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ON REDUCIBILITY OF QUANTUM HARMONIC OSCILLATOR ON R d WITH QUASIPERIODIC IN TIME POTENTIAL

We prove that a linear d-dimensional Schrödinger equation on R d with harmonic potential |x| 2 and small t-quasiperiodic potential

reduces to an autonomous system for most values of the frequency vector ω ∈ R n . As a consequence any solution of such a linear PDE is almost periodic in time and remains bounded in all Sobolev norms.

Introduction.

We consider the following linear Schrödinger equation in R d (1.1) i u t (t, x) + (-∆ + |x| 2 )u(t, x) + εV (ωt, x)u(t, x) = 0, t ∈ R, x ∈ R d .

Here ǫ > 0 is a small parameter and the frequency vector ω of forced oscillations is regarded as a parameter in D an open bounded subset of R n . The function V is a real multiplicative potential, which is quasiperiodic in time : namely V is a continuous function of (ϕ, x) ∈ T n × R d and V is H s (see (1.3)) with s > d/2 with respect to the space variable x ∈ R d and real analytic with respect to the angle variable ϕ ∈ T d .

We consider the previous equation as a linear non-autonomous equation in the complex Hilbert space L 2 (R d ) and we prove (see Theorem 2.3 below) that it reduces to an autonomous system for most values of the frequency vector ω.

The general problem of reducibility for linear differential systems with time quasi periodic coefficients, ẋ = A(ωt)x, goes back to Bogolyubov [START_REF] Bogoliubov | The method of rapid convergence in nonlinear mechanics[END_REF] and Moser [START_REF] Moser | Convergent series expansions for quasiperiodic motions[END_REF]. Then there is a large literature around reducibility of finite dimensional systems by means of the KAM tools. In particular, the basic local result states the following : Consider the non autonomous linear system ẋ = A 0 x + εF (ωt)x where A 0 and F (•) take values in gl(k, R), T n ∋ ϕ → F (ϕ) admits an analytic extension to a strip in C n and the imaginary part of the eigenvalues of A satisfy certain non resonance conditions, then for ε small enough and for ω in a Cantor set asymptotically full measure, this linear system is reducible to a constant coefficients system. This result was then extended in many different directions (see in particular [START_REF] Jorba | On the reducibility of linear differential equations with quasiperiodic coefficients[END_REF] [START_REF] Eliasson | Almost reducibility of linear quasi-periodic systems[END_REF] and [START_REF] Krikorian | Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts[END_REF]).

Essentially our Theorem 2.3 is an infinite dimensional (i.e. k = +∞) version of this basic result.

Such kind of reducibility result for PDE using KAM machinery was first obtained by Bambusi & Graffi (see [START_REF] Bambusi | Graffi Time Quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF]) for Schrödinger equation on R with a x β potential, β being strictly larger than 2. Here we follow the more recent approach developed by Eliasson & Kuksin (see [START_REF] Eliasson | On reducibility of Schrödinger equations with quasiperiodic in time potentials[END_REF]) for the Schrödinger equation on the multidimensional torus. The one dimensional case (d = 1) was considered in [START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF] as a consequence of a nonlinear KAM theorem. In the present paper we extend [START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF] to the multidimensional linear Schrödinger equation (1.1) by adapting the linear algebra tools.

We need some notations. Let

T = -∆ + |x| 2 = -∆ + x 2 1 + x 2 2 + • • • + x 2 d
be the d-dimensional quantum harmonic oscillator. Its spectrum is the sum of d copies of the odd integers set, i.e. the spectrum of T equals

Ê := {d, d + 2, d + 4 • • • }.
For j ∈ Ê we denote the associated eigenspace E j whose dimension is card

{(i 1 , i 2 , • • • , i d ) ∈ (2N -1) d | i 1 + i 2 + • • • + i d = j} := d j ≤ j d-1 .
We denote {Φ j,l , l = 1, • • • , d j }, the basis of E j obtained by d-tensor product of Hermite functions:

Φ j,l = ϕ i 1 ⊗ ϕ i 2 ⊗ • • • ⊗ ϕ i d for some choice of i 1 + i 2 + • • • + i d = j.
Then setting

E := {(j, ℓ) ∈ Ê × N | ℓ = 1, • • • , d j } (Φ a ) a∈E is a basis of L 2 (R d
) and denoting w j,ℓ = j for (j, ℓ) ∈ E

we have T Φ a = w a Φ a , a ∈ E.

We define on E an equivalence relation:

a ∼ b ⇐⇒ w a = w b
and denote by [a] the equivalence class associated to a ∈ E. We notice that

(1.2) card [a] ≤ w d-1 a .
For s ≥ 0 an integer we define

H s = {f ∈ H s (R d , C)|x → x α ∂ β f ∈ L 2 (R d )
for any α, β ∈ N d satisfying 0 ≤ |α| + |β| ≤ s}. (1.3) We note that, for any s ≥ 0, H s is the form domain of T s and the domain of T s/2 (see for instance [START_REF] Helffer | Théorie spectrale pour des opérateurs globalement elliptiques[END_REF] Proposition 1. 6.6) and that this allows to extend the definition of H s to real values of s ≥ 0. Furthermore for s > d/2, H s is an algebra. To a function u ∈ H s we associate the sequence ξ of its Hermite coefficients by the formula u(x) = a∈E ξ a Φ a (x). Then defining 1 

u s = ξ s = ( a∈E w s a |ξ a | 2 ) 1/2 .
If s is a positive integer, we will use the fact that the norms on H s are equivalently defined as T s/2 ϕ L 2 (R d ) and 0≤|α|+|β|≤s x α ∂ β ϕ L 2 (R d ) .

We finally introduce a regularity assumption on the potential V :

1 Take care that our choose of the weight w 1/2 a instead of wa is non standard.It is motivated by the relation (1.4).

Definition 1.1. A potential

V : T n × R d ∋ (ϕ, x) → V (ϕ, x) ∈ R is s-admissible if T n ∋ ϕ → V (ϕ, •) is real analytic with value in H s with s ≥ 0 if d = 1 s > 2(d -2) if d ≥ 2 .
In particular if V is admissible then the map T n ∋ ϕ → V (ϕ, •) ∈ H s analytically extends to

T n σ = {(a + ib) ∈ C n /2πZ n | |b|
< σ} for some σ > 0. Now we can state our main Theorem: Definition 1.1). Then, there exists δ 0 > 0 (depending only on s and d) and ε * > 0 such that for all 0 ≤ ε < ε * there exists

Theorem 1.2. Assume that the potential V : T n × R d ∋ (ϕ, x) → R is s-admissible (see
D ε ⊂ [0, 2π) n satisfying meas(D \ D ε ) ≤ ε δ 0 ,
such that for all ω ∈ D ε , the linear Schrödinger equation

(1.5) i∂ t u + (-∆ + |x| 2 )u + εV (tω, x)u = 0
reduces to a linear equation with constant coefficients in the energy space H 1 . More precisely, for all 0 < δ ≤ δ 0 , there exists ε 0 such that for all 0 < ε < ε 0 there exists

D ε ⊂ [0, 2π) n satisfying meas(D \ D ε ) ≤ ε δ ,
and for ω ∈ D ε , there exist a linear isomorphism

Ψ(ϕ) = Ψ ω,ε (ϕ) ∈ L(H s ′ ), for 0 ≤ s ′ ≤ max(1, s), unitary on L 2 (R d
), which analytically depends on ϕ ∈ T σ/2 and a bounded Hermitian operator

W = W ω,ε ∈ L(H s ) such that t → u(t, •) ∈ H 1 satisfies (1.5) if and only if t → v(t, •) = Ψ(ωt)u(t, •)
satisfies the autonomous equation

i∂ t v + (-∆ + |x| 2 )v + εW (v) = 0 .
Furthermore, for all 0 ≤ s ′ ≤ max(1, s),

Ψ(ϕ) -Id L(H s ′ ,H s ′ +2β ) , Ψ(ϕ) -1 -Id L(H s ′ ,H s ′ +2β ) ≤ ε 1-δ/δ 0 ∀ϕ ∈ T n σ/2 .
On the other hand, the infinite matrix (W b a ) a,b∈E of the operator W written in the Hermite basis

(W b a = R d Φ a W (Φ b )dx) is block diagonal, i.e. W b a = 0 if w a = w b and, denoting by [V ](x) = T d V (ϕ, x)
dϕ the mean value of V on the torus T d , and by ([V ] b a ) a,b∈E the corresponding infinite matrix, we have

(1.6) (W b a ) a,b∈E -Π ([V ] b a ) a,b∈E L(H s ) ≤ ε 1/2 ,
where Π is the projection on the diagonal blocks.

As a consequence of our reducibility result, we prove the following corollary concerning the solutions of (1.1). (1, s) and let u 0 ∈ H s ′ . Then there exists ε 0 > 0 such that for all 0 < ε < ε 0 and ω ∈ D ε , there exists a unique solution u ∈ C R ; H s of (1.5) such that u(0) = u 0 . Moreover, u is almost-periodic in time and satisfies

Corollary 1.3. Assume that (ϕ, x) → V (ϕ, x) is s-admissible (see Defini- tion 1.1). Let 1 ≤ s ′ ≤ max
(1.7) (1 -εC) u 0 H s ′ ≤ u(t) H s ′ ≤ (1 + εC) u 0 H s ′ , ∀ t ∈ R, for some C = C(s ′ , s, d).
Another way to understand the result of Theorem 1.2 is in term of Floquet operator (see [START_REF] Eliasson | Almost reducibility of linear quasi-periodic systems[END_REF] or [START_REF] Wang | Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic Perturbations[END_REF]). Consider on

L 2 (T n ) ⊗ L 2 (R d ) the Floquet Hamiltonian operator (1.8) K := i n k=1 ω k ∂ ∂ϕ k -∆ + |x| 2 + εV (ϕ, x), then we have Corollary 1.4. Assume that (ϕ, x) → V (ϕ, x) is s-admissible (see Defini- tion 1.1
). There exists ε 0 > 0 such that for all 0 < ε < ε 0 and ω ∈ D ε , the spectrum of the Floquet operator K is pure point.

Let us explain our general strategy of proof of Theorem 1.2. In the phase space H s × H s endowed with the symplectic 2-form idu ∧ dū equation (1.1) reads as the Hamiltonian system associated to the Hamiltonian function

H(u, ū) = h(u, ū) + εq(ωt, u, ū) (1.9) where h(u, ū) := R d |∇u| 2 + |x| 2 |u| 2 dx, q(ωt, u, ū) := R d V (ωt, x)|u| 2 dx.
Decomposing u and ū on the basis (Φ j,l ) (j,l)∈E of real valued functions,

u = a∈E ξ a Φ a , ū = a∈E η a Φ a the phase space (u, ū) ∈ H s × H s becomes the phase space (ξ, η) ∈ Y s Y s = {ζ = (ζ a ∈ C 2 , a ∈ E) | ζ s < ∞} where ζ 2 s = a∈E |ζ a | 2 w s a .
We endow Y s with the symplectic structure idξ ∧ dη.

In this setting the Hamiltonians read

h = a∈E w a ξ a η a , q = ξ, Q(ωt)η
where Q is the infinite matrix whose entries are

(1.10) Q b a (ωt) = R d V (ωt, x)Φ a (x)Φ b (x)dx
defining a linear operator on ℓ 2 (E, C) and •, • is the natural pairing on ℓ 2 (E, C): ξ, η = a∈E ξ a η a (no complex conjugation). Therefore Theorem 1.2 is equivalent to the reducibility problem for the Hamiltonian system associated to quadratic non autonomous Hamiltonian

(1.11) a∈E w a ξ a η a + ε ξ, Q(ωt)η .
This reducibility is obtained by constructing a canonical change of variables close to identity such that in the new variables the Hamiltonian is autonomous and reads

a∈E w a ξ a η a + ε ξ, Q ∞ η where Q ∞ is block diagonal: (Q ∞ ) b a = 0 for w a = w b .
This last condition means that, in the new variables, there is no interaction between modes of different energies, and this leads to Corollary 1.3.

The proof of the reducibility theorem is based on the following analysis already used in [START_REF] Bambusi | Graffi Time Quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], [START_REF] Eliasson | On reducibility of Schrödinger equations with quasiperiodic in time potentials[END_REF], [START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF]: the non homogeneous Hamiltonian system

(1.12) ξa = -iλ a ξ a -iε t Q(ωt)ξ a ηa = iλ a η a + iε (Q(ωt)η) a a ∈ E
is equivalent to the homogeneous system (1.13)

   ξa = -iλ a ξ a -iε t Q(ϕ)ξ a ηa = iλ a η a + iε (Q(ϕ)η) a φ = ω. a ∈ E,
Consequently the canonical change of variables is constructed applying a KAM strategy to the Hamiltonian

H(y, ϕ, ξ, η) = ω • y + a∈E w a ξ a η a + ε ξ, Q(ϕ)η in the extended phase space P s = R n × T n × Y s .
Remark 1.5. We can also prove a similar reducibility result for the Klein Gordon equation on the sphere S d , or for the beam equation on T d , by adapting the matrix space M s,β defined in Section 2 (see [START_REF] Grébert | KAM for the Klein Gordon equation on S d[END_REF]). Nevertheless, since we need a regularizing effect of the perturbation (β > 0 in (2.2)), in order to apply our method we cannot use it for NLS on compact domains.

Remark 1.6. The resolution of the reducibility problem for a linear Hamiltonian PDE leads naturally to a KAM result for the corresponding nonlinear PDE. Actually the KAM procedure for nonlinear perturbations consists, roughly speaking, in linearizing the nonlinear equation around a solution of the linear PDE and to reduce this linearized equation to a PDE with constant coefficients. This approach is possible in the case of the Klein Gordon equation on the sphere S d (see [START_REF] Grébert | KAM for the Klein Gordon equation on S d[END_REF]) or in the one dimensional case (see [START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF]) with analytic regularity in the space direction x : the extension to the ddimensional quantum harmonic oscillator, following the realms of this paper and [START_REF] Grébert | KAM for the Klein Gordon equation on S d[END_REF], is the goal of a forthcoming paper.

Remark 1.7. As a difference with [START_REF] Eliasson | On reducibility of Schrödinger equations with quasiperiodic in time potentials[END_REF] and [START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF], we work here in spaces of finite regularity in the space variable x. This allows us to get a better control of the inverse of block diagonal matrices, especially when the dimensions of the blocks are unbounded. In return, working with finite regularity in x forbids any loss in this direction, at any step of the process (which is classically bypassed in the analytic case with a reduction of the analyticity strip).

Acknowledgement: The authors acknowledge the support from the projects ANR-13-BS01-0010-03 and ANR-15-CE40-0001-02 of the Agence Nationale de la Recherche, and Nicolas Depauw for fruitful discussions about interpolation.

2. Reducibility theorem.

In this section we state an abstract reducibility theorem for quadratic quasiperiodic in time Hamiltonians of the form a∈E λ a ξ a η a + ε ξ, Q(ωt)η .

2.1.

Setting. First we need to introduce some notations. Linear space. Let s ≥ 0, we consider the complex weighted ℓ2 -space

ℓ 2 s = {ξ = (ξ a ∈ C, a ∈ E) | ξ s < ∞} where ξ 2 s = a∈L |ξ a | 2 w s a .
Then we define

Y s = ℓ 2 s × ℓ 2 s = {ζ = (ζ a ∈ C 2 , a ∈ E) | ζ s < ∞} where 2 ζ 2 s = a∈L |ζ a | 2 w s a .
We provide the spaces Y s , s ≥ 0, with the symplectic structure idξ ∧ dη. We will also consider the extended phase space

P s = R n × T n × Y s ∋ (y, ϕ, (ξ, η))
For any C 1 -smooth functions, F, G, defined on a domain O ⊂ P s , we define the extended Poisson bracket (denoted by the same symbol)

(2.1) {F, G} = ∇ y F ∇ ϕ G -∇ y G∇ ϕ F + i a∈E ∂F ∂ξ a ∂G ∂η a - ∂G ∂ξ a ∂F ∂η a .
Infinite matrices. We denote by M s,β the set of infinite matrix A : L × L → C that satisfy [a] denotes the restriction of A to the block [a] × [b] and • denotes the operator norm. Further we denote M = M 0,0 . We will also need the space M + s,β the following subspace of M s,β : an infinite matrix

A ∈ M is in M + s,β if |A| s,β+ := sup a,b∈L (w a w b ) β 1 + |w a -w b | A [b] [a] min(w a , w b ) + |w a -w b | min(w a , w b ) s/2 < ∞
The following structural lemma is proved in Appendix: 

Lemma 2.1. Let 0 < β ≤ 1 and s ≥ 0 there exists a constant C ≡ C(β, s) > 0 such that (i) Let A ∈ M s,
(iii) Let A ∈ M s,β . Then for any t ≥ 1, A ∈ L(ℓ 2 t , ℓ 2 -t ) and Aξ -t ≤ C|A| s,β ξ t . (iv) Let A ∈ M + s,β . Then A ∈ L(ℓ 2 s ′ , ℓ 2 s ′ +2β ) for all 0 ≤ s ′ ≤ s and Aξ s ′ +2β ≤ C|A| s,β+ ξ s ′ . Moreover A ∈ L(ℓ 2 1 , ℓ 2 1 )
and

Aξ 1 ≤ C|A| s,β+ ξ 1 .
Notice that in particular, for all β > 0, matrices in M + 0,β define bounded operator on ℓ 2 1 but, even for s large, we cannot insure that M s,β ⊂ L(ℓ 2 ). Normal form:

Definition 2.2. A matrix Q : E × E → C is in normal form, and we denote Q ∈ N F, if (i) Q is Hermitian, i.e. Q a b = Q b a , (ii) Q is block diagonal, i.e. Q a b = 0 for all w a = w b .
Notice that a block diagonal matrix with bounded blocks in operator norm defines a bounded operator on ℓ 2 and thus we have

M s,β (D, σ) ∩ N F ⊂ L(ℓ 2 s ). To a matrix Q = (Q b a ) ∈ L(ℓ 2 t , ℓ 2 -t )
we associate in a unique way a quadratic form on Y s ∋ (ζ a ) a∈E = (ξ a , η a ) a∈E by the formula

q(ξ, η) = ξ, Qη = a,b∈E Q b a ξ a η b .
We notice for later use that

(2.3) {q 1 , q 2 }(ξ, η) = -i ξ, [Q 1 , Q 2 ]η where [Q 1 , Q 2 ] = Q 1 Q 2 -Q 2 Q 1 is the commutator of the two matrices Q 1 and Q 2 . If Q ∈ M s,β then (2.4) sup a,b∈E (∇ ξ ∇ η q) [b] [a] ≤ |Q| s,β (w a w b ) β min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 .
Parameter. In all the paper ω will play the role of a parameter belonging to D 0 = [0, 2π) n . All the constructed functions will depend on ω with C 1 regularity. When a function is only defined on a Cantor subset of D 0 the regularity has to be understood in the Whitney sense.

A class of quadratic Hamiltonians. Let s ≥ 0, β > 0, D ⊂ D 0 and σ > 0. We denote by M s,β (D, σ) the set of C 1 mappings

D × T σ ∋ (ω, ϕ) → Q(ω, ϕ) ∈ M s,β which is real analytic in ϕ ∈ T σ := {ϕ ∈ C n | |ℑϕ| < σ}. This space is equipped with the norm [Q] D,σ s,β = sup ω∈D, j=0,1 |ℑϕ|<σ |∂ j ω Q(ω, ϕ)| s,β .
In view of Lemma 2.1 (iii), to a matrix Q ∈ M s,β (D, σ) we can associate the quadratic form on

Y 1 q(ξ, η; ω, ϕ) = ξ, Q(ω, ϕ)η
and we have

(2.5) |q(ξ, η; ω, ϕ)| ≤ [Q] D,σ s,β (ξ, η) 2 1 for (ξ, η) ∈ Y 1 , ω ∈ D, ϕ ∈ T σ .
The subspace of M s,β (D, σ) formed by Hamiltonians S such that S(ω, ϕ) ∈ M + s,β is denoted by M + s,β (D, σ) and is equipped with the norm

[S] D,σ s,β+ = sup ω∈D, j=0,1 |ℑϕ|<σ |∂ j ω S(ω, ϕ)| s,β+ .
The space of Hamiltonians N ∈ M s,β (D, σ) that are independent of ϕ will be denoted by M s,β (D) and is equipped with the norm

[N ] D s,β = sup ω∈D, j=0,1 |∂ j ω N (ω)| s,β .
Hamiltonian flow. To any S ∈ M + s,β with s ≥ 0 and β > 0 we associate the symplectic linear change of variable on Y s : (ξ, η) → (e -i t S ξ, e iS η).

It is well defined and invertible in L(Y s ′ ) for all 0 ≤ s ′ ≤ max(1, s) as a consequence of Lemma 2.1 (iv). We note that it corresponds to the flow at time 1 generated by the quadratic Hamiltonian (ξ, η) → ξ, Sη . Notice that a necessary and sufficient condition for this flow to preserve the symmetry η = ξ (verified by any initial condition considered in this paper) is

t S = S , (2.6)
that is, S is a hermitian matrix. When S also depends smoothly on ϕ, T n ∋ ϕ → S(ϕ) ∈ M + s,β we associate to S the symplectic linear change of variable on the extended phase space

P s : (2.7) Φ S (y, ϕ, ξ, η) → (ỹ, ϕ, e -i t S ξ, e iS η)
where ỹ is the solution at time t = 1 of the equation ẏ = e -i t S ξ, ∇ ϕ Se iS η with ỹ(0) = y. We note that it corresponds to the flow at time 1 generated by the Hamiltonian (y, ϕ, ξ, η) → ξ, S(ϕ)η . Concretely we will never calculate ỹ explicitly since the non homogeneous Hamiltonian system (1.12) is equivalent to the system (1.13) where the variable conjugated to ϕ is not required.

2.2. Hypothesis on the spectrum. Now we formulate our hypothesis on λ a , a ∈ E:

Hypothesis A1 -Asymptotics. We assume that there exists an absolute constant c 0 > 0 such that

(2.8) λ a ≥ c 0 w a a ∈ E and (2.9) |λ a -λ b | ≥ c 0 |w a -w b | a, b ∈ E
Hypothesis A2 -second Melnikov condition in measure. There exist absolute constants α 1 > 0, α 2 > 0 and C > 0 such that the following holds: for each κ > 0 and K ≥ 1 there exists a closed subset

D ′ = D ′ (κ, K) ⊂ D
(where D is the initial set of vector frequencies) satisfying

(2.10) meas(D \ D ′ ) ≤ CK α 1 κ α 2
such that for all ω ∈ D ′ , all k ∈ Z n with 0 < |k| ≤ K and all a, b ∈ L we have

(2.11) |k • ω + λ a -λ b | ≥ κ(1 + |w a -w b |).

The reducibility Theorem. Let us consider the non autonomous Hamiltonian

(2.12)

H ω (t, ξ, η) = a∈E λ a ξ a η a + ε ξ, Q(ωt)η
and the associated Hamiltonian system on Y s

(2.13) ξ = -iN 0 ξ -iε t Q(ωt)ξ η = iN 0 η + iεQ(ωt)η
where

N 0 = diag(λ a | a ∈ E).
Theorem 2.3. Fix s ≥ 0, σ > 0, β > 0. Assume that (λ a ) a∈E satisfies Hypothesis A1, A2, and that

Q ∈ M s,β (D, σ). Fix 0 < δ ≤ δ 0 := β 2 α 2 16(2+d+2βα 2 )(d+2β) . Then there exists ε * > 0 and if 0 < ε < ε * , there exist (i) a Cantor set D ε ⊂ D with Meas(D \ D ε ) ≤ ε δ ; (ii) a C 1 family (in ω ∈ D ε ) of real analytic (in ϕ ∈ T σ/2
) linear, unitary and symplectic coordinate transformation on Y 0 :

Y 0 → Y 0 (ξ, η) → Ψ ω (ϕ)(ξ, η) = M ω (ϕ)ξ, M ω (ϕ)η , ω ∈ D ε , ϕ ∈ T σ/2 ;
(iii) a C 1 family of quadratic autonomous Hamiltonians in normal form

H ω = ξ, N (ω)η , ω ∈ D ε ,
where N (ω) ∈ N F, in particular block diagonal (i.e. N b a = 0 for w a = w b ), and is close to

N 0 = diag(λ a | a ∈ E): N (ω) -N 0 ∈ M s,β and (2.14) N (ω) -N 0 s,β ≤ 2ε ω ∈ D ε ; such that H ω (t, Ψ ω (ωt)(ξ, η)) = H ω (ξ, η), t ∈ R, (ξ, η) ∈ Y 1 , ω ∈ D ε .
Furthermore Ψ ω (ϕ) and Ψ ω (ϕ) -1 are bounded operators from Y s ′ into itself for all 0 ≤ s ′ ≤ max(1, s) and they are close to identity:

(2.15) M ω (ϕ) -Id L(ℓ 2 s ′ ,ℓ 2 s ′ +2β ) , M ω (ϕ) -1 -Id L(ℓ 2 s ′ ,ℓ 2 s ′ +2β ) ≤ ε 1-δ/δ 0 . Remark 2.4. Although Ψ ω (ϕ)
is defined on Y 0 , the normal form N (in particular N 0 ) defines a quadratic form on Y s only when s ≥ 1. Nevertheless its flow is well defined and continuous from Y 0 into itself (cf. (3.6)). Fortunately our change of variable Ψ ω (ϕ) is always well defined on Y 1 even when Q ∈ M 0,β (D, σ) (i.e. when s = 0). This is essentially a consequence of the second part of Lemma 2.1 assertion (iv). We also remark that

Ψ ω (ϕ) -Id ∈ L(ℓ 2 s , ℓ 2 s+2β ), hence it is a regularizing operator. Remark 2.5. Notice that Ψ ω (ϕ) -Id ∈ L(Y s , Y s+2β ), i.e. it is a regularizing operator.
Theorem 2.3 is proved in Section 4.

Applications to the quantum harmonic oscillator on R d

In this section we prove Theorem 1.2 as a corollary of Theorem 2.3. We use notations introduced in the introduction. 

G τ (κ) := {ω ∈ [0, 2π) n | | ω, k + j| ≥ κ |k| τ , for all j ∈ Z and k ∈ Z n \ {0}} satisfies meas [0, 2π) n \ G τ (κ) ≤ C(τ )κ.
Since w aw b ∈ Z, Hypothesis A2 it satisfies choosing

D = [0, 1] n , D ′ = G n+1 (κN n+1 ), α 1 = n + 1 and α 2 = 1. Lemma 3.2. Let d ≥ 1. Suppose that s ≥ 0 if d = 1 s > 2(d -2) if d ≥ 2
and V ∈ H s . Then there exists β(d, s) > 0 such that the matrix Q defined by

Q b a = R d V (x)Φ a (x)Φ b (x)dx belongs to M s,β(d,s) . Moreover, there exists C(d, s) > 0 such that |Q| s,β ≤ C(d, s) V s .
As a consequence if V is admissible (see Definition 1.1) then, defining

Q b a (ϕ) = R d V (ϕ, x)Φ a (x)Φ b (x)dx, the mapping ϕ → Q(ϕ) belongs to M s,β (D 0 , σ) for some σ > 0.
Proof. First we notice that

Q [b] [a] = sup u , v =1 | Q [b] [a] u, v | = sup Ψa∈E [a] , Ψa =1 Ψ b ∈E [b] , Ψ b =1 R d V (x)Ψ a Ψ b dx ,
where

E [a] (resp. E [b]
) is the eigenspace of T associated to the cluster [a] (resp. [b]). Then we follow arguments developed in [2, Proposition 2] and already used in the context of the harmonic oscillator in [START_REF] Grébert | Normal forms for semilinear quantum harmonic oscillators[END_REF]. The basic idea lies in the following commutator lemma: Let A be a linear operator which maps H s into itself and define the sequence of operators

A N := [T, A N -1 ], A 0 := A
then by [2, Lemma 7], we have for any a, b ∈ L with w a = w b , for any

Ψ a ∈ E [a] , Ψ b ∈ E [b] and any N ≥ 0 | AΨ a , Ψ b | ≤ 1 |w a -w b | N | A N Ψ a , Ψ b | = 1 |w a -w b | N Ψ b L ∞ A N Ψ a L 1 .
Let A be the operator given by the multiplication by the function V (x). Then, by an induction argument,

A N = 0≤|α|≤N C α,N D α with C α,N = 0≤|β|≤2N -|α| P α,β,N (x)D β V
and P α,β,N are polynomials of degree less than 2N -|α| -|β|.

We first address the case d = 1, that we treat in the same way as in [START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF]. In this case, we have in [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF] the following estimate on L ∞ norm of Hermite eigenfunctions with

Ψ b L 2 = 1, Ψ b L ∞ ≤ w -1/12 b .
On the other hand, for N ≥ 0, we have

A N Ψ a L 1 ≤ 0≤|α|≤N 0≤|β|≤2N -|α| P α,β,N (x)D β V D α Ψ a L 1 ≤ C 0≤|α|≤N 0≤|β|≤2N -|α| |γ|≤2N -|α|-|β| x γ D β V D α Ψ a L 1 ≤ C 0≤|α|≤N 0≤|β|≤2N -|α| |γ|≤2N -|β| x γ D β V L 2 |γ ′ |≤α x -γ ′ D α Ψ a L 2 ≤ C V 2N Ψ a N , where x α = Π d i=1 (1 + |x i | 2 ) α i /2 for α ∈ N d . Moreover, since T Ψ a = w a Ψ a and Ψ a L 2 = 1, (3.1) Ψ a N ≤ Cw N/2 a . Therefore choosing N = s/2, we obtain | R d Ψ a Ψ b V dx| ≤ C w 1/12 b √ w a |w a -w b | s/2 V s ≤ 2 s/2 w 1/12 b C √ w a √ w a + |w a -w b | s/2 V s (3.2)
where we used that if 

√ w a ≤ |w a -w b | then √ wa |wa-w b | ≤ 2 √ wa √ wa+|wa-w b | while if √ w a ≥ |w a -w b | then √ wa √ wa+|wa-w b | ≥ 1 2 and since | R d Ψ a Ψ b V dx| ≤ V L ∞ , (3.2) is still true providing that C is large enough. Exchanging a and b gives | R d Ψ a Ψ b V dx| ≤ 2 s/2 C max(w a , w b ) 1/12 min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 V s ≤ 2 s/2 C (w a w b ) 1/24 min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 V s , (3.3) hence Q ∈ M s,
V → R d Ψ a Ψ b V dx acting on H s for s = θs 0 , θ ∈ [0, 1], using the direct estimate | R d Ψ a Ψ b V dx| ≤ C ′ (w a w b ) 1/24 V L 2
and (3.3), and we get

| R d Ψ a Ψ b V dx| ≤ C ′ (w a w b ) 1/24 min(w a , w b ) min(w a , w b ) + |w a -w b | θs 0 /2 V θs 0 .
We now treat the case d ≥ 2. Take p > 2 if d = 2 and 2 < p < 2d d-2 if d ≥ 3. Using the Hölder inequality, we get, for 1 p

+ 1 q = 1, | AΨ a , Ψ b | ≤ 1 |w a -w b | N Ψ b L p A N Ψ a L q .
In [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF], the L p estimate on Hermite eigenfunctions (with Ψ b L 2 = 1) gives

Ψ b L p ≤ w -β(p) b , with β(p) = 1 3p if d = 2 (and p ≥ 10/3) and β(p) = 1 2 d 3p -d-2 6 > 0 if d > 2 and 2(d+3) d+1 ≤ p < 2d d-2
. Moreover, we may estimate A N Ψ a L q , using Young inequality (with 1 2

+ 1 r = 1 q ) A N Ψ a L q ≤ 0≤|α|≤N 0≤|β|≤2N -|α| P α,β,N (x)D β V D α Ψ a L q ≤ C 0≤|α|≤N/2 0≤|β|≤2N -|α| |γ|≤2N -β x γ D β V L 2 |γ ′ |≤α x -γ ′ Ψ a L r + N/2<|α|≤N 0≤|β|≤2N -|α| |γ|≤2N -|α|-|β| x γ D β V L r D α Ψ a L 2 ≤ C V 2N Ψ a N/2+ν + V 3N/2+ν Ψ a N , using the embedding H ν (R d ) ֒→ H ν (R d ) composed with the Sobolev em- bedding H ν (R d ) ֒→ L r (R d ), valid for ν ≥ d 1 2 -1 r = d p > d-2 2 . Hence, for s = 2N and ν ≤ N 2 = s 4 , i.e. s > 2(d -2), we have | R d Ψ a Ψ b V dx| ≤ C N w β(p) b 1 |w a -w b | s/2 Ψ a s/2 V s ≤ C N w β(p) b w s/4 a |w a -w b | s/2 V s ,
and thus gives the result for an even integer s satisfying s > 2(d -2). In order to get the estimate for any real number s > 2(d -2), we interpolate : we take any even integer s 0 larger than s, and define s 1 = 0 and p = +∞ in the case d = 2, and

| R d Ψ a Ψ b V dx| ≤ C ′ N (w a w b ) β(p)/2 min(w a , w b ) 1/2 min(w a , w b ) 1/2 + |w a -w b | s/2 V s , (3.
s 1 = 2(d -2), p = 2d d-2 if d > 2.
There exists θ ∈]0, 1] such that s = θs 0 + (1θ)s 1 . Moreover, following the last computations, we easily find ) is a Hamiltonian system on H s × H s (s ≥ 1) governed by the Hamiltonian function (1.9). Expanding it on the orthonormal basis (Φ a ) a∈E , it is equivalent to the Hamiltonian system on Y s governed by (1.11) which reads as (2.13) with λ a = w a and Q given by (1.10). By Lemmas 3.1, 3.2, if V is s-admissible, we can apply Theorem 2.3 to (1.11) and this leads to Theorem 1.2. More precisely, in the new coordinates given by Theorem 1.2, (ξ ′ (t), η ′ (t)) = (M ω (ωt)ξ, M ω (ωt)η), the system (1.12) becomes autonomous and decomposes in blocks as follows (remark that since N is in normal form we have t N = N ):

| R d Ψ a Ψ b V dx| ≤ C min(w a , w b ) 1/2 min(w a , w b ) 1/2 + |w a -w b | s 1 /2 V s 1 . ( 3 
(3.6) ξ′ [a] = -iN [a] ξ ′ [a] a ∈ Ê η′ [a] = iN [a] η ′ [a]
a ∈ Ê.

In particular, the solution u(t, x) of (1.5) corresponding to the initial datum u 0 (x) = a∈E ξ(0) a Φ a (x) ∈ H 1 reads u(t, x) = a∈E ξ(t) a Φ a (x) with

(3.7) ξ(t) = t M ω (ωt)e -iN t M ω (0)ξ(0) .
In other words, let us define the transformation Ψ(ϕ) ∈ L(H s ) by

Ψ(ϕ) a∈E ξ a Φ a (x) = a∈E M ω (ϕ)ξ a Φ a (x) .
Then u(t, x) satisfies (1.5) if and only if v(t, •) = Ψ(ωt)u(t, •) satisfies

i∂ t v + (-∆ + |x| 2 )v + εW (v) = 0 ,
where W is defined as follows :

W a∈E ξ a Φ a = a∈E (N ω ξ) a Φ a .
Furthermore, remembering the construction of N ω (see (4.36) and (4.25)) we get that

N ω -(N 0 + Ñ1 ) ≤ 2ε 1 = 2ε 3/2
which leads to (1.6). This achieves the proof of Theorem 1.2.

To prove Corollary 1.3 let us explicit the formula (3.7). The exponential map e -iN t decomposes on the finite dimensional blocks:

(e -iN t ) [a] = e -iN [a] t
and N [a] diagonalizes in orthonormal basis:

P [a] N [a] t P [a] = diag(µ c ), P [a] t P [a] = I da
where µ c are real numbers that, in view of (2.14), satisfy

|µ a -λ a | ≤ C ε w 2β a , a ∈ E. Thus u(t, x) = a∈E ξ a (t)Φ a (x)
where

(3.8) ξ(t) = t M ω (ωt)P D(t) t P M ω (0)ξ(0)
with D(t) = diag(e iµct , c ∈ E) and P is the ℓ 2 unitary block diagonal map whose diagonal blocks are P [a] . In particular the solutions are all almost periodic in time with frequencies vector (ω, µ). Furthermore, since P ξ s = ξ s and M ω (ϕ) is close to identity (see estimate ( with N in normal form (see Definition 2.2). Notice that at the beginning of the procedure N is diagonal,

N = N 0 = diag(w a , a ∈ E)
and is independent of ω. Let q be a quadratic Hamiltonian of the form

q(ξ, η) = ξ, Q(ϕ)η
and of size O(ε).

We search for a quadratic hamiltonian χ(ϕ, ξ, η) = ξ, S(ϕ)η with S = O(ε) such that its time-one flow Φ S ≡ Φ t=1 S transforms the Hamiltonian h + q into (h + q(ϕ))

• Φ S = h + + q + (ϕ),
where h + is a new normal form, ε-close to h, and the new perturbation q + is of size O(ε 2 ). As a consequence of the Hamiltonian structure we have (at least formally) that (h + q(ϕ))

• Φ S = h + {h, χ} + q(ϕ) + O(ε 2 ).
So to achieve the goal above we should solve the homological equation:

(4.2) {h, χ} = h + -h -q(ϕ) + O(ε 2 ).
or equivalently (see (2.1) and (2.3))

(4.3) ω • ∇ ϕ S -i[N, S] = N + -N -Q + O(ε 2 ).
Repeating iteratively the same procedure with h + instead of h, we will construct a change of variable Φ such that

(h + q(ϕ)) • Φ = h ∞ , with h ∞ = ω • y + ξ, N ∞ (ω)η in normal form.
Note that we will be forced to solve the homological equation, not only for the diagonal normal form N 0 , but for more general normal form Hamiltonians (4.1) with N close to N 0 .

Homological equation.

In this section we will consider a homological equation of the form

(4.4) ω • ∇ ϕ S -i[N, S] + Q = remainder
with N in normal form close to N 0 and Q ∈ M s,β . We will construct a solution S ∈ M + s,β .

Proposition 4.1. Let D ⊂ D 0 . Let D ∋ ρ → N (ω) ∈ N F be a C 1 mapping that verifies (4.5) ∂ j ω (N (ω) -N 0 ) [a] ≤ c 0 4w 2β a for j = 0, 1, a ∈ E and ω ∈ D. Let Q ∈ M s,β , 0 < κ ≤ c 0 /2 and K ≥ 1.
Then there exists a subset

D ′ = D ′ (κ, K) ⊂ D, satisfying (4.6) meas(D \ D ′ ) ≤ CK γ 1 κ γ 2 ,
and there exist C 1 -functions Ñ :

D ′ → M s,β ∩ N F, S : T n σ × D ′ → M + s,β
hermitian and R :

T n σ × D ′ → M s,β , analytic in ϕ, such that (4.7) ω • ∇ ϕ S -i[N, S] = Ñ -Q + R
and for all (ϕ, ω) ∈ T n σ ′ × D ′ , σ ′ < σ, and j = 0, 1

∂ j ω R(ϕ, ω) s,β ≤ C K 1+ d 2 e -1 2 (σ-σ ′ )K κ 1+ d 2β (σ -σ ′ ) n sup |ℑϕ|<σ j=0,1 |∂ j ω Q(ϕ)| s,β , (4.8) ∂ j ω S(ϕ, ω) s,β+ ≤ C K d+1 κ d β +2 (σ -σ ′ ) n sup |ℑϕ|<σ j=0,1 |∂ j ω Q(ϕ)| s,β , (4.9) ∂ j ω Ñ (ω) s,β ≤ sup |ℑϕ|<σ j=0,1 |∂ j ω Q(ϕ)| s,β . (4.10)
The constant C depends on n, d, s, β and |ω|,

γ 2 = βα 2 4+d+2βα 2 and γ 1 = max(α 1 , 2 + d + n).
Proof. Written in Fourier variables (w.r.t. ϕ), (4.7) reads (4.11) iω

• k Ŝ(k) -i[N, Ŝ(k)] = δ k,0 Ñ -Q(k) + R(k)
where δ k,j denotes the Kronecker symbol. We decompose the equation into "components" on each product block 

[a] × [b]: (4.12) L Ŝ[b] [a] (k) = -iδ k,0 Ñ [b] [a] + i Q[b] [a] (k)-i R[b] [a] (
L M = k • ω I -N [a] (ω) M + M N [b] (ω) with N [a] = N [a] [a] .
First we solve this equation when k = 0 and w a = w b by defining

Ŝ[a] [a] (0) = 0, R[a] [a] (0) = 0 and Ñ [a] [a] = Q[a]
[a] (0).

Then we set Ñ [b]

[a] = 0 for w a = w b in such a way Ñ ∈ M s,β ∩ N F and satisfies

| Ñ | s,β ≤ | F (0)| s,β .
The estimates of the derivatives with respect to ω are obtained by differentiating the expressions for Ñ .

It remains to consider the case when k = 0 or w a = w b . The matrix N [a] can be diagonalized in an orthonormal basis:

t P [a] N [a] P [a] = D [a] .
Then we denote Ŝ′ [b] [a]

= t P [a] Ŝ[b] [a] P [b] , Q′ [b] [a] = t P [a] Q[b] [a] P [b] and R′ [b] [a] = t P [a] R[b]
[a] P [b] and we notice for later use that M ′ [b] [a] = M

[b]

[a] for M = S, Q, R.

In this new variables the homological equation (4.12) reads

(4.13) (k • ω -D [a] ) Ŝ′ [b] [a] (k) + S ′ [b] [a] (k)D [b] = i Q′ [b] [a] (k)-i R′ [b]
[a] (k). This equation can be solved term by term: let a, b ∈ E, we set R′ [b] [a] (k) = 0 for |k| ≤ K,

R′ jℓ (k) = Q′ jℓ (k), j ∈ [a], ℓ ∈ [b], |k| > K, (4.14)
and Ŝ′ [b] [a] (k) = 0 for |k| > K or for k = 0 and w a = w b , Ŝ′ [b] [a] (k

) jℓ = i k • ω -α j + β ℓ Q′ [b]
[a] (k) jℓ in the other cases. (ω), respectively. Before the estimations of such matrices, first remark that with this resolution, we ensure that

Q′ [b] [a] (k) jℓ = Q′ [a] [b] (-k) ℓj ⇒ Ŝ′ [b] [a] (k) jℓ = Ŝ′ [a] [b] (-k) ℓj hence, if Q ′ verifies condition (2.6
), then this is also the case for S ′ , hence the flow induced by S preserves the symmetry η = ξ.

First notice that (4.14) classically leads to (see for instance [START_REF] Kuksin | Nearly integrable infinite-dimensional Hamiltonian systems[END_REF])

|R(ϕ)| s,β = |R ′ (ϕ)| s,β ≤ C e -1 2 (σ-σ ′ )K (σ -σ ′ ) n sup |ℑθ|<σ |Q(θ)| s,β , for |ℑϕ| < σ ′ .
In order to estimate S, we will use Lemma 4.3 stated at the end of this section and proved in the appendix. We face the small divisors

(4.16) k • ω -α j (ω) + β ℓ (ω), j ∈ [a], ℓ ∈ [b].
To estimate them, we have to distinguish two cases, depending on whether k = 0 or not.

The case k = 0. In that case, we know that w a = w b and we use (4.5) 3 and (2.9) to get

|α j (ρ) -β ℓ (ρ)| ≥ c 0 |w a -w b | - c 0 4w 2β a - c 0 4w 2β b ≥ κ(1 + |w a -w b |).
This last estimate allows us to use Lemma 4.3 to conclude that (4.17)

| Ŝ(0)| β+ ≤ C 1 κ 1+ d 2β | F (0)| β .
3 We use that the modulus of the eigenvalues are controlled by the operator norm of the matrix.

The case k = 0. Using Hypothesis A2, for any η > 0, there is a set

D 1 = D(2η, K), meas(D \ D 1 ) ≤ CK α 1 η α 2 ,
such that for all ω ∈ D 1 and 0

< |k| ≤ K |k • ω -λ a (ω) + λ b (ω)| ≥ 2η(1 + |w a -w b |).
By (4.5) this implies

|k • ω -α j (ω) + β ℓ (ω)| ≥ 2η(1 + |w a -w b |) - c 0 4w 2β a - c 0 4w 2β b ≥ η(1 + |w a -w b |) if w b ≥ w a ≥ c 0 2η 1 2β
.

Let now w a ≤ ( c 0 2η )

1 2β . We note that |k • ω -λ a (ω) + λ b (ω)| ≤ 1 implies that w b ≤ 1 + ( c 0 2η ) 1 2β + C|k| ≤ C(( c 0 2η ) 1 2β + K). Since |∂ ω (k • ω)( k |k| ))| = |k| ≥ 1, we get, using condition (4.5), (4.18) |∂ ω (k • ω -α j (ω) + β ℓ (ω))( k |k| ))| ≥ 1/2 .
Then we recall the following classical lemma:

Lemma 4.2. Let f : [0, 1] → R a C 1 -map satisfying |f ′ (x)| ≥ δ for all x ∈ [0, 1] and let κ > 0 then meas{x ∈ [0, 1] | |f (x)| ≤ κ} ≤ κ δ .
Using (4.18) and the Lemma 4.2, we conclude that

(4.19) |k • ω -α j (ω) + β ℓ (ω)| ≥ κ(1 + |w a -w b |) ∀j ∈ [a], ∀ℓ ∈ [b] holds outside a set F [a],[b],k of measure ≤ Cw d a w d b (1 + |w a -w b |)κ. If F is the union of F [a],[b],k for |k| ≤ K, [a], [b] ∈ L such that w a ≤ ( c 0 2η ) 1 2β
and

w b ≤ C(( c 0 2η ) 1 2β + K) respectively, we have meas(F ) ≤ C( c 0 2η ) 1 2β ( c 0 2η ) 1 2β + K d+1 K n ( c 0 2η ) 1 2β + K d+1 ( c 0 2η ) d 2β κ ≤ CK n+d+2 η -4+d 2β κ .
Now we choose η such that

η α 2 = η -4+d 2β κ i.e. η = κ 2β 4+d+2βα 2 .
Then, as β ≤ 1, η ≥ κ and we have

meas(F ) ≤ CK n+d+2 κ 2βα 2 4+d+2βα 2 . Let D 2 = D 1 ∪ F , we have meas(D \ D 2 ) ≤ CK α 1 η α 2 + CK n+d+2 κ δ 0 2βα 2 4+d+2βα 2 ≤ CK γ 1 κ γ 2 with γ 1 = max(α 1 , 2 + d + n), γ 2 = 2βα 2 4+d+2βα 2 . Further, by construction, for all ρ ∈ D 3 , 0 < |k| ≤ K, a, b ∈ L and j ∈ [a], ℓ ∈ [b] we have | k, ω(ρ) -α j (ρ) + β ℓ (ρ)| ≥ κ(1 + |w a -w b |).
Hence using Lemma 4.3 and in view of (4.15), we get that Ŝ′ (k) ∈ M + s,β and

| Ŝ′ (k)| s,β+ ≤ C | Q(k)| s,β K d 2 κ 1+ d 2δ , 0 < |k| ≤ K .
Combining this last estimate with (4.17) we obtain a solution S satisfying for any

|ℑϕ| < σ ′ |S(ϕ)| s,β+ ≤C K d 2 (σ -σ ′ ) n κ 1+ d 2δ sup |ℑϕ|<σ |Q(ϕ)| s,β
The estimates for the derivatives with respect to ρ are obtained by differentiating (4.12) which leads to

L(∂ ω Ŝ[b] [a] (k, ω)) = -(∂ ω L) Ŝ[b] [a] (k, ω) + i∂ ω Q[b] [a] (k, ω) -i∂ ω R[b] [a] (k, ω)
which is an equation of the same type as (4.12) for

∂ ω Ŝ[b] [a] (k, ω) and ∂ ω R[b] [a] (k, ω) where i Q[b] [a] (k, ω) is replaced by B [b] [a] (k, ω) = -(∂ ω L) Ŝ[b] [a] (k, ω)+i∂ ω Q[b]
[a] (k, ω). This equation is solved by defining

∂ ω Ŝ[b] [a] (k, ω) =χ |k|≤K (k)L(k, [a], [b], ω) -1 B [b] [a] (k, ω), ∂ ω R[b] [a] (k, ω) = -iχ |k|>K (k)B [b] [a] (k, ω) = χ |k|>K (k)∂ ρ Q[b] [a] (k, ω) Since |(∂ ω L) Ŝ(k, ω)| s,β ≤ C(K + 2( ∂ ω A 0 + δ 0 ))| Ŝ(k, ω)| s,β ≤ CK| Ŝ(k, ω)| s,β we obtain |B(k, ω)| s,β ≤ CKκ -d 2β -1 K d/2 | | Q(k)| s,β + |∂ ω Q(k)| s,β
and thus following the same strategy as in the resolution of (4.12) we get

for |ℑϕ| < σ ′ |∂ ω S(ϕ)| s,β+ K d+1 κ d β +2 (σ -σ ′ ) n sup |ℑϕ|<σ |Q(ϕ)| s,β + sup |ℑϕ|<σ |∂ ω Q(ϕ)| s,β , |∂ ω R(ϕ)| s,β K 1+ d 2 e -1 2 (σ-σ ′ )K κ 1+ d 2β (σ -σ ′ ) n sup |ℑϕ|<σ |Q(ϕ)| s,β + sup |ℑϕ|<σ |∂ ω Q(ϕ)| s,β .
We end this section with the key Lemma which is an adaptation of Proposition 2.2.4 in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF] (a similar Lemma is also proved in [START_REF] Grébert | KAM for the Klein Gordon equation on S d[END_REF]):

Lemma 4.3. Let A ∈ M and let B(k) defined for k ∈ Z n by (4.20) B(k) l j = 1 k • ω -µ j + µ l A l j , j ∈ [a], ℓ ∈ [b]
where ω ∈ R n and (µ a ) a∈L is a sequence of real numbers satisfying

(4.21) |µ a -w a | ≤ min C µ w δ a , 1 4 
, for all a ∈ L for a given C µ > 0 and δ > 0, and such that for all a, b ∈ L and all |k| ≤ K

(4.22) |k • ω -µ a + µ b | ≥ κ(1 + |w a -w b |).
Then B ∈ M and there exists a constant C > 0 depending only on C µ , |ω| and δ such that

B(k) [b] [a] ≤ C N d 2 κ 1+ d 2δ (1 + |w a -w b |) A [b] [a]
for all a, b ∈ L, |k| ≤ K.

The proof is based on the fact that the lemma is trivially true when µ a = w a is constant on each block. It is given in Appendix B. 4.3. The KAM step. Theorem 2.3 is proved by an iterative KAM procedure. We begin with the initial Hamiltonian H ω = h 0 + q 0 where (4.23) h 0 (y, ϕ, ξ, η) = ω • y + ξ, N 0 η , N 0 = diag(w a , a ∈ E), ω ∈ D 0 and the quadratic perturbation q 0 (ϕ, ξ, η) = ξ, Q 0 (ω, ϕ)η with Q 0 = εQ ∈ M s,β (σ 0 , D 0 ) where σ 0 = σ. Then we construct iteratively the change of variables Φ Sm , the normal form h m = ω • y + ξ, N m η and the perturbation q m (ϕ, ξ, η; ω) = ξ, Q m (ω, ϕ)η with Q m ∈ M s,β (σ m , D m ) as follows: assume that the construction is done up to step m ≥ 0 then (i) using Proposition 4.1 we construct S m+1 (ω, ϕ) solution of the homological equation for ω ∈ D m+1 and ϕ ∈ T n σ m+1 

(4.24) ω • ∇ ϕ S m+1 -i[N m , S m+1 ] + Q m = Ñm + R m with Ñm (ω), R m (ω, ϕ) defined for ω ∈ D m+1 and ϕ ∈ T σ m+1 by Ñm (ω) = ((δ [j]=[ℓ] Qm (0)) jℓ ) j,ℓ∈E (4.25) R m (ω, ϕ) = |k|>Km Qm (ω, k)e ik•ϕ ; (4.
Q m+1 = R m + 1 0 e itS m+1 [(1-t)(N m+1 -N m +R m+1 )+tQ m , S m+1 ]e -it Sm+1 dt .
By construction, if Q m and N m are hermitian, so are R m , S m+1 , by the resolution of the homological equation, and also N m+1 and Q m+1 . Then we define h m+1 (y, ϕ, ξ, η; ω) = ω • y + ξ, N m+1 (ω)η , s m+1 (y, ϕ, ξ, η; ω) = ξ, S m+1 (ω, ϕ)η , q m+1 (y, ϕ, ξ, η; ω) = ξ, Q m+1 (ω, ϕ)η .

(4.29)

Recall that Φ t S denotes the time t flow associated to S (see (2.7)) and Φ S = Φ 1 S . For any regular Hamiltonian f we have, using the Taylor expansion of g(t) = f • Φ t S m+1 between t = 0 and t = 1

f • Φ S m+1 = f + {f, s m+1 } + 1 0 (1 -t){{f, s m+1 }, s m+1 } • Φ t S m+1 dt .
Therefore we get for ω ∈ D m+1

(h m + q m ) • Φ S m+1 = h m + {h m , s m+1 } + 1 0 (1 -t){{h m , s m+1 }, S m+1 } • Φ t S m+1 dt + q m + 1 0 {q m , s m+1 } • Φ t S m+1 dt = h m + ξ, ( Ñm + R m )η + 1 0 {(1 -t) ξ, ( Ñm + R m )η + tq m , s m+1 } • Φ t S m+1 dt = h m+1 + q m+1
where for the last equality we used (2.3) and (2.7).

4.4. Iterative lemma. Following the general scheme (4.24)-(4.29) we have

(h 0 + q 0 ) • Φ 1 S 1 • • • • • Φ 1 Sm = h m + q m where q m ∈ T s,β (D m , σ m ) , h m = ω • y + ξ, N m η is in normal form.
At step m the Fourier series are truncated at order K m and the small divisors are controlled by κ m . Now we specify the choice of all the parameters for m ≥ 0 in term of ε m which will control with [q m ] Dm,σm s,β . First we define ε 0 = ε, σ 0 = σ and for m ≥ 1 we choose

σ m-1 -σ m =C * σ 0 m -2 , K m =2(σ m-1 -σ m ) -1 ln ε -1 m , κ m =ε δ m-1
where (C * ) -1 = 2 j≥1 1 j 2 and δ > 0. 

(h m-1 + q m-1 ) • Φ m = h m + q m .
(ii) we have the estimates

meas(D m-1 \ D m ) ≤ ε αδ ′ m-1 , (4.31) [ Ñm-1 ] Dm s,β ≤ ε m-1 , (4.32) [q m ] Dm,σm s,β ≤ ε m , (4.33) Φ m (•, ω, ϕ) -Id L(Ys,Y s+2β ) ≤ ε 1-νδ ′ m-1 , for ϕ ∈ T σm , ω ∈ D m . (4.34)
The exponent α and ν are given by the formulas ν = 4( d β + 2) and α = 

ω • ∇ ϕ S 1 -i[N 0 , S 1 ] = N 1 -N 0 -Q 0 + R 1 .
Then, using (4.6), we have

meas(D \ D 1 ) ≤ CK γ 1 κ 2α 1 ≤ ε αδ ′ 0
for ε = ε 0 small enough. Using (4.9) we have for ε 0 small enough

[S 1 ] D 1 ,σ 1 s,β+ ≤ C K d+1 1 κ d β +2 1 (σ 0 -σ 1 ) n ε 0 ≤ ε 1-1 2 νδ ′ 0 with ν = 4( d β + 2)
and thus in view of (2.7) and assertion (iv) of Lemma 2.1 we get Φ

1 (•, ω, ϕ) -Id L(Ys,Y s+2β ) ≤ ε 1-νδ ′ 0 .
Similarly using (4.8), (4.10) we have

[N 1 -N 0 ] D 1 s,β ≤ ε 0 , and [R 1 ] D 1 ,σ 1 s,β ≤ ε 2-νδ ′ 0
for ε = ε 0 small enough. Thus using (4.28) we get

[Q 1 ] D 1 ,σ 1 s,β ≤ C[R 1 ] D 1 ,σ 1 s,β +C([N 1 -N 0 ] D 1 s,β +[R 1 ] D 1 ,σ 1 s,β +[Q 0 ] D 1 ,σ 1 s,β )[S 1 ] D 1 ,σ 1 s,β+ ≤ Cε 2-νδ ′ 0 .
Thus for δ ′ ≤ δ ′ 0 and ε 0 small enough

[Q 1 ] D 1 ,σ 1 s,β ≤ ε 3/2 0 = ε 1 .
Now assume that we have verified Lemma 4.4 up to step m. We want to perform the step m + 1. We have h m = ω • y + ξ, N m η and since

[N m -N 0 ] Dm s,β ≤ [N m -N 0 ] Dm s,β + • • • + [N 1 -N 0 ] D 1 s,β ≤ m-1 j=0 ε j ≤ 2ε 0 , hypothesis (4.5
) is satisfied and we can apply Proposition 4.1 to construct S m+1 , N m+1 , R m+1 and D m+1 such that for ω ∈ D m+1

ω • ∇ ϕ S m+1 -i[N m , S m+1 ] = N m+1 -N m -Q m + R m+1 .
Then, using (4.6), we have

meas(D m \ D m+1 ) ≤ CK γ m+1 κ 2α m+1 ≤ ε αδ ′ m
for ε 0 small enough. Using (4.9) we have for ε 0 small enough

[S m+1 ] D m+1 ,σ m+1 s,β+ ≤ C K d+1 m+1 κ d β +2 m+1 (σ m -σ m+1 ) n ε m ≤ ε 1-1 2 νδ ′ m .
Thus in view of (2.7) and assertion (iv) of Lemma 2.1 we get

Φ m+1 (•, ω, ϕ) -Id L(Ys,Y s+2β ) ≤ ε 1-νδ ′ m .
Similarly using (4.8), (4.10) we have

[N m+1 -N m ] D m+1 s,β ≤ ε m , and [R m+1 ] D m+1 ,σ m+1 s,β ≤ ε 2-νδ ′ m
for ε 0 small enough. Thus using (4.28) we get

[Q m+1 ] D m+1 ,σ m+1 s,β ≤ C[R m+1 ] D m+1 ,σ m+1 s,β + C [N m+1 -N m ] D m+1 s,β + [R m+1 ] D m+1 ,σ m+1 s,β + [Q m ] D m+1 ,σ m+1 s,β [S m+1 ] D m+1 ,σ m+1 s,β+ ≤ Cε 2-νδ ′ m . Thus for δ ′ ≤ δ ′ 0 and ε 0 small enough [Q m+1 ] D m+1 ,σ m+1 s,β ≤ ε 3/2 m = ε m+1 .
4.5. Transition to the limit and proof of Theorem 2.3. Let

D ′ = ∩ m≥0 D m .
In view of (4.31), this is a Borel set satisfying is C 1 with respect to ω and is in normal form, since this is the case for all the N k (ω). Further for all ω ∈ D ′ we have using (4.32)

meas(D \ D ′ ) ≤ m≥0 ε αδ ′ m ≤ 2ε αδ ′ 0 . Let us denote Φ 1 N (•, ω, ϕ) = Φ 1 (•, ω, ϕ) • • • • • Φ N (•, ω, ϕ
∈ D ′ , ϕ ∈ T σ/2 Φ 1 N (•, ω, ϕ) -Φ 1 M (•, ω, ϕ) L(Ys,Y s+2β ) ≤ N m=M ε 1-νδ ′ m ≤ 2ε 1-νδ ′ M . Therefore (Φ 1 N (•, ω, ϕ)) N is a Cauchy sequence in L(Y s , Y s+2β ). Thus when N → ∞ the maps Φ 1 N (•, ω, ϕ) converge to a limit mapping Φ 1 ∞ (•, ω, ϕ) ∈ L(Y s ). Furthermore since the convergence is uniform on ω ∈ D ′ and ϕ ∈ T σ/2 , (ω, ϕ) → Φ 1 ∞ (•, ω, ϕ) is analytic in ϕ and C 1 in ω. Moreover, defining δ = αδ ′ /2 and taking δ 0 = α/(4ν), we get (4.35) Φ 1 ∞ (•, ω, ϕ) -Id L(Ys,Y s+2β ) ≤ 2ε 1-νδ ′ 0 < ε 1-δ/δ 0 0 . By construction, the map Φ 1 m (•, ω, ωt) transforms the original Hamiltonian H 0 = H ω (t, ξ, η) = ξ, N 0 η + ε ξ, Q(ω, ωt)η into H m (t, ξ, η) = ξ, N m η + ξ, Q m (ω,
N (ω) -N 0 s,β ≤ ∞ m=0 ε m ≤ 2ε. Let us denote Ψ ω (ϕ) = Φ 1 ∞ (•, ω, ϕ). By construction, Ψ ω (ϕ) = M ω (ϕ)ξ, M ω (ϕ)η ,

where

M ω (ϕ) = lim j→+∞ e iS 1 (ω,ϕ) . . . e iS j (ω,ϕ) .

Further, denoting the limiting Hamiltonian H ω (ξ, η) = ξ, N η we have

H ω (t, Ψ ω (ωt)(ξ, η)) = H ω (ξ, η), t ∈ R, (ξ, η) ∈ Y s , ω ∈ D ε .
This concludes the proof of Theorem 2.3.

Proof. of Lemma 2.1. (i) Let a, b ∈ E (AB) [b] [a] ≤ c∈ Ê A [c] [a] B [b] [c] ≤ |A| s,β+ |B| s,β (w a w b ) β min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 c∈ Ê 1 w 2β c (1 + |w a -w c |) ≤ C |A| β+ |B| β (w a w b ) β min(w a , w b ) min(w a , w b ) + |w a -w b | s/2
where we used that by Lemma A. 

(AB) [b] [a] ≤ c∈ Ê A [c] [a] B [b] [c] ≤ |A| s,β+ |B| s,β+ (w a w b ) β min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 c∈ Ê 1 w 2β c (1 + |w a -w c |)(1 + |w b -w c |) ≤ 2|A| s,β+ |B| s,β+ (w a w b ) β (1 + |w a -w b |) min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 c∈ Ê wc≤ 1 2 (wa+w b ) 1 w 2β c (1 + |w a -w c |) + c∈ Ê wc≥ 1 2 (wa+w b ) 1 w 2β c (1 + |w b -w c |) ≤ C |A| s,β+ |B| s,β+ (w a w b ) β (1 + |w a -w b |) min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 . (iii)Let ξ ∈ ℓ 2 t , with t ≥ 1. We have Aξ 2 -t ≤ a∈ Ê w -t a b∈ Ê A [b] [a] ξ [b] 2 ≤ |A| 2 s,β a∈ Ê b∈ Ê w t/2 b ξ [b] w t/2+β a w t/2+β b min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 2 ≤ a∈ Ê 1 w t+2β a b∈ Ê 1 w t+2β b |A| 2 s,β ξ 2 t .
(iv) Let ξ ∈ ℓ 2 s . We have

Aξ 2 s+2β ≤ a∈ Ê w s+2β a b∈ Ê A [b] [a] ξ [b] 2 ≤ |A| 2 s,β+ a∈ Ê b∈ Ê w s/2 a w s/2 b ξ [b] w s/2+β b (1 + |w a -w b |) min(w a , w b ) min(w a , w b ) + |w a -w b | s/2 2 ≤ 2 s+1 |A| 2 s,β+ a∈ Ê b∈ Ê wa≤2w b w s/2 b ξ [b] w β b (1 + |w a -w b |) + b∈ Ê wa≥2w b w s/2 b ξ [b] min(w a , w b ) s 2 w s/2+β b (1 + |w a -w b |) 2 ≤ 2 s+1 |A| 2 s,β+ a∈ Ê b∈ Ê w s/2 b ξ [b] w β b (1 + |w a -w b |) 2 .
Then we note that Choosing p = 2 1+β we have 2βp 2-p = 2 > 1 and thus u ∈ ℓ p . Choosing q = 2p 3p-2

we have q = 2 2-β > 1 and thus v ∈ ℓ q . Since 1/p + 1/q = 3/2 we conclude that u ⋆ v ∈ ℓ 2 and u ⋆ v ℓ 2 ≤ C u ℓ p v ℓ q . This leads to the first part of (iv) since u ℓ p ≤ C ξ s . Now we prove the second assertion of (iv) in a similar way : let ξ ∈ ℓ 2 1 , we have Notice that these two conditions imply that min(w a , w b ) ≥ K 2 K 1 .

We define the square matrix D This allows to write (B.9) as (B.12)

B [b] [a] -L 2 [a]×[b] -1 K [a]×[b] B [b] [a] = L 2 [a]×[b] -1 A [b] [a] ,
where K In that case the size of the blocks are less than K d 2 and we have (B. [START_REF] Krikorian | Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts[END_REF])

|B l j | = i k, ω(ρ) + εµ j -µ l |A l j | ≤ 1 κ(1 + |w a -w b |) |A l j |
A majoration of the coefficients gives a poor majoration of the operator norm of a matrix, but it is sufficient here:

(B.17 

ℓ 2 s

 2 := {(ξ) a∈E | a∈E w s a |ξ a | 2 < +∞}, we have for s ≥ 0 (1.4) u ∈ H s ⇐⇒ ξ ∈ ℓ 2 s .Then we endow both spaces with the norm

( 2 . 2 )

 22 |A| s,β := sup a,b∈L (w a w b ) β A [b] [a] min(w a , w b ) + |w aw b | min(w a , w b )

3. 1 .

 1 Verification of the hypothesis. We first verify the hypothesis of Theorem 1.2: Lemma 3.1. When λ a = w a , a ∈ E, Hypothesis A1 and A2 hold true with c 0 = 1/2 and D = [0, 1] n . Proof. The asymptotics A1 are trivially verified with c 0 = 1. It is well known (see for instance []) that for τ > n the diophantine set

  1/24 and |Q| s,1/24 ≤ C(d, s) V s . The case s ∈ 2N comes after a standard interpolation argument, the Stein-Weiss theorem (see e.g. [5, Corollary 5.5.4]) : indeed, fixing a, b and s 0 = 2N , we may estimate the norm of the linear form

4 )

 4 using the same trick as in the case d = 1. Now fixing p(d, s) satisfying all the constraints 2 < p < 2d d-2 and p ≥ 4d s (which is always possible since 4d s < 2d d-2 ) and defining β(d, s) = β(p(d, s))

. 5 ) 3 . 2 .

 532 Hence, using [5, Corollary 5.5.4], (3.4) and (3.5), interpolation gives the desired estimate for s 1 < s ≤ s 0 . Proof of Theorem 1.2 and Corollaries 1.3, 1.4. The Schrödinger equation (1.5

4 . 3 4. 1 .

 431 2.15)) we deduce (1.7). Now it remains to prove Corollary 1.4. Defining, for any c ∈ E the sequence δ c ∈ ℓ 2 as δ c c = 1 and δ c a = 0 if a = c, then the function u(t, x) defined as u(t, x) = e iµct a∈[c] t M ω (ωt)P δ c a Φ a (x) solves (1.5) if and only if µ c + k.ω is an eigenvalue of K defined in (1.8), with associated eigenfunction (θ, x) → e iθ.k a∈[c] t M ω (θ)P δ c a Φ a (x) . This shows that the spectrum of the Floquet operator (1.8) equals {µ c + k • ω | k ∈ Z n , c ∈ E} and thus Corollary 1.4 is proved. Proof of Theorem 2.General strategy. Let h be a Hamiltonian in normal form: (4.1) h(y, ϕ, ξ, η) = ω • y + ξ, N (ω)η

  k) where the operator L := L(k, [a], [b], ω) is the linear operator, acting in the space of complex [a] × [b]-matrices defined by

(4. 15 )

 15 Here α j (ω) and β ℓ (ω) denote eigenvalues of N [a] (ω) and N[b] 

  26) (ii) we define Q m+1 , N m+1 for ω ∈ D m+1 and ϕ ∈ T σ m+1 by (4.27) N m+1 = N m + Ñm , and (4.28)

Lemma 4 . 4 .

 44 Let 0 < δ ′ ≤ δ ′ 0 := β 8(d+2β) . There exists ε * depending on δ ′ , d, n, s, β, γ, α 1 , α 2 and h 0 such that, for 0 < ε ≤ ε * andε m = ε (3/2) m 0 m ≥ 0 ,we have the following: For all m ≥ 1 there exist D m ⊂ D m-1 , S m ∈ M s,β+ (D m , σ m ), h m = ω, y + ξ, N m η in normal form where N m ∈ M s,β (D m ) and there exists q m ∈ T s,β (D m , σ m ) such that for m ≥ 1 (i) The mapping (4.30) Φ m (•, ω, ϕ) = Φ 1 Sm : Y s → Y s , ρ ∈ D m , ϕ ∈ T σm is linear isomorphism linking the Hamiltonian at step m -1 and the Hamiltonian at step m, i.e.

βα 2 2+d+2βα 2 .

 2 Proof. At step 1, h 0 = ω • y + ξ, N 0 η and thus hypothesis (4.5) is trivially satisfied and we can apply Proposition 4.1 to construct S 1 , N 1 , R 1 and D 1 such that for ω ∈ D 1

  ωt)η . By (4.33), Q m → 0 when m → ∞ and by (4.32) N m → N when m → ∞ where the operator N ≡ N (ω) = N 0 +

  1 min(w a , w b ) min(w a , w b ) + |w aw b | ≥ min(w a , w c ) min(w a , w c ) + |w aw c | min(w c , w b ) min(w c , w b ) + |w cw b | and that by Lemma A.2, c∈ Ê 1 w 2β c (1+|wa-wc|) ≤ C where C only depends on β. (ii) Similarly let a, b ∈ L and assume without loss of generality that w a ≤ w b

( 1 + 1 (

 11 |w aw b |) = u ⋆ v(a) with u b = w s/2-β b ξ [b] and v b = 1+|w b |) . Using the Cauchy Schwarz inequality we get b∈

2 b 2 b ( 1 +bb( 1 +b( 1 +( 1 +defines a ℓ 1 1 ( 2 1 ≤ C|A| 2 s,β+ ξ 2 1 .K 1 ≥(≤ 8 1 1 +

 22111111221181 ξ [b] (w a w b ) β w 1/|w aw b |) min(w a , w b ) min(w a , w b ) + |w aw b | ξ [b] (w a w b ) β (1 + |w aw b |) ξ [b] w (1-s)/2 a (w a w b ) β w 1/2-s/4 b (1 + |w aw b |) 2The last sum may be bounded above by (notice that |w a -w b | ≥ w b ) |w aw b |) ≤ ξ [b] (w a w b ) β w 1/2-s/4 b |w aw b |) 1/2+s/2 |w aw b |) 1/2+β/2 ,and this last sum is the convolution product u ′ ⋆ v ′ (a), with u ′ b = sequence thanks to Cauchy Schwarz inequality, andv ′ b = 1+w b ) 1/2+β/2, which defines a ℓ 2 sequence. Therefore, it is a ℓ 2 sequence with index a. We treat the first sum in the same way as before, and we obtain Aξ Case 1 : suppose that a, b satsify max(w a , w b ) > K 1 min(w a , w b ) take for instance w a > K 1 w b . Then for j ∈ [a] (B.2) |k • ω + εµ j | ≥ w a -4N |ω|, that proves that D ′ [a] is invertible and gives an upper bound for the operator norm of its inverse. Then (B.1) is equivalent to (B.4) B . Next consider the operator L 1 [a]×[b] acting on matrices of size [a] × [b] such that(B.5) L 1 [a]×[b] B operator norm, L 1 [a]×[b] ≤ 1 2 if K 1 ≥ 4. Then the operator Id -L 1 [a]×[b] is invertible and B But in case 1, 1 + |w aw b | ≤ 1 + w a ≤ 2w a , therefore |w aw b | A [b] [a] .Case 2 : suppose that a, b satisfy max(w a , w b ) ≤ K 1 min(w a , w b ) and max(w a , w b ) > K 2 .

1 +

 1 [a] = w a 1[a] , where 1 [a] is the identity matrix. Then(B.8) D [a] -D[a] ≤ C µ w δ a ,and equation (4.20) may be rewritten as(B.9) L 2 [a]×[b] B [b] [a] -( D[a] -D [a] )B [b] [a] + B [b] [a] ( D[b] -D [b] ) = A [b] [a] ,where we denote by L 2 [a]×[b] the operator acting on matrices of size [a] × [b:= (k • ω + w aw b ) B [b] [a] . This dilation is invertible and (4.22) then gives, in operator norm, |w aw b |) .

1 +

 1 [a]×[b] B [b] [a] = ( D[a] -D [a] )B [b] [a] -B [b] [a] ( D[b] -D [b]). We have, thanks to (4.21), in operator norm, (B.[START_REF] Grébert | KAM for the Quantum Harmonic Oscillator[END_REF])K [a]×[b] ≤ C µ -(L 2 [a]×[b] ) -1 K [a]×[b]is invertible and from (B.12) we getB |w aw b |) A [b] [a] .Case 3 : suppose that a, b ∈ L satisfy max(w a , w b ) ≤ K 1 min(w a , w b ) and max(w a , w b ) ≤ K 2 .

2 κ( 1 +

 21 |w aw b |) A [b] [a] . Collecting (B.7), (B.15) and (B.17) and taking into account (B.3), (B.14) leads to the result.

  To any C 1 -smooth function defined on a domain O ⊂ Y s , corresponds the

	Hamiltonian equation							
	ξ = -i∇ η f (ξ, η) η = i∇ ξ f (ξ, η)		
	where ∇f = t (∇ ξ f, ∇ η f ) is the gradient with respect to the scalar product in Y 0 . For any C 1 -smooth functions, F, G, defined on a domain O ⊂ Y s , we define the Poisson bracket
	{F, G} = i	a∈E	∂F ∂ξ a	∂G ∂η a	-	∂G ∂ξ a	∂F ∂η a	.

  β and B ∈ M + s,β . Then AB and BA belong to M s,β and |AB| s,β , |BA| s,β ≤ C|A| s,β |B| s,β+ .

(ii) Let A, B ∈ M + s,β . Then AB and BA belong to M + s,β and |AB| s,β+ , |BA| s,β+ ≤ C|A| s,β+ |B| s,β+ .

  ). Due to (4.30), it maps Y s to Y s and due to (4.34) it satisfies for M ≤ N and for ω

We provide C 2 with the euclidian norm, |ζa| = |(ξa, ηa)| = |ξa| 2 + |ηa| 2 .

Proof. Without loss of generality we can assume j ≤ ℓ.

If k ≤ j then |k -ℓ| ≥ |j -ℓ| and thus min(j, ℓ)

for a constant C(β) > 0 depending only on β > 0.

Proof. We note that k∈N

where

We have that b ∈ ℓ p for any 1 < p ≤ +∞ and that a ∈ ℓ q for any 1 β < q ≤ +∞. Thus by Young inequality a ⋆ b ∈ ℓ r for r such that 1 p + 1 q = 1 + 1 r . In particular choosing q = 2 β and p = [a] . Then we distinguish 3 cases: