
HAL Id: hal-01293018
https://hal.science/hal-01293018

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ProDEVS : an Event-Driven Modeling and Simulation
Tool for Hybrid Systems using State Machines

Le-Hung Vu, Damien Foures, Vincent Albert

To cite this version:
Le-Hung Vu, Damien Foures, Vincent Albert. ProDEVS : an Event-Driven Modeling and Simulation
Tool for Hybrid Systems using State Machines. Simutools 2015 Eighth EAI International Conference
on Simulation Tools and Techniques, EAI, Aug 2015, ATHENES, Greece. pp.29-37. �hal-01293018�

https://hal.science/hal-01293018
https://hal.archives-ouvertes.fr

ProDEVS W an EventpDriven Modeling and Simulation Tool
for Hybrid Systems using State Machines

Le Hung Vu
University of Toulouse4

CNRSpLAAS
] Avenue du Colonel Roche

Toulouse4 France
lhvuOlaasGfr

Damien Foures
University of Corsica4 UMR

CNRS [qx(SPE
Campus Grimaldi
Corte4 France

fouresOunivpcorseGfr

Vincent Albert
University of Toulouse4

CNRSpLAAS
] Avenue du Colonel Roche

Toulouse4 France
vincentGalbertOlaasGfr

ABSTRACT
This paper int roducesa new event pdriven modeling and simp
ulat ion tool for the simulat ion of hybrid systemsG The parp
t icularity of this software called ProDEVS lies in it s graphp
ical language to define model components behaviourG This
graphical language customizes statemachines for DEVSand
quant ized based numerical methodsG In this paper4 syntax
and operat ional semant ic of the language are explained4 and
a mapping from DEVS to this language is illust rated across
two simple examples in discretepevent and cont inuous dop
mainG Finally a complete hybrid system is modeled and
simulated to show the usability and the e ciency of this
modelG

General Terms
Languages

Keywords
State machines4 DEVS4 Hybrid systems4 Event pdriven simp
ulat ion

1. INTRODUCTION
DEVS .Discrete EVent System Specificat ion6 [q(] is a

general formalism for specifying modular and hierarchical
model of dynamic systemsG A DEVS specificat ion is exep
cuted by an event pdriven simulator which ensures theschedulp
ing of t imed events and increases the simulat ion clock to the
t ime of next event G A lgorithms and methods to implement
an event pdriven simulator for DEVS models are also given
in [q(]G
There are numerical methods like the Quant ized State

System .QSS6 family [x] that have shown to e cient ly app
proximate ordinary di erent ial equat ionsG QSS is based on
state space discret izat ion4 also called quantization4 rather
than t ime discret izat ion given by convent ional numerical inp
tegrat ion methodsG Within QSS4 a quantization function

maps realpvalued numbers onto a discrete set of real values
also called quantization levels [x]G A cont inuouspt ime sysp
tem is then approximated by comput ing the required t ime
for a state variable to reach the next levelG This technique
has a st raight forward representat ion in DEVSG
DEVS is even considered [q] as the most general forp

malism since other discrete event languages such as Pet ri
Nets and StateCharts but also discrete t ime systems can be
seen as part icular cases of DEVSG Moreover DEVS provides
a unified framework for represent ing hybrid systems which
combines discrete and cont inuous dynamics and the usage
of QSS based integrat ion methods are not iceably e cient to
simulate hybrid systems due to their ability to handle disp
cont inuit ies [q]G Taking into account these remarks4 DEVS
is a good candidate for modern modeling and simulat ion
environment G
There is a huge variety of tools which support DEVSW

DEVSJAVA [qx]4 aDEVS []]4 CD3 3 [qI]4 PowerDEVS [q]4
JAMES I I [q)]4 VLE [qz]4 PyPDEVS [qq]4 DEVSpRuby [(]G
A comparison of this software list is proposed in [)]G I f most
of them have a Graphical User Interface4 none of these tools
are able to support at the same t ime a graphical syntax for
atomic component descript ion and thement ioned numerical
integrat ion of ordinary di erent ial equat ionsG PowerDEVS
is hybrid system oriented but atomic componentsaredefined
in C codeG
In this context 4 we design and implement ProDEVS4 an

integrated modeling and simulat ion environment oriented
to hybrid systems based on discretepevent simulat ion theory
and DEVSG We define a language which specializes State
Machine for building4 animat ing and simulat ing graphical
DEVS specificat ionG We implement an event pdriven simup
lat ion engine according to the algorithms and the methods
previously ment ionedG This idea is mot ivated by the t rend
for using highplevel specificat ion language rather than code
for dynamic system designG
The next sect ion gives an overview of the tool and its feap

turesG Sect ion x int roduces the syntax and the semant ic of
a ProDEVS modelG Sect ion (shows the mapping between
a DEVS atomic component and a ProDEVS State Machine
for discretepevent system and cont inuous systemG Sect ion)
describes an example to illust rate the use of this model in
hybrid simulat ionG Sect ion [gives conclusions and perspecp
t ivesG

2. TOOL FEATURES
Our software is implemented in Java and it is based on

Figure 1: ProDEVS editor

the platform of services OSGI (Open Service Gateway ini-
tiative). Thus, each component of the application (editor,
model, simulation engine, plot, code generator) is in the form
of bundle that can be started or stopped dynamically. OSGI
framework also facilitates the addition of new features.

Figure 1 shows a screenshot of the editor. It gives users an
easy navigation within the hierarchical levels of the model
and allows simulating the model at different level of the hier-
archy. The diagram panel in the center allows editing mod-
els. There are two type of pallets if it is coupled component
or atomic component. A pallet for the description of a block
diagram with port and connector is given for the definition
of a coupled component and a pallet for ProDEVS State Ma-
chine description is proposed when editing an atomic com-
ponent. We use the JGraphX library for graphical design of
the model.

The WEST region contains a project explorer, a model
explorer and a library of components. Components can be
drag and drop directly from the library to the diagram (im-
port) or from the diagram panel to the library (export). The
components of the library are stored in XML files.

The EAST region contains a properties tab for specifying
information of models such as initial values of its variables
and its parameters. The simulation tab is used to specify
the simulation time and the execution algorithm. Two sim-
ulation algorithms are available: classic or parallel [14]. In
classic simulation only one event at a time can occur. In
parallel simulation, more than one event can be received by
a component at the same time. In case of non-determinism,
the receiver component randomly chooses an event to exe-
cute. A complete set of mecanisms (priorities, guards) al-
lows to resolve conflicts in the execution and improves the

semantic of our language.
The simulation can be performed in step-by-step mode,

where each variable value can be observed. At the end of
the simulation, a new frame gives the plots for selected ports
or variables. The bundle for the visualization of trajectories
is based on the JFreeChart library.

For a sake of performance, the simulation engine executes
compiled code. A specific bundle for loading the model is
called when a new simulation is started. For each atomic
component, this bundle generates a .java file that is com-
piled and executed. Compiled code improve significantly
the performances compared to interpreted code that needs
parsing boolean and arithmetic expressions. However, the
user can access the source file to introduce more complex
treatments like loops that can not be expressed graphically
until now.

A model verifier is used to check static properties on the
model. This properties are about the correct construction
of the model (typing, valid expression, non-initialised vari-
able,...). Verification result is given as warning and error in
the console tab.

We finally design a ProDEVS model transformation to ex-
tended TPN (Timed Petri Nets) with data handling called
(TTS) Time Transition Systems [2] to generate a finite rep-
resentation for the accessible states of a ProDEVS model.
We consider the Finite and Deterministic subset of DEVS
[6], classic DEVS and parallel DEVS. This feature is no fur-
ther explain here and will appear in another paper.

3. PRODEVS MODEL
We create a customized component-based StateMachine

model that supports DEVS syntax and semantic. In sub-
stance, we reuse and specialize many concepts of UML 2.4
(Unified Modeling Language), including packages Behav-
iorStateMachines, Communications and Kernel. This sec-
tion gives a description of this model.

3.1 Model structure
The abstract syntax for the structure of a ProDEVS model

is given by the UML class diagram figure 2. A ProDEVS
model compound (composition link) of exactly one compo-
nent which is either atomic or coupled (inheritance links).
A component that is coupled or atomic consists of input
or output ports (portDirectionKind attribute). An atomic
component is associated with a DEVSStateMachine describ-
ing its behavior. Coupled component is composed of one to
several atomic or coupled components and zero to several
connectors. A port must be typed (the class Port inherits
from the class TypedElement). A port acting as a source
is connected to zero or more ports acting as a target via
connectors. A port that serves as a target is the destina-
tion of zero or more ports acting as source via connectors
(associations between classes Port and Connector). A con-
nector can only be associated with two and only two ports
at a time. A connector either coupling an output port of
a component to an input port of another component (IC)
or coupling an output port of a component with an exter-
nal output (EOC) or coupling an external input to an input
port of a component (EIC).

TypedElement defines the type of value DataType that
is a comprehensive list of literal values: boolean, double,
integer and float. PortDirectionKind is a comprehensive list
of literal values: in, out. ConnectorKind is a comprehensive
list of literal values: IC, EOC, EIC.

We define constraints to check the correctness of the model.
Examples of constraint are given through this section in nat-
ural language and in Object Constraint Language (OCL):

If the connector is of type IC, source port must be of type
out and the target port must be of type in. In addition, source
port and target port must belong to different sub-components
of the same current coupled component.

Coupled.AllInstances -> forAll(connector.connectionKind
<> IC) implies (source.portDirectionKind <> out) and

(destination.portDirectionKind <> in) and
(self.includes(source.component) and
(self.includes(destination.component) and

(source.component != destination.component)

3.2 ProDEVS StateMachine

Syntax.
The abstract syntax for a ProDEVS StateMachine is given

by the UML class diagram figure 3.
A ProDEVSStateMachine is a set of states-transitions that

defines the behavior of an atomic component. A phase is a
specific parameter that represents a period in the life of the
atomic component where it is expected some events to occur
(input event or time event). It has a set outgoing of transi-
tions departing from this phase, a set incoming of transitions
entering this phase and a timeAdvance attribute to specify
the time in which the system as to stay before triggering the
output and the internal transition function (a time advance
value can also be given by a variable of the component).

A phase with a time advance equal to infinity must not

have an outgoing transition of kind internal and must have
at least one outgoing transition of kind external.

self.timeAdvance.val <> infinity implies

forAll(t | self.outgoing->not(t.kind <> internal)) and
exists(t | self.outgoing->t.kind <> external)

A phase with a time advance not equal to infinity must
have at least one outgoing transition of kind internal

not(self.timeAdvance.val <> infinity) implies
exists(t | self.outgoing->t.kind <> internal)

A transition is an oriented relationship between a source
phase and a target phase. It is associated to :

• a trigger which specifies an input that may fire an ex-
ternal transition in case of external event or an out-
put in case of time event (time elapsed in a phase is
reached).

• a guard which provides a fine-grained control over the
firing of the transition using boolean expression. The
guard is evaluated when an event occurrence, external
event or time event, is dispatched by the state machine.
If the guard is true at that time, the transition may be
enabled, otherwise, it is disabled. A guard constrains
a set of properties 1 of the component.

• an action which specifies an optional assignement to
be performed onto property when the transition fires.

• a source which designates the originating phase of the
transition.

• a target which designates the target phase that is reached
when the transition is taken.

Operational semantic.
The system is in phase ϕ at a given time and must be in

that phase for a period e = ϕ.timeAdvance, if no external
event occurs. When the time e has elapsed without any ex-
ternal event has occurred, the system triggers a time event
and calculates and propagates the output. Then, for each
outgoing internal transitions the guards are assessed. The
system triggers one of those transitions which are enabled. If
instead, an external event occurs on the input before the ex-
piration of e, the system triggers the corresponding external
transition, if it is enabled. In any case, the system reaches
a new phase ϕ′ = ϕ.outgoing.target for a period defined
by ϕ′.timeAdvance, the actions associated to the triggered
transition are computed and the same algorithm is applied.

When ϕ.timeAdvance = ∞, it means that it is a pas-
sive phase and only an external event will leave the phase.
When ϕ.timeAdvance = 0, it means that this is a transient
phase so the output computation and the internal transition
triggering are immediately performed.

In ProDEVS, like in DEVS, communications are weak
synchronous, i.e., non blocking with (possible) message loss.
If both sender and receiver are ready to communicate, the

1The term property or structural feature is used in UML. In
this model the class Property simply represents a variable of
the component.

Figure 2: ProDEVS model structure

Figure 3: ProDEVS StateMachine

output event is converted into an input event which is in-
stantly received. If the receiver is not ready, the message is
lost.

As a result of coupling of concurrent components, there
may be multiple components with simultaneous events. Thus,
there may be multiple components which are candidates
for the next internal state transition. Such components
are called imminents in the DEVS terminology. In classic
DEVS, a Select function is added at the coupled component
that allows to select the component to execute among a set
of imminent components. In parallel DEVS, every imminent
components are executed. A component may receive a bag
of inputs. A confluent transition function is added to refine
a transition in case of simultaneous time event and external
event.

A DEVS system is deterministic [9] as the current state
of the system is completely determined by its previous state,
the input (if any) and the time elapsed since the last tran-
sition or the time advance. In other words the output is
completely determined by the timing of the input events
[9]. A ProDEVS system is indeterministic if more than one
transition is enabled at the same time. The user can re-
solve indeterministic behaviour by use of priorities among a
set of transitions. If two enabled transitions have the same
priority, the transition to trigger is selected randomly.

The label for internal/output function and external tran-
sition function are defined by the following BNF expression:

<transition> ::= [<guard>] <trigger> ’/’ [<action>]

The details of the syntax for the trigger event are defined
by different kind of events:

<trigger> ::= <time-event> | <external-event>

• output events (at time event) are denoted by ! followed
by the name of the triggered output port, followed by
an assignment specification:

<time-event> ::= [!<name> = <output-assignement>]

• external events are denoted by ? followed by the name
of the triggering input port:

<external-event> ::= ?<name>

There are no assignement on port when the trigger is of
kind externalEvent.

self.kind <> externalEvent implies self.output->isEmpty()

There is an assignement on output port when the trigger is
of kind timeEvent.

self.kind <> timeEvent implies self.output->notEmpty() and
self.port = self.output.assignedPort

4. PRODEVS IN PRACTICE
This section describes how a ProDEVS State Machine can

describe a DEVS atomic component for discrete-event sys-
tem and continuous system.

Discrete-event system.
In DEVS, external transition function, internal transition

function, output function and time advance function are de-
fined on S [14]:

• δext : Q × X → S with Q = {(s, e)|s ∈ S, 0 ≤ e ≤
ta(s)}

• δint : S → S

• λ : S → Y

• ta : S → R
+
0,∞

with S characterized by a set of state variables and their
values, i.e. S = (sv, v)|sv ∈ SV, v ∈ Dsv such that SV is
the set of state variables and Dsv is the domain of value for
state variable sv.

For example, the state space S for a buffer BUF is defined
by:

SBUF = {(proc status, {free, busy}), (queue, {0;n}|n ∈ N)}

Or the state space S of a quantized integrator I is defined
by:

SI = {ql ∈ R, q ∈ R, q̇ ∈ R, σ ∈ R}

.
Often, but this is not mandatory, a DEVS atomic compo-

nent has a special state variable called phase that can take
a value from a set list of literal values.

A initial state is given as a list of assignment. For exam-
ple, if the state variables queue and proc status have the
initial values empty and free, then the initial state is given
as queue := 0, status := free. The general form of the in-
ternal state transition function is given as current state ⇒
next state where current state is expressed as a boolean ex-
pression and next state as a list of assignment. For example
an internal transition buffer BUF could be:

(queue > 0 && proc status == free) ⇒

(queue := queue−−, proc status := busy) (1)

The general form of a time advance function is given as
current state ⇒ R

+
0,∞ where current state is expressed as

a boolean expression. For exemple a time advance function
for the buffer BUF could be:

(queue > 0 && proc status == free) ⇒ 0 (2)

In ProDEVS we assume that an atomic component always
hold exactly one state variable called phase that can take
many values as necessary from a comprehensive list of literal
values. A value for this variable will be represented by a
UML state. In the remainder of this paper, for simplicity,
we will call a phase one value of state variable phase. Thus,
in ProDEVS, time advance function and transition functions
are associated to each value of phase, or simpler, to each
phase, all which is actually restrictive according to DEVS
specification.

However, within ProDEVS, the assignments are actions
associated with the transitions and the boolean expressions
are guards also associated with transitions. For example, a
buffer that would be modeled without phase in DEVS will

be modeled in ProDEVS by the state machine in Figure 4
2.

Figure 4: Atomic component BUF with one phase

This mechanism of actions and guards associated with
transitions which are themselves a directed relationship be-
tween the phases can represent exactly a DEVS model. In-
deed, the internal transition function given by equation (1)
is encoded by the transition 5 Figure 4. Furthermore the
time advance function given by equation (2) is encoded by
the transition 4. The guard expresses the current state,
here, (queue > 0 && proc status == busy). The action
contains the assignments on the state variables from the
current state, here, queue is unchanged and proc status :=
free. The assignment of the state variable sigma allows
setting the time advance function for next state.

In fact there are a multitude of ways to model a buffer
always with the same behavior. For example it is possible
to allocate the state variable proc status in phases. Thus,
BUF becomes as shown Figure 5:

Figure 5: Atomic component BUF with three phases

The finer grain BUF model would allocate queue and
proc status into phases. This gives a model without guards
and assignements as shown Figure 6.

Continuous system.
Basically, the QSS method consists in discretizing the space
of state variables using a fixed value called the quantum size

2A dotted arrow represents an internal transition and a full
arrow represents an external transition.

Figure 6: Atomic component BUF with six phases
for a buffer with capacity of 2 (taken from [14] page
465).

D. According to this quantum, a variable q can only take
values among q ± kD where k is an integer. The solution
q(t) of a system described by a differential equation is ap-
proximated on a grid in the phase space of the system. The
resolution of the phase space grid is D. The time h required
to move from one phase space grid point to another on q(t)
is approximated and a state change will be informed only at
this time.

As shown in [8], h may be computed from classical ODE
solvers, e.g. for Euler or Runge-Kutta. Consider an ordinary
differential equation in the form of

q̇ = f(q(t)) (3)

We consider the simple Euler integration method

q(t+ h) = q(t) + hq̇(t) (4)

Let the quantum D be defined by

D = |q(t+ h)− q(t)| (5)

Then the time required for a change of size D to occur on
q(t) is approximatively

h =

{

D
|q̇(t)|

if q̇(t) 6= 0

∞ otherwise

This approach can easily be extended to a set of coupled
ordinary differential equations in the form of q̇ = f(q(t)),
where q is a vector of differential variables. For each or-
dinary differential equation i of such a system, two vari-
ables are necessary. A variable qi which is the position of
state variable i on its phase space axis and a variable qli
which contains the last grid point occupied by the variable
qi. These two variables are necessary because the function fi
is now computed at grid points in the discrete phase space
of each element of the vector q. A variable qj may have
reached a grid point in its discrete phase space while the
variable qi has not reached its next grid point yet. Then the
time required for the variable qli to be updated becomes

h =

{

D−|qi−qli|
|q̇i(t)|

if q̇(t) 6= 0

∞ otherwise

where |qi − qli| is the distance already traveled along the
phase space axis of state variable i.

A DEVS description of the quantized integrator is:

δint(ql, q, q̇, σ) = (qn, qn, f(qn, x),
d

|f(qn, x)|
) (6)

δcon(ql, q, q̇, σ) = (qn, qn, f(qn, x),
d

|f(qn, x)|
) (7)

δext((ql, q, q̇, σ), e, x) = (ql, q + q̇ ∗ e, f(q, x),
d− |q + q̇ ∗ e− ql|

|f(q, x)|
)

(8)

λ(ql, q, q̇, σ) = qn (9)

ta(ql, q, q̇, σ) = σ (10)

with qn = ql + d ∗ sgn(q̇) the next value of the integral
and function sgn(v) returns −1 if v < 0, 0 if v = 0 or 1 if
v > 0.

Figure 7: Quantized integrator

A ProDEVS State Machine for this quantized integrator
is given Figure 7 3. It is a generic component that can be
taken from the library to construct an hybrid system with
only two parameter to define: the quantum d and the initial
state value vdx.

The atomic component figure 8 generates a triangular
wave. The internal transition from phase s0 to phase s3 is
used to initialise the component with the given parameters
a for amplitude and f for frequency. vdx is the derivative
and vx is the signal. From state s3 a new value of vx is
sent on the output port s0 every σ = d/abs(vdx) where d is
the quantum. If vdx is positive (negative), vx is increased
(decreased) by d. When vx reaches a or -a, the derivative
is inverted. The transitions which map s3 to s2 must have
higher priority than the transitions which map s3 to s3.

5. EXAMPLE
This section describes an example that shows simulation

results within ProDEVS. The application is the control of a
DC motor with pulse width modulation. It is taken from the
hybrid example folder in PowerDEVS software and detailed
in [3]. In this application the power signal of the motor is

3Character e is a reserved character that may not be used
as variable name of a component. It contains the elapsed
time since the last transition

Figure 8: Triangular wave

Figure 9: dc-drive model level 0

replaced by a switch in which the duration of the on state is
proportional to the desired voltage. The controller compares
the speed ω(t) of the motor with the input reference, and
calculates the desired input voltage of the motor, uref . The
desired voltage is compared with a fast triangular waveform,
obtaining the actual input voltage ua that oscillates between
two values.

The whole control and plant systems were built using
blocks from ProDEVS library which are atomic components
described with ProDEVS State Machines. The motor is rep-
resented by a second order model (see Figure 10). A torque
step is applied after 3 seconds of simulation. The control
system is composed of the following components (see Figure
9):

• The input voltage of the motor switches between +500V
and -500V depending on the PWM control law.

• For the PWM law, a triangular waveform of 1KHz fre-
quency and an amplitude of 1.1V is considered. The
moment at which the triangular wave crosses the value
given by uref , determines the actual voltage applied to
the motor.

• The control is using a proportional law, i.e. uref is
proportional to the error ωref (t)− ω(t).

• The angular velocity reference signal, ωref (t) is a ramp
signal that increases from 0 to 60 rad/sec in 2 seconds.

The simulation results are shown in Figure 11. A sim-
ulation across 5 seconds of simulation time took about 27
seconds on a 1.80GHz running under Ubuntu. The same ex-
periment with PowerDEVS took about 15 seconds. The real
time of the simulation can be improved using QSS2 meth-
ods (205ms with PowerDEVS). We think we can improve
the performance of the tool with a different storage man-
agement for variable values. At each step of the simulation

Figure 10: dc-drive model level 1 (dc-drive-coupled)

Figure 11: Output of the DC motor

values of each port and variable is stored as type String.
The tool performs a type conversion in each step to make
the calculations. This cast is expensive. Furthermore we
believe we can optimize simulation engine processing such
as searching ports connection through the hierarchy.

6. CONCLUSIONS
This paper has introduce a new event-driven modeling and

simulation tool for the simulation of hybrid systems. The
particularity of this software lies in its graphical language to
define the behavior of the atomic components. This graphi-
cal language customizes state machines for DEVS and quan-
tized based numerical methods. ProDEVS proposes an intu-
itive and user-friendly interface for designing DEVS model
without experience in programming. It provides a block di-
agram interface for coupled components where users can go
up and done the hierarchy with a just a double-clic. A li-
brary promotes the reuse of models where parameters can be
tuned without entering the atomic component. This library
can be extended by users thanks to the export feature by a
simple drag and drop from the diagram panel to the library
panel. ProDEVS provides a model verifier to quickly detect
inconsistencies and incompleteness.

We are now developing a formal verification feature of a
ProDEVS model. Our approach is based on a transforma-
tion to extended TPN (Timed Petri Nets) with data han-
dling called (TTS) Time Transition Systems to generate a
finite representation for the accessible states of a ProDEVS
model.

Finally we are considering a VHDL coder for hardware
implementation of parallel architectures on FPGA to boost
the performance and provide rapid prototyping features.

7. REFERENCES
[1] F. Bergero and E. Kofman. Powerdevs: a tool for

hybrid system modeling and real-time simulation.
SIMULATION, 2010.

[2] B. Berthomieu, F. Peres, and F. Vernadat. Model
checking bounded prioritized time petri nets. In
ATVA, Lecture Notes in Computer Science. Springer,
2007.

[3] F. E. Cellier and E. Kofman. Continuous System
Simulation. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[4] R. Franceschini, P.-A. Bisgambiglia, P. Bisgambiglia,
and D. Hill. Devs-ruby: A domain specific language for
devs modeling and simulation (wip). In Proceedings of
the Symposium on Theory of Modeling & Simulation -
DEVS Integrative, San Diego, CA, USA, 2014.

[5] R. Franceschini, P.-A. Bisgambiglia, L. Touraille,
P. Bisgambiglia, and D. Hill. A survey of modelling
and simulation software frameworks using Discrete
Event System Specification. In 2014 Imperial College
Computing Student Workshop, Dagstuhl, Germany,
2014.

[6] M. H. Hwang. Qualitative verification of finite and
real-time devs networks. In Proceedings of the 2012
Symposium on Theory of Modeling and Simulation -
DEVS Integrative M&S Symposium, San Diego, CA,
USA, 2012.

[7] J. Nutaro. Adevs (a discrete event system simulator).
Arizona Center for Integrative Modeling and
Simulation (ACIMS), University of Arizona, Tucson,
1999.

[8] J. Nutaro. Discrete event simulation of continuous
systems. In Fishwick, P. (Ed.), Handbook of Dynamic
System Modeling, 2007.

[9] E. Posse. Modelling and Simulation of Dynamic
Structure Discrete-event Systems. McGill University,
Montreal, Que., Canada, Canada, 2008.

[10] G. Quesnel, R. Duboz, and E. Ramat. The Virtual
Laboratory Environment – An operational framework
for multi-modelling, simulation and analysis of
complex dynamical systems. Simulation Modelling
Practice and Theory, 2009.

[11] Y. Van Tendeloo and H. Vangheluwe. The modular
architecture of the python(p)devs simulation kernel:
Work in progress paper. In Proceedings of the
Symposium on Theory of Modeling & Simulation -
DEVS Integrative, San Diego, CA, USA, 2014.

[12] G. A. Wainer. Cd++: a toolkit to define
discrete-event models. Software, Practice and
Experience. Wiley, 2002.

[13] B. Zeigler and H. Sarjoughian. Introduction to devs
modeling and simulation with java: A simplified
approach to hla-compliant distributed simulations.
Arizona Center for Integrative Modeling and
Simulation, 2000.

[14] B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of
Modeling and Simulation. Academic Press, Inc.,
Orlando, FL, USA, 2nd edition, 2000.

[15] S. Zinn, J. Himmelspach, A. M. Uhrmacher, and
J. Gampe. Building mic-core, a specialized m&s
software to simulate multi-state demographic micro
models, based on james ii, a general m&s framework.

