Hung Le

Vu

Damien Foures

Vincent Albert

ProDEVS W an EventpDriven Modeling and Simulation Tool for Hybrid Systems using State Machines

Keywords:

T his paper int roduces a new event pdriven modeling and simp ulat ion t ool for t he simulat ion of hybrid syst emsG T he parp t icularity of t his software called ProDEV S lies in it s graphp ical language t o define model component s behaviourG T his graphical language cust omizes st at e machines for DEV S and quant ized based numerical met hodsG In t his paper4 synt ax and operat ional semant ic of t he language are explained4 and a mapping from DEV S t o t his language is illust rat ed across two simple examples in discret epevent and cont inuous dop mainG Finally a complet e hybrid syst em is modeled and simulat ed t o show t he usability and t he e ciency of t his modelG

INTRODUCTION

DEV S .Discret e EVent Syst em Specificat ion6 [q(] is a general formalism for specifying modular and hierarchical model of dynamic syst emsG A DEV S specificat ion is exep cut ed by an event pdriven simulat or which ensures t he schedulp ing of t imed event s and increases t he simulat ion clock t o t he t ime of next event G A lgorit hms and met hods t o implement an event pdriven simulat or for DEV S models are also given in [q(]G T here are numerical met hods like t he Quant ized St at e Syst em .QSS6 family [x] t hat have shown t o e cient ly app proximat e ordinary di erent ial equat ionsG QSS is based on st at e space discret izat ion4 also called quantization4 rat her t han t ime discret izat ion given by convent ional numerical inp t egrat ion met hodsG W it hin QSS4 a quantization function maps realpvalued numbers ont o a discret e set of real values also called quantization levels [x]G A cont inuouspt ime sysp t em is t hen approximat ed by comput ing t he required t ime for a st at e variable t o reach t he next levelG T his t echnique has a st raight forward represent at ion in DEV SG DEV S is even considered [q] as t he most general forp malism since ot her discret e event languages such as Pet ri Net s and St at e Chart s but also discret e t ime syst ems can be seen as part icular cases of DEV SG M oreover DEV S provides a unified framework for represent ing hybrid syst ems which combines discret e and cont inuous dynamics and t he usage of QSS based int egrat ion met hods are not iceably e cient t o simulat e hybrid syst ems due t o t heir ability t o handle disp cont inuit ies [q]G Taking int o account t hese remarks4 DEV S is a good candidat e for modern modeling and simulat ion environment G T here is a huge variety of t ools which support DEV SW DEV SJAVA [

qx]4 aDEV S []]4 CD3 3 [qI]4 PowerDEV S [q]4 JA M ES I I [q)]4 V LE [qz]4 PyPDEV S [qq]4 DEV SpRuby [(]G

A comparison of t his software list is proposed in [)]G If most of t hem have a Graphical User Int erface4 none of t hese t ools are able t o support at t he same t ime a graphical synt ax for at omic component descript ion and t he ment ioned numerical int egrat ion of ordinary di erent ial equat ionsG PowerDEV S is hybrid syst em orient ed but at omic component s are defined in C codeG In t his cont ext 4 we design and implement ProDEV S4 an int egrat ed modeling and simulat ion environment orient ed t o hybrid syst ems based on discret epevent simulat ion t heory and DEV SG We define a language which specializes St at e M achine for building4 animat ing and simulat ing graphical DEV S specificat ionG We implement an event pdriven simup lat ion engine according t o t he algorit hms and t he met hods previously ment ionedG T his idea is mot ivat ed by t he t rend for using highplevel specificat ion language rat her t han code for dynamic syst em designG T he next sect ion gives an overview of t he t ool and it s feap t uresG Sect ion x int roduces t he synt ax and t he semant ic of a ProDEV S modelG Sect ion (shows t he mapping between a DEV S at omic component and a ProDEV S St at e M achine for discret epevent syst em and cont inuous syst emG Sect ion) describes an example t o illust rat e t he use of t his model in hybrid simulat ionG Sect ion [gives conclusions and perspecp t ivesG

TOOL FEATURES

Our software is implement ed in Java and it is based on Figure 1 shows a screenshot of the editor. It gives users an easy navigation within the hierarchical levels of the model and allows simulating the model at different level of the hierarchy. The diagram panel in the center allows editing models. There are two type of pallets if it is coupled component or atomic component. A pallet for the description of a block diagram with port and connector is given for the definition of a coupled component and a pallet for ProDEVS State Machine description is proposed when editing an atomic component. We use the JGraphX library for graphical design of the model.

The WEST region contains a project explorer, a model explorer and a library of components. Components can be drag and drop directly from the library to the diagram (import) or from the diagram panel to the library (export). The components of the library are stored in XML files.

The EAST region contains a properties tab for specifying information of models such as initial values of its variables and its parameters. The simulation tab is used to specify the simulation time and the execution algorithm. Two simulation algorithms are available: classic or parallel [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. In classic simulation only one event at a time can occur. In parallel simulation, more than one event can be received by a component at the same time. In case of non-determinism, the receiver component randomly chooses an event to execute. A complete set of mecanisms (priorities, guards) allows to resolve conflicts in the execution and improves the semantic of our language.

The simulation can be performed in step-by-step mode, where each variable value can be observed. At the end of the simulation, a new frame gives the plots for selected ports or variables. The bundle for the visualization of trajectories is based on the JFreeChart library.

For a sake of performance, the simulation engine executes compiled code. A specific bundle for loading the model is called when a new simulation is started. For each atomic component, this bundle generates a .java file that is compiled and executed. Compiled code improve significantly the performances compared to interpreted code that needs parsing boolean and arithmetic expressions. However, the user can access the source file to introduce more complex treatments like loops that can not be expressed graphically until now.

A model verifier is used to check static properties on the model. This properties are about the correct construction of the model (typing, valid expression, non-initialised variable,...). Verification result is given as warning and error in the console tab.

We finally design a ProDEVS model transformation to extended TPN (Timed Petri Nets) with data handling called (TTS) Time Transition Systems [START_REF] Berthomieu | Model checking bounded prioritized time petri nets[END_REF] to generate a finite representation for the accessible states of a ProDEVS model. We consider the Finite and Deterministic subset of DEVS [START_REF] Hwang | Qualitative verification of finite and real-time devs networks[END_REF], classic DEVS and parallel DEVS. This feature is no further explain here and will appear in another paper.

PRODEVS MODEL

We create a customized component-based StateMachine model that supports DEVS syntax and semantic. In substance, we reuse and specialize many concepts of UML 2.4 (Unified Modeling Language), including packages Behav-iorStateMachines, Communications and Kernel. This section gives a description of this model.

Model structure

The abstract syntax for the structure of a ProDEVS model is given by the UML class diagram figure 2. A ProDEVS model compound (composition link) of exactly one component which is either atomic or coupled (inheritance links). A component that is coupled or atomic consists of input or output ports (portDirectionKind attribute). An atomic component is associated with a DEVSStateMachine describing its behavior. Coupled component is composed of one to several atomic or coupled components and zero to several connectors. A port must be typed (the class Port inherits from the class TypedElement). A port acting as a source is connected to zero or more ports acting as a target via connectors. A port that serves as a target is the destination of zero or more ports acting as source via connectors (associations between classes Port and Connector). A connector can only be associated with two and only two ports at a time. A connector either coupling an output port of a component to an input port of another component (IC) or coupling an output port of a component with an external output (EOC) or coupling an external input to an input port of a component (EIC).

TypedElement defines the type of value DataType that is a comprehensive list of literal values: boolean, double, integer and float. PortDirectionKind is a comprehensive list of literal values: in, out. ConnectorKind is a comprehensive list of literal values: IC, EOC, EIC.

We define constraints to check the correctness of the model. Examples of constraint are given through this section in natural language and in Object Constraint Language (OCL):

If the connector is of type IC, source port must be of type out and the target port must be of type in. In addition, source port and target port must belong to different sub-components of the same current coupled component.

ProDEVS StateMachine

Syntax.

The abstract syntax for a ProDEVS StateMachine is given by the UML class diagram figure 3.

A ProDEVSStateMachine is a set of states-transitions that defines the behavior of an atomic component. A phase is a specific parameter that represents a period in the life of the atomic component where it is expected some events to occur (input event or time event). It has a set outgoing of transitions departing from this phase, a set incoming of transitions entering this phase and a timeAdvance attribute to specify the time in which the system as to stay before triggering the output and the internal transition function (a time advance value can also be given by a variable of the component).

A phase with a time advance equal to infinity must not have an outgoing transition of kind internal and must have at least one outgoing transition of kind external. A phase with a time advance not equal to infinity must have at least one outgoing transition of kind internal not(self.timeAdvance.val <> infinity) implies exists(t | self.outgoing->t.kind <> internal)

A transition is an oriented relationship between a source phase and a target phase. It is associated to :

• a trigger which specifies an input that may fire an external transition in case of external event or an output in case of time event (time elapsed in a phase is reached).

• a guard which provides a fine-grained control over the firing of the transition using boolean expression. The guard is evaluated when an event occurrence, external event or time event, is dispatched by the state machine.

If the guard is true at that time, the transition may be enabled, otherwise, it is disabled. A guard constrains a set of properties1 of the component.

• an action which specifies an optional assignement to be performed onto property when the transition fires.

• a source which designates the originating phase of the transition.

• a target which designates the target phase that is reached when the transition is taken.

Operational semantic.

The system is in phase ϕ at a given time and must be in that phase for a period e = ϕ.timeAdvance, if no external event occurs. When the time e has elapsed without any external event has occurred, the system triggers a time event and calculates and propagates the output. Then, for each outgoing internal transitions the guards are assessed. The system triggers one of those transitions which are enabled. If instead, an external event occurs on the input before the expiration of e, the system triggers the corresponding external transition, if it is enabled. In any case, the system reaches a new phase ϕ ′ = ϕ.outgoing.target for a period defined by ϕ ′ .timeAdvance, the actions associated to the triggered transition are computed and the same algorithm is applied.

When ϕ.timeAdvance = ∞, it means that it is a passive phase and only an external event will leave the phase. When ϕ.timeAdvance = 0, it means that this is a transient phase so the output computation and the internal transition triggering are immediately performed.

In ProDEVS, like in DEVS, communications are weak synchronous, i.e., non blocking with (possible) message loss. If both sender and receiver are ready to communicate, the output event is converted into an input event which is instantly received. If the receiver is not ready, the message is lost.

As a result of coupling of concurrent components, there may be multiple components with simultaneous events. Thus, there may be multiple components which are candidates for the next internal state transition. Such components are called imminents in the DEVS terminology. In classic DEVS, a Select function is added at the coupled component that allows to select the component to execute among a set of imminent components. In parallel DEVS, every imminent components are executed. A component may receive a bag of inputs. A confluent transition function is added to refine a transition in case of simultaneous time event and external event.

A DEVS system is deterministic [START_REF] Posse | Modelling and Simulation of Dynamic Structure Discrete-event Systems[END_REF] as the current state of the system is completely determined by its previous state, the input (if any) and the time elapsed since the last transition or the time advance. In other words the output is completely determined by the timing of the input events [START_REF] Posse | Modelling and Simulation of Dynamic Structure Discrete-event Systems[END_REF]. A ProDEVS system is indeterministic if more than one transition is enabled at the same time. The user can resolve indeterministic behaviour by use of priorities among a set of transitions. If two enabled transitions have the same priority, the transition to trigger is selected randomly.

The label for internal/output function and external transition function are defined by the following BNF expression:

<transition> ::= [<guard>] <trigger> '/' [<action>]
The details of the syntax for the trigger event are defined by different kind of events: <trigger> ::= <time-event> | <external-event> • output events (at time event) are denoted by ! followed by the name of the triggered output port, followed by an assignment specification:

<time-event> ::= [!<name> = <output-assignement>]

• external events are denoted by ? followed by the name of the triggering input port:

<external-event> ::= ?<name>

There are no assignement on port when the trigger is of kind externalEvent.

self.kind <> externalEvent implies self.output->isEmpty()

There is an assignement on output port when the trigger is of kind timeEvent.

self.kind <> timeEvent implies self.output->notEmpty() and self.port = self.output.assignedPort

PRODEVS IN PRACTICE

This section describes how a ProDEVS State Machine can describe a DEVS atomic component for discrete-event system and continuous system.

Discrete-event system.

In DEVS, external transition function, internal transition function, output function and time advance function are defined on S [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]:

• δext : Q × X → S with Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} • δint : S → S • λ : S → Y • ta : S → R + 0,∞
with S characterized by a set of state variables and their values, i.e. S = (sv, v)|sv ∈ SV, v ∈ Dsv such that SV is the set of state variables and Dsv is the domain of value for state variable sv.

For example, the state space S for a buffer BUF is defined by: SBUF = {(proc status, {f ree, busy}), (queue, {0; n}|n ∈ N)} Or the state space S of a quantized integrator I is defined by:

SI = {ql ∈ R, q ∈ R, q ∈ R, σ ∈ R} .
Often, but this is not mandatory, a DEVS atomic component has a special state variable called phase that can take a value from a set list of literal values.

A initial state is given as a list of assignment. For example, if the state variables queue and proc status have the initial values empty and free, then the initial state is given as queue := 0, status := f ree. The general form of the internal state transition function is given as current state ⇒ next state where current state is expressed as a boolean expression and next state as a list of assignment. For example an internal transition buffer BUF could be:

(queue > 0 && proc status == f ree) ⇒ (queue := queue --, proc status := busy) (1)

The general form of a time advance function is given as current state ⇒ R + 0,∞ where current state is expressed as a boolean expression. For exemple a time advance function for the buffer BUF could be:

(queue > 0 && proc status == f ree) ⇒ 0 (2)
In ProDEVS we assume that an atomic component always hold exactly one state variable called phase that can take many values as necessary from a comprehensive list of literal values. A value for this variable will be represented by a UML state. In the remainder of this paper, for simplicity, we will call a phase one value of state variable phase. Thus, in ProDEVS, time advance function and transition functions are associated to each value of phase, or simpler, to each phase, all which is actually restrictive according to DEVS specification.

However, within ProDEVS, the assignments are actions associated with the transitions and the boolean expressions are guards also associated with transitions. For example, a buffer that would be modeled without phase in DEVS will be modeled in ProDEVS by the state machine in Figure 4 2 .

Figure 4: Atomic component BUF with one phase

This mechanism of actions and guards associated with transitions which are themselves a directed relationship between the phases can represent exactly a DEVS model. Indeed, the internal transition function given by equation (1) is encoded by the transition 5 Figure 4. Furthermore the time advance function given by equation (2) is encoded by the transition 4. The guard expresses the current state, here, (queue > 0 && proc status == busy). The action contains the assignments on the state variables from the current state, here, queue is unchanged and proc status := f ree. The assignment of the state variable sigma allows setting the time advance function for next state.

In fact there are a multitude of ways to model a buffer always with the same behavior. For example it is possible to allocate the state variable proc status in phases. Thus, BUF becomes as shown Figure 5: The finer grain BUF model would allocate queue and proc status into phases. This gives a model without guards and assignements as shown Figure 6.

Continuous system.

Basically, the QSS method consists in discretizing the space of state variables using a fixed value called the quantum size D. According to this quantum, a variable q can only take values among q ± kD where k is an integer. The solution q(t) of a system described by a differential equation is approximated on a grid in the phase space of the system. The resolution of the phase space grid is D. The time h required to move from one phase space grid point to another on q(t) is approximated and a state change will be informed only at this time.

As shown in [START_REF] Nutaro | Discrete event simulation of continuous systems[END_REF], h may be computed from classical ODE solvers, e.g. for Euler or Runge-Kutta. Consider an ordinary differential equation in the form of q = f (q(t))

We consider the simple Euler integration method

q(t + h) = q(t) + h q(t) (4)
Let the quantum D be defined by

D = |q(t + h) -q(t)| (5)
Then the time required for a change of size D to occur on q(t) is approximatively

h = D | q(t)| if q(t) = 0 ∞ otherwise
This approach can easily be extended to a set of coupled ordinary differential equations in the form of q = f (q(t)), where q is a vector of differential variables. For each ordinary differential equation i of such a system, two variables are necessary. A variable qi which is the position of state variable i on its phase space axis and a variable qli which contains the last grid point occupied by the variable qi. These two variables are necessary because the function fi is now computed at grid points in the discrete phase space of each element of the vector q. A variable qj may have reached a grid point in its discrete phase space while the variable qi has not reached its next grid point yet. Then the time required for the variable qli to be updated becomes

h = D-|q i -ql i | | qi (t)| if q(t) = 0 ∞ otherwise
where |qi -qli| is the distance already traveled along the phase space axis of state variable i.

A DEVS description of the quantized integrator is: δint(ql, q, q, σ) = (qn, qn, f (qn, x),

d |f (qn, x)|) (6)
δcon(ql, q, q, σ) = (qn, qn, f (qn, x), d |f (qn, x)|) [START_REF] Nutaro | Adevs (a discrete event system simulator)[END_REF] δext((ql, q, q, σ), e, x) = (ql, q + q * e, f (q, x), d -|q + q * e -ql| |f (q, x)|)

λ(ql, q, q, σ) = qn (9)

ta(ql, q, q, σ) = σ [START_REF] Quesnel | The Virtual Laboratory Environment -An operational framework for multi-modelling, simulation and analysis of complex dynamical systems[END_REF] with qn = ql + d * sgn(q) the next value of the integral and function sgn(v) returns - The atomic component figure 8 generates a triangular wave. The internal transition from phase s0 to phase s3 is used to initialise the component with the given parameters a for amplitude and f for frequency. vdx is the derivative and vx is the signal. From state s3 a new value of vx is sent on the output port s0 every σ = d/abs(vdx) where d is the quantum. If vdx is positive (negative), vx is increased (decreased) by d. When vx reaches a or -a, the derivative is inverted. The transitions which map s3 to s2 must have higher priority than the transitions which map s3 to s3.

1 if v < 0, 0 if v = 0 or 1 if v > 0.

EXAMPLE

This section describes an example that shows simulation results within ProDEVS. The application is the control of a DC motor with pulse width modulation. It is taken from the hybrid example folder in PowerDEVS software and detailed in [START_REF] Cellier | Continuous System Simulation[END_REF]. In this application the power signal of the motor is 3 Character e is a reserved character that may not be used as variable name of a component. It contains the elapsed time since the last transition The whole control and plant systems were built using blocks from ProDEVS library which are atomic components described with ProDEVS State Machines. The motor is represented by a second order model (see Figure 10). A torque step is applied after 3 seconds of simulation. The control system is composed of the following components (see Figure 9):

• The input voltage of the motor switches between +500V and -500V depending on the PWM control law.

• For the PWM law, a triangular waveform of 1KHz frequency and an amplitude of 1.1V is considered. The moment at which the triangular wave crosses the value given by u ref , determines the actual voltage applied to the motor.

• The control is using a proportional law, i.e. u ref is proportional to the error ω ref (t) -ω(t).

• The angular velocity reference signal, ω ref (t) is a ramp signal that increases from 0 to 60 rad/sec in 2 seconds.

The simulation results are shown in Figure 11. A simulation across 5 seconds of simulation time took about 27 seconds on a 1.80GHz running under Ubuntu. The same experiment with PowerDEVS took about 15 seconds. The real time of the simulation can be improved using QSS2 methods (205ms with PowerDEVS). We think we can improve the performance of the tool with a different storage management for variable values. At each step of the simulation The tool performs a type conversion in each step to make the calculations. This cast is expensive. Furthermore we believe we can optimize simulation engine processing such as searching ports connection through the hierarchy.

CONCLUSIONS

This paper has introduce a new event-driven modeling and simulation tool for the simulation of hybrid systems. The particularity of this software lies in its graphical language to define the behavior of the atomic components. This graphical language customizes state machines for DEVS and quantized based numerical methods. ProDEVS proposes an intuitive and user-friendly interface for designing DEVS model without experience in programming. It provides a block diagram interface for coupled components where users can go up and done the hierarchy with a just a double-clic. A library promotes the reuse of models where parameters can be tuned without entering the atomic component. This library can be extended by users thanks to the export feature by a simple drag and drop from the diagram panel to the library panel. ProDEVS provides a model verifier to quickly detect inconsistencies and incompleteness.

We are now developing a formal verification feature of a ProDEVS model. Our approach is based on a transformation to extended TPN (Timed Petri Nets) with data handling called (TTS) Time Transition Systems to generate a finite representation for the accessible states of a ProDEVS model.

Finally we are considering a VHDL coder for hardware implementation of parallel architectures on FPGA to boost the performance and provide rapid prototyping features.

Figure 1 :

 1 Figure 1: ProDEVS editor

Figure 2 :

 2 Figure 2: ProDEVS model structure

Figure 3 :

 3 Figure 3: ProDEVS StateMachine

Figure 5 :

 5 Figure 5: Atomic component BUF with three phases

2

 A dotted arrow represents an internal transition and a full arrow represents an external transition.

Figure 6 :

 6 Figure 6: Atomic component BUF with six phases for a buffer with capacity of 2 (taken from [14] page 465).

Figure 7 :

 7 Figure 7: Quantized integratorA ProDEVS State Machine for this quantized integrator is given Figure73 . It is a generic component that can be taken from the library to construct an hybrid system with only two parameter to define: the quantum d and the initial state value vdx.The atomic component figure8generates a triangular wave. The internal transition from phase s0 to phase s3 is used to initialise the component with the given parameters a for amplitude and f for frequency. vdx is the derivative and vx is the signal. From state s3 a new value of vx is sent on the output port s0 every σ = d/abs(vdx) where d is the quantum. If vdx is positive (negative), vx is increased (decreased) by d. When vx reaches a or -a, the derivative is inverted. The transitions which map s3 to s2 must have higher priority than the transitions which map s3 to s3.

Figure 8 :

 8 Figure 8: Triangular wave

Figure 10 :Figure 11 :

 1011 Figure 10: dc-drive model level 1 (dc-drive-coupled)

The term property or structural feature is used in UML. In this model the class Property simply represents a variable of the component.