Strong Normalizability as a Finiteness Structure via the Taylor Expansion of λ -terms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Strong Normalizability as a Finiteness Structure via the Taylor Expansion of λ -terms

Résumé

In the folklore of linear logic, a common intuition is that the structure of finiteness spaces, introduced by Ehrhard, semantically reflects the strong normalization property of cut-elimination. We make this intuition formal in the context of the non-deterministic λ-calculus by introducing a finiteness structure on resource terms, which is such that a λ-term is strongly normalizing iff the support of its Taylor expansion is finitary. An application of our result is the existence of a normal form for the Taylor expansion of any strongly normalizable non-deterministic λ-term.
Fichier principal
Vignette du fichier
main.pdf (419.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01292923 , version 1 (25-03-2016)

Identifiants

Citer

Michele Pagani, Christine Tasson, Lionel Vaux. Strong Normalizability as a Finiteness Structure via the Taylor Expansion of λ -terms. 19th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2016), Apr 2016, Eindhoven, Netherlands. pp 408-423. ⟨hal-01292923⟩
98 Consultations
62 Téléchargements

Altmetric

Partager

More