
:

(26)

This result is the same to the Formula (1.22) page 149 pre-
sented in Ref. [10], for orthotropic composites (9 elastic constant).
The effective coefficients for a composite with isotropic compo-
nents are a particular case of the Equation (26), see formula (1.19)
page 147 of [10].

4.2. Curvilinear orthogonal coordinates and a general form of the
stratified function

Now we consider the case when the elastic tensor C≡C
�
9
ε

�
is

given by the expression (25) for an orthogonal coordinate system,
see Equation (24), and the stratified function is 9 : ℝ3/ℝ,
9≡9ðx1; x2; x3Þ. Substituting this expression of 9 into (12) and using
the Voigt notation, the following equation is obtained

Cij
e ¼

*
Cij þ

�
Ci1 v9

vx1
þ Ci6 v9

vx2
þ Ci5 v9

vx3

�
vNj

1
vy

þ
�
Ci6 v9

vx1
þ Ci2 v9

vx2
þ Ci4 v9

vx3

�
vNj

2
vy

þ
�
Ci5 v9

vx1
þ Ci4 v9

vx2
þ Ci3 v9

vx3

�
vNj

3
vy

+
:

(27)

The Equation (27) is a generalization of the results presented in
Refs. [10,13] (for instance, see formula (3.35) in Ref. [13]).

5. Application of AHM to a quasi-periodic structure with
isotropic layers

5.1. Layer composite with Fibonacci structure

In order to validate the present model, a Fibonacci laminated
composite is studied. The Fibonacci structure can be considered as a
quasi-periodic structure, [31]. There are two basic elements L1 and
L2, where each of them are subdivided into two layers. Each layer Li
(i¼ 1,2) is made of Aluminum (Al) and Tantalum (Ta) with thickness



dAl
i and dTa

i respectively. Moreover, the thicknesses of L1 and L2 are
d1 ¼ dAl

1 þ dTa1 ¼ 46:6�A and d2 ¼ dAl2 þ dTa
2 ¼ 29:6�A respectively.

The associated quasi-periodicity is d ¼ td1 þ d2 ¼ 105�A. In Table 1
a comparisonwith theoretical and experimental results reported in
Ref. [31] for quasi-periodic Fibonacci superlattices (QPFSL) is given.
A good coincidence between the numerical (QPFSL) and experi-
mental (Exp.) results with the results obtained by the present
model (AHM) can be observed.
Fig. 2. Structure with waveny behavior.
5.2. Effective coefficients for a wavy laminated composite

As a particular case we considered a wavy bimetallic laminated
composite. The Cartesian coordinate system is used to describe the
geometry of this composite. The mechanical properties are
discontinuous in the composite.

Also, we consider an interface between the layers. This interface
can be considered as a third layer of the composite. The effective
coefficients can be calculated for a shell structure with three
different layers of thickness denoted by t1, t2 and t3 respectively (see
Fig. 2).

The materials used in the composite are stainless steel (with
Young's modulus, E1 ¼ 206.74 GPa, Poisson ratio, n1 ¼ 0.3) and
aluminum (with Young's modulus E3 ¼ 72.04 GPa, Poisson ratio
n3 ¼ 0.35). In order to compare the behavior of the effective co-
efficients with the interface and the effective coefficients presented
in Ref. [13] for a wavy structure without interface, four cases are
considered. The volume fraction of the layers t1 (Stainless steel), t2
(interface), t3 (Aluminum), the values of Young's modulus and
Poisson's ratio in the interface t2 are given in Table 2.

The volume fraction Vt2 ¼ 0 means no interface between the
layers for the structure presented in Ref. [13], and therefore the
volume Vt1 ¼ 0:2 and Vt3 ¼ 0:8.

The cases 1 and 2 are related to hard interface with different
volume fraction between the layers (interface volume fraction 1%
and 5% of the unit cell respectively) and the elastic properties of the
interface are stronger than the other two layers. The cases 3 and 4
correspond to a soft interface with different volume fraction and
weaker elastic properties for the interface.

The wavy behavior is described by the stratified function

9ðx1; x2Þ ¼ x2 � Hsin
�
2px1
L

�
;

where H is a parameter related to the oscillation, L is the length of
the unit cell [13] (see Fig. 2), and the variation of x3 is not
considered.

Considering Cartesian coordinate system for solving the local
problem (10), the local functions are obtained and replacing them
into (27), the effective coefficients (with interface, cases 1e4, and
without interface as it is considered in Ref. [13]) are computed.

The results presented in Fig. 3 show the behavior of the afore-
mentioned laminated shell composite with waviness, when hard
and soft interfaces between the layers are considered. Also a
comparison with one of the particular cases presented in Ref. [13]
(H/L ¼ 0.25) is shown. The hard interface reinforces the effective
Table 1
Comparison of the effective coefficients obtained by the present model (AHM) with
experimental and numerical results of [31].

Methods C11
e C33

e C44
e C12

e C13
e

QPFSL 162.0 142.0 31.0 80.6 71.2
AHM 162.0545 142.0856 31.0558 80.7079 71.1881
Expt. 167 ± 7 38 ± 0.5

5

properties as can be observed in the coefficients C11
e , C55

e and C66
e .

However, contrary effect occurs for C12
e .
5.3. Laminated composite with variation on the thickness

Nowwe consider a laminated composite where the thickness of
the layers is different at some points of the unit cell. The structure is
composed by two materials: stainless steel (Young's modulus,
E1 ¼ 206.74 GPa, Poisson ratio, n1 ¼ 0.3) and aluminum (Young's
modulus E3 ¼ 72.04 GPa, Poisson ratio n3 ¼ 0.35) with volume
fraction Vt1 ¼ 0:2 and Vt2 ¼ 0:8.

The surface 9ðx1; x2Þ=ε ¼ ðx2 � 0:5x2x21Þ=ε for x1,x22[�1,1] de-
fines the unit cell. The projections of the curves

9ðx1; x2Þ ¼ x2 � 0:5x2x
2
1 ¼ const; (28)

into the plane x1y show the thickness variation of the composite,
[13]. In x2 direction the stiffness properties have fast oscillating
behavior. Then for every value of x22[�1,1] we have a value func-
tion of the properties, with x1 dependence, see Fig. 1b.

The variable y varies between the curves y1 ¼ ð�1þ 0:5x21Þ=ε
and y2 ¼ ð1� 0:5x21Þ=ε. The curve y3 ¼ ð�0:6þ 0:3x21Þ=ε separates
the two material layers. The function (28) describes the thickness
variation of the unit cell. Variation of the elastic properties in x3
direction is not considered, thus the elastic properties have rapidly
oscillation in y direction.

The effective coefficients can be calculated by solving the local
problem (10) and using the equations presented in Appendix A. In
this particular case the average operator h,i ¼ Vt1 ð,Þ1 þ Vt2 ð,Þ2.

In order to validate the model, we compare the values of the
coefficients C11

e , C16
e , C55

e and C66
e for the thickness variation

function (28) with the values x2 ¼ �1 and x1 ¼ [�1, �0.5, 0, 0.5, 1]
(see Table 3); x1 ¼ �1 and x2 ¼ [�1, �0.5, 0, 0.5, 1] (see Table 4).
The methods used for the comparison are the Asymptotic Ho-
mogenization Method (AHM) and Finite Element Method (FEM).
The results computed with FEM are obtained solving Equation
(10) with the classical Finite Element Method [32e34] that pro-
vides the local functions Nlk

ð1Þm. Then, the effective coefficients are
calculated using (12).
Table 2
Volume fraction of the layers t1, t2, t3, the values of Young's modulus E2 and Poisson's
ratio n2 in the interface t2.

Case Vt1 Vt2 Vt3 E2 n2

1 0.198 0.01 0.792 310.11 0.35
2 0.19 0.05 0.76 310.11 0.35
3 0.198 0.01 0.792 20.67 0.35
4 0.19 0.05 0.76 20.67 0.35



Fig. 3. Comparison between the effective coefficients C11
e , C12

e , C55
e and C66

e with oscillating ratio H/L ¼ 0.25 for different properties of the interface and the composite without
interface reported by Ref. [13].

Table 3
Comparison between AHM and FEM of the effective coefficients C11

e , C16
e , C55

e and C66
e

for different values of x1 and for x2 ¼ �1.

x1 C11
e C16

e C55
e C66

e

AHM FEM AHM FEM AHM FEM AHM FEM

�1 130.967 130.967 0.786 0.786 32.066 32.066 33.753 33.753
�0.5 138.861 138.861 5.294 5.294 35.654 35.654 34.230 34.230
0 146.040 146.040 0 0 37.248 37.248 30.771 30.771
0.5 138.861 138.861 �5.294 �5.294 35.654 35.654 34.230 34.230
1 130.967 130.967 �0.786 �0.786 32.066 32.066 33.753 33.753

Table 4
Comparison by AHM and FEM of the effective coefficients C11

e , C16
e , C55

e and C66
e for

different values of x2 and for x1 ¼ �1.

x2 C11
e C16

e C55
e C66

e

AHM FEM AHM FEM AHM FEM AHM FEM

�1 130.967 130.967 0.786 0.786 32.066 32.066 33.753 33.753
�0.5 133.823 133.823 3.778 3.778 34.009 34.009 35.431 35.431
0 146.040 146.040 0 0 37.248 37.248 30.771 30.771
0.5 133.823 133.823 �3.778 �3.778 34.009 34.009 35.431 35.431
1 130.967 130.967 �0.786 �0.786 32.066 32.066 33.753 33.753
We can appreciate good approximation between the results
calculated by AHM and FEM. The difference of the values reported
in Tables 3 and 4 is lower than 10�3.
Fig. 4. Aorta model and the thickness t0-plaque, t1-intima, t2-media and t3-adventitia
for each layer.
5.4. Application of the AHM to the aorta as a quasi-periodic
composite

The aorta is a layered bio-composite. In Ref. [27], the initial
stress state, crack initiation and propagation in the intimal layer of
aorta under multiple static loading conditions is investigated. In
that process, three dimensional linear elastic isotropic models of
6

human aorta were numerically analyzed to assess the stress state
due to multiple loads, influence of stenosis rate on crack initiation,
and finally crack growth pattern in the intimal layer due to change
in material fracture resistance. In order to predict the stress state,
tear initiation and propagation in the human aorta, computational
modeling using finite element method was performed. The crack
initiation in the intima layer due to the presence of plaque, under
physiological loading conditions can be simulated. In this case a
three layered model is developed with thickness of intima, media
and adventitia layers varying at a ratio of 1:6:3 [35]. A cross section
of the aorta has a R1 inner radius of 1.02 cm and R2 outer radius of
1.22 cm. In this case a three layered model (healthy aorta) was
developed with thickness of intima (t1 ¼ 0.02 cm), media
(t2 ¼ 0.12 cm) and adventitia (t3 ¼ 0.06). In addition to this, 40%
stenosis (percentage of volume occupied by the plaque) was
included. This situation can be interpreted as an aorta with
obstruction (unhealthy aorta) due to the presence of plaques sur-
rounded intima layer with thickness t0¼ 0.4 (four layers). The inner
radius for the obstruction layer is reduced to R0 ¼ 0.62 (see Fig. 4).
Stress variations in the aorta being themajor cause of tear initiation
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in case of aneurysm. The region between the junction of brachio-
cephalic artery and the aorta trunk, aortic root is the most
vulnerable location for the crack initiation.

The analysis of the stress state, crack initiation and some others
phenomenon in heterogeneous media like aorta is complicated. In
order to facilitate the ulterior study of such problems, we apply the
asymptotic homogenization method to the aorta as a cylindrical
laminated shell composite and an equivalent homogeneous elastic
problem with effective properties is obtained.

The material properties in all the cases are considered as linear
elastic isotropic, and the constants utilized are shown in Table 5.

Themechanical properties of each layer are presented in Table 5.
We consider the cylindrical coordinate system to describe the

aorta, x ¼ (q,z,r). The related metric tensor (24) has the following
expression

h
gij
i
¼

24 r2 0 0
0 1 0
0 0 1

35: (29)

For this case, the non vanishing components of the tensor [gij]
are g11 ¼ 1/r2, g22 ¼ 1, g33 ¼ 1.

The strain and the stress are functions of the variable r. The
average operator is*
F

+
¼ 1

VY

Z
Y

F$
ffiffiffi
g

p
dY : (30)

where g¼ det[gij]¼ r2 (see (29)). For the aorta, the average operator
(30) is

*
F

+
¼ 2

R22 � R2a

ZR2

Ra

F$rdr;

where a ¼ 1 for three layers and a ¼ 0 for the case of the
obstruction (four layers).

The nonzero Christoffel's symbols are

G3
11 ¼ �r; G1

13 ¼ G1
31 ¼ 1

r
: (31)

The general expression for the elastic tensor can be obtained
from the Equation (25). The variation of the material properties
occurs on x3 ¼ r direction. Using (26) the effective properties in the
short index notation are shown in Table 6. Moreover, a comparison
Table 6
Comparison between AHM and FEM of the effective coefficients of the aorta for three an

Methods C11
e C12

e C13
e C22

e

Three layers
AHM 55.275 65.418 64.537 86.125
FEM 55.292 65.428 64.546 86.122
Four layers
AHM 10.488 7.844 6.602 8.799
FEM 10.487 7.843 6.601 8.795

Table 5
Mechanical properties of the aorta.

Layers Young's modulus Poisson's ratio

Plaque 0.2 0.49
Intima 2.98 0.49
Media 8.95 0.49
Adventitia 2.98 0.49
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with FEM is reported in this table for three layers (healthy aorta)
with N ¼ 1000 and four layers (unhealthy aorta) N ¼ 5000 points,
where N is the number of nodes for the discretization of the inte-
gration region. It is necessary to take N large enough because the
periodicity condition only at a discrete level is imposed.

Using AHM the Equations (16) and (17) and the effective co-
efficients (Table 6) for three layered model and the coefficients of
the homogenized problem (19) can be obtained. In general, the
nonzero third order homogenized coefficients bh113

, bh131
, bh223

,bh232
, bh113

, bh311
, bh322

, bh333
and the nonzero second order homog-

enized coefficients bh11
, bh33

can be compute. In Table 7 for example,
only the third order coefficients bh131

, bh223
and the second order

coefficients bh11
and bh33

are shown for the positions r ¼ [1.02, 1.06,
1.1, 1.14, 1.18, 1.22].

Using the effective coefficients (12) computed in Table 6 and the
homogenized coefficients derived in Equations (16)e(18), the ho-
mogenized problem (19) under certain particular boundary con-
ditions (20) can be solved and the displacement function
v¼ (v1,v2,v3) is calculated. Therefore, the effective stress (23) for the
aorta as an homogeneous body can be determinate and conse-
quently the behavior of the aneurysm and crack can be predicted as
solution of an appropriate boundary value problem.

6. Conclusions

In this paper the analytic homogenization of elastic composites
with generalized periodicity is presented. The two scale asymptotic
homogenization method is used to determinate the local problem
and the analytic expression for the effective coefficients. The gen-
eral expression of the stress for a curvilinear structure is derived
and the homogenized problem is stated. Three engineering
microstructure are analyzed: Fibonacci laminated composite, wavy
multilayered and bimetallic composite with thickness variation.
The Fibonacci structure is analyzed as a quasi-periodic structure
and the effective coefficients are obtained and compared with
experimental and theoretical approaches. The effective coefficients
for wavy laminated composite are calculated and different behavior
of the interface (soft/hard) is considered. In order to validate the
model a bimetallic composite with thickness variation is dealt and
the nonzero effective coefficients are determinate using AHM and
FEM. The described methodology is used to determinate the
effective properties of the aorta and this artery is studied as a
laminated shell composite. The effective coefficients for healthy
d four layers.

C23
e C33

e C44
e C55

e C66
e

80.739 84.035 1.647 1.270 1.775
80.737 84.032 1.647 1.293 1.775

5.384 5.604 0.109 0.150 0.781
5.383 5.602 0.109 0.150 0.780

Third bh , bh and second bh , bh order homogenized coefficients for different
values of r.

r bh131 bh223 bh11 bh33

1.02 1.249 68.412 �4.899 71.670
1.06 1.202 70.970 �4.536 67.067
1.1 1.158 73.533 �4.212 62.288
1.14 1.118 76.100 �3.922 57.332
1.18 1.080 78.670 �3.661 52.199
1.22 1.044 81.243 �3.424 46.889



(three layers) and unhealthy (four layers) aorta are computed and
both cases are validated with FEM.
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Appendix A. Nonzero coefficients for a laminated composite
with orthogonal coordinates

We consider a laminated composite, where the orthogonal co-
ordinate system is used to describe the geometry. The function
9 : ℝ2/ℝ is a stratified function of two variables 9≡9ðx1; x2Þ. The
effective elastic tensor presented in Ref. [13] is a particular case of a
function 9 in a rectangular coordinate system.

Using Equation (27), the nonzero effective coefficients can be
written and the homogenized structure has monoclinic behavior.

C11
e ¼

*
C11 þ C11 v9

vx1

vN1
ð1Þ1
vy

þ C12 v9

vx2

vN1
ð1Þ2
vy

+
; (A.1)

C12
e ¼

*
C12 þ C11 v9

vx1

vN2
ð1Þ1
vy

þ C12 v9

vx2

vN2
ð1Þ2
vy

+
; (A.2)

C13
e ¼

*
C13 þ C11 v9

vx1

vN3
ð1Þ1
vy

þ C12 v9

vx2

vN3
ð1Þ2
vy

+
; (A.3)

C16
e ¼

*
C11 v9

vx1

vN6
ð1Þ1
vy

þ C12 v9

vx2

vN6
ð1Þ2
vy

+
; (A.4)

C22
e ¼

*
C22 þ C12 v9

vx1

vN2
ð1Þ1
vy

þ C22 v9

vx2

vN2
ð1Þ2
vy

+
; (A.5)

C23
e ¼

*
C23 þ C21 v9

vx1

vN3
ð1Þ1
vy

þ C22 v9

vx2

vN3
ð1Þ2
vy

+
; (A.6)

C26
e ¼

*
C21 v9

vx1

vN6
ð1Þ1
vy

þ C22 v9

vx2

vN6
ð1Þ2
vy

+
; (A.7)

C33
e ¼

*
C33 þ C31 v9

vx1

vN3
ð1Þ1
vy

þ C32 v9

vx2

vN3
ð1Þ2
vy

+
; (A.8)
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C36
e ¼

*
C13 v9

vx1

vN6
ð1Þ1
vy

þ C23 v9

vx2

vN6
ð1Þ2
vy

+
; (A.9)

C44
e ¼

*
C44 þ C44 v9

vx2

vN4
ð1Þ3
vy

+
; (A.10)

C45
e ¼

*
C44 v9

vx2

vN5
ð1Þ3
vy

+
; (A.11)

C55
e ¼

*
C55 þ C55 v9

vx1

vN5
ð1Þ3
vy

+
; (A.12)

C66
e ¼

*
C66 þ C66 v9

vx2

vN6
ð1Þ1
vy

þ C66 v9

vx1

vN6
ð1Þ2
vy

+
: (A.13)
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