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Introduction

A θ-sticky Brownian on the half line [0, ∞) is a diffusion with generator

(Af )(x) = 1 2 f ′′ (x) if x > 0 θf ′ (0+) if x = 0
and domain

D(A) = f ∈ C 2 (0, ∞) : f ∈ C 0 ([0, ∞)), f ′ (0 + ), f ′′ (0 + ) exist, f ′′ (0 + ) = 2θf ′ (0 + ), lim x→∞ f ′′ (x) = 0
where θ > 0 is the stickiness parameter. This is a special case of Feller one dimensional diffusions introduced by Feller by means of their infinitesimal generators [START_REF] Feller | The parabolic differential equations and the associated semi-groups of transformations[END_REF]. For comparison of the boundary condition f ′′ (0 + ) = 2θf ′ (0 + ) with other examples, see [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF]. Sticky Brownian motion has an intermediate behavior, depending on θ, between Brownian motion absorbed at 0 and reflected Brownian motion. One possible path construction of a θ-sticky Brownian motion X started from 0 consists in slowing down a reflected Brownian motion R started from 0 whenever it is at 0 in the following way X t = R inf{u:u+ 1 θ Lu>t} (1) Laboratoire de l'Intégration du Matériau au Système, Bordeaux. Email: Hatem.Hajri@imsbordeaux.fr (2) Koc University, Istanbul. Email: mcaglar@ku.edu.tr The research of M. Caglar is supported by TUBITAK Project No. 115F086 (3) Institut de Mathématiques de Bordeaux, Bordeaux. Email: marc.arnaudon@math.ubordeaux.fr where L t = lim ǫ→0 1 2ǫ t 0 1 {0≤Rs≤ǫ} ds is the local time of R [START_REF] Howitt | Stochastic flows and sticky Brownian motion[END_REF][START_REF] Itô | Diffusion processes and their sample paths[END_REF]. As a consequence of this construction, the amount of time spent at 0 by X up to t, t 0 1 {Xs=0} ds, has positive probability of being greater than 0. More precisely, the following equality holds in law t 0

1 {Xs=0} ds law = |N| θ t + N 2 4θ 4 - N 2
2θ 2 where N ∼ N (0, 1) (see Proposition 5 in [START_REF] Howitt | Stochastic flows and sticky Brownian motion[END_REF]).

In this paper, we are interested in sticky Brownian motion as solution of the following stochastic differential equation ( 1)

X t = x + t 0 1 {Xs>0} dW s + θ t 0 1 {Xs=0} ds
driven by a standard Brownian motion W and where θ > 0 is a given constant and x ∈ [0, ∞) is a given initial condition.

It has been proved by Chitashvili [2] that (1) has a weak solution X which is a θ-sticky Brownian motion started from x, the law of (X, W ) is unique but X is not a strong solution to [START_REF] Bass | A stochastic differential equation with a sticky point[END_REF]. Later on, Warren [START_REF] Warren | Branching processes, the Ray-Knight theorem, and sticky Brownian motion[END_REF] derived the following remarkable result describing the law of X t given W (the form given here follows Theorem 2 [START_REF] Warren | On the joining of sticky Brownian motion[END_REF]).

Theorem 1.1. When X 0 = 0, for all t ≥ 0 and all measurable bounded f ,

E[f (X t )|F W ] = G f (W + t ) where W + t = W t -min 0≤u≤t W u and G f (y) = E[f ((y -T ) + )]
with T an exponential variable with mean 1 2θ . This theorem shows, in particular, that X cannot be a strong solution to [START_REF] Bass | A stochastic differential equation with a sticky point[END_REF]. Subsequently, Warren [START_REF] Warren | On the joining of sticky Brownian motion[END_REF] described all couplings of solutions to (1) which leave the diagonal. Before going on, we mention the work of Engelbert and Peskir [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF] where a third proof of the non strong solvability of (1) and a two sided version of it can be found (see also [START_REF] Bass | A stochastic differential equation with a sticky point[END_REF]).

A remarkable and attractive fact in Warren's conditional law identity is that it involves the well known and habitual process W + strong solution to (2)

Y t = W t + L t (Y )
where L t (Y ) = lim ǫ→0

1 2ǫ
t 0 1 {0≤Ys≤ǫ} ds. This raises the question whether there is a link between (1) and (2) explaining Theorem 1.1.

In this paper, it is shown that stochastic flows of kernels [START_REF] Jan | Flows, coalescence and noise[END_REF] provide an answer to the previous question. More precisely, define

(3) ϕ s,t (x) = (x + W t -W s )1 {t≤τs(x)} + W + s,t 1 {t>τs(x)}
where τ s (x) = inf{u ≥ s : x + W u -W s = 0}. Then ϕ is a stochastic flow of maps which solves the flow version of (2)

ϕ s,t (x) = x + W t -W s + L s,t (x)
where L s,t (x) = lim ǫ→0

1 2ǫ t s 1 {0≤ϕs,u(x)≤ǫ} du. Now, let (4) K s,t f (x) = f (ϕ s,t (x)) if s ≤ t ≤ τ s (x) G f (ϕ s,t (x)) if t > τ s (x)
Then K is a stochastic flow of kernels which is a strong solution to the flow of kernels version of (1): for all t ≥ s, f ∈ D(A) and x ≥ 0 a.s.

(5)

K s,t f (x) = f (x) + t s K s,u (f ′ 1 (0,∞) )(x)dW u + 1 2 t s K s,u f ′′ (x)du
K, called the Wiener solution of (5) in [START_REF] Jan | Flows, coalescence and noise[END_REF], is characterized by being the unique (up to modification), strong solution of (5). This leads to Theorem (1.1) as the conditional law of X t given W should coincide with K 0,t (0, dy). Note that Equation (5) encapsulates the flow property (iv) of Definition 2.1 for K. Therefore, identifying the complete flow K s,t (x, dy) for every s, t and x is crucial in proving this result, not only for s = 0 and x = 0. The semigroup and Feller properties also play an important role in this fact. See [START_REF] Jan | Flows, coalescence and noise[END_REF] for further discussion on E[f (X t )|F W ] satisfying Equation [START_REF] Hajri | On flows associated to Tanaka's SDE and related works[END_REF]. As a complete proof, we argue that (4) being the Wiener flow satisfies this equation and the theorem follows for G f (W + t ) in the special case X 0 = 0. Section 2 gives details and proofs of the previously claimed facts. It can be remarked that the proofs only rely on the definition of stochastic flows with no additional results of the theory. The present paper provides, in particular, a direct application of stochastic flows to the study of weak solutions (see [START_REF] Hajri | Application of stochastic flows to the interface SDE on a star graph[END_REF] for another recent application). In Section 3, we conclude the paper with the Wiener chaos expansion of the conditional law. Let us now recall the definition of stochastic flows from [START_REF] Jan | Flows, coalescence and noise[END_REF]. In this definition P(R + ) denotes the space of all probability measures on R + and B(E) indicates the Borel σ-field of E. Definition 2.1. A stochastic flow of kernels K on R + , defined on a probability space (Ω, A, P), is a family (K s,t ) s≤t such that (i) For all s ≤ t, K s,t is a measurable mapping from (R

+ × Ω, B(R + ) ⊗ A) to (P(R + ), B(P(R + ))); (ii) For all h ∈ R, s ≤ t, K s+h,t+h is distributed like K s,t ; (iii) For all s 1 ≤ t 1 ≤ • • • ≤ s n ≤ t n , the family {K s i ,t i , 1 ≤ i ≤ n} is independent; (iv) For all s ≤ t ≤ u and all x ∈ R + , a.s. K s,u (x) = K s,t K t,u (x) and K s,s (x) = δ x ; (v) For all f ∈ C 0 (R + ), s ≤ t, lim (u,v)→(s,t) sup x∈R + E[(K u,v f (x) -K s,t f (x)) 2 ] = 0; (vi) For all f ∈ C 0 (R + ), x ∈ R + , s ≤ t, lim y→x E[(K s,t f (y) -K s,t f (x)) 2 ] = 0; (vii) For all s ≤ t, f ∈ C 0 (R + ), lim x→∞ E[(K s,t f (x)) 2 ] = 0.
We say that ϕ is a stochastic flow of mappings on

R + if K s,t (x) = δ ϕs,t(x) is a stochastic flow of kernels on R + .
For K, a stochastic flow of kernels on R + , ( 6)

P n t f (x 1 , • • • , x n ) = E R n + f (y 1 , • • • , y n )K 0,t (x 1 , dy 1 ) • • • K 0,t (x n , dy n )
defines a Feller semigroup on R n + . Moreover (P n ) n≥1 is a compatible family (in a sense explained in [START_REF] Jan | Flows, coalescence and noise[END_REF]) of Feller semigroups acting respectively on C 0 (R n + ) that uniquely characterize the law of K. Conversely, it has been proved in [START_REF] Jan | Flows, coalescence and noise[END_REF] that to each family of compatible Feller semigroups (P n ) n≥1 is associated a (unique in law) stochastic flow of kernels such that (6) holds for every n ≥ 1.

Definition 2.2. (Real white noise) A family (W s,t ) s≤t is called a real white noise if there exists a Brownian motion on the real line (W t ) t∈R , that is (W t ) t≥0 and (W -t ) t≥0 are two independent standard Brownian motions such that for all s ≤ t, W s,t = W t -W s (in particular, when t ≥ 0, W t = W 0,t and W -t = -W -t,0 ).

For a family of random variables

Z = (Z s,t ) s≤t , define F Z s,t = σ(Z u,v , s ≤ u ≤ v ≤ t) for all s ≤ t.
Definition 2.3. Let K be a stochastic flow of kernels and W be a real white noise defined on the same probability space. We say that (K, W ) is a (generalized) solution of the sticky equation if for all f ∈ D(A), t ≥ s and x ∈ R + a.s.

K s,t f (x) = f (x) + t s K s,u (f ′ 1 (0,∞) )(x)dW u + 1 2 t s K s,u f ′′ (x)du
Let us explain the link between this equation and the original sticky equation (1). We start with the following Lemma 2.4. If (K, W ) is a solution of the generalized sticky equation, then

K s,t f (x) = f (ϕ s,t (x)) if s ≤ t ≤ τ s (x)
and in particular, F W s,t ⊂ F K s,t for all s ≤ t. Proof. Let W s,t := W t -W s for 0 ≤ s ≤ t. Fix x > 0 and, for small ǫ ∈]0, x[, define τ ǫ s (x) = inf{u ≥ s : x + W s,u = ǫ}. Then along the same lines of the proof of Lemma 3.1 in [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF], one can show that K s,t (x) = δ x+Ws,t for all s ≤ t ≤ τ ǫ s (x). As ǫ > 0 is arbitrarily small, K s,t (x) = δ x+Ws,t also for t ≤ τ s (x) := inf{u ≥ s : x + W s,u = 0}. Since this holds for x arbitrarily distant from 0, the lemma follows.

In view of Lemma 2.4, we may sometimes say K is a solution of the generalized sticky equation without specifying the white noise since it is determined by K.

Assume now (K, W ) satisfies Definition 2.3 and set

Q t (f ⊗ g)(x, w) = E[K 0,t f (x)g(w + W t )]
By the previous lemma, (Q t ) t defines a Feller semigroup. Denote by L its generator and D(L) its domain. A simple application of Itô's formula shows that

D 1 ⊗C 2 K (R) ⊂ D(L) where D 1 = {f ∈ D(A) : f ′ (0+) = 0} and C 2 K (R) denotes the space of C 2 functions on R with compact supports. Moreover for all f ∈ D 1 and g ∈ C 2 K (R), L(f ⊗ g)(x, w) = 1 2 f (x)g ′′ (w) + 1 2 g(w)f ′′ (x) + f ′ (x)g ′ (w).
Let (X, B) be the Markov process associated to (Q t ) t and started from (x, 0). Then X is a θ-sticky Brownian motion started from x and B is a standard Brownian motion started from 0. Now for f ∈ D 1 and g ∈ C 2 K (R),

(7) f (X t )g(B t ) - t 0 L(f ⊗ g)(X s , B s ) is a martingale.
As X is a θ-sticky Brownian motion, it satisfies X t = x + M t + θ t 0 1 {Xs=0} ds with M a martingale with quadratic variation M t = t 0 1 {Xs>0} ds. Writing Itô's formulas for f (X)g(B) and using [START_REF] Howitt | Stochastic flows and sticky Brownian motion[END_REF] shows that (8

) t 0 f ′ (X s )g ′ (B s )d M, B s = t 0 f ′ (X s )g ′ (B s )ds. Now, one can find a sequence (f n ) ⊂ D 1 such that f ′ n (x) → 1 (0,∞) (x) as n → ∞ for each x > 0 and sup x f ′ n (x) ≤ 1.
On the other hand, there exists a sequence

(g n ) ⊂ C 2 K (R) such that the support of g n is [-n, n] with sup x g ′ n (x) ≤ 1 and g ′ n (x) → 1 as n → ∞ for each x ∈ R.
In view of (8), it follows from bounded convergence theorem that 1 {Xs>0} d M, B s = 1 {Xs>0} ds since the integrals

t 0 f ′ n (X s )g ′ n (B s
)ds are bounded by t, for each t > 0. Consequently, M t = t 0 1 {Xs>0} dB s is in L 2 (P). So finally, (X, B) is a weak solution to the sticky equation.

More generally, considering the semigroups Q n t (f ⊗ g)(x, w) = E[K ⊗n 0,t f (x)g(w + W t )] for n ≥ 1, one can prove that there exists a one to one correspondence between the laws of stochastic flows of kernels satisfying Definition 2.3 and compatible weak solutions to the sticky equation (see Proposition 2.1 in [START_REF] Hajri | On flows associated to Tanaka's SDE and related works[END_REF] for more details in a similar context).

To close this subsection, we mention that if ϕ is a flow of mappings such that K = δ ϕ satisfies Definition 2.3, then necessarily ϕ is a flow of mappings solution of

ϕ s,t (x) = x + t s 1 {ϕs,u(x)>0} dW u + θ t s 1 {ϕs,u(x)=0} ds
and vice versa. Warren [START_REF] Warren | The noise made by a poisson snake[END_REF] proved that such a flow ϕ exists and its law is uniquely determined. This flow can also be constructed by applying the general results of [START_REF] Jan | Flows, coalescence and noise[END_REF].

2.2. The Wiener flow. Definition 2.5. Let (K, W ) be a solution of the generalized sticky equation. If F K s,t ⊂ F W s,t for all s ≤ t, then (K, W ) is called a Wiener solution. The Wiener solution was introduced in [START_REF] Jan | Integration of Brownian vector fields[END_REF] (it is called statistical solution there) by means of its Wiener chaos expansion with respect to W only depending on the semigroup of the diffusion (sticky Brownian motion here). Interestingly, this solution exists and is unique under weak assumptions. Proposition 2.6. Let (K 1 , W ) and (K 2 , W ) be two Wiener solutions of the sticky equation relatively to the same Brownian motion. Then for all s ≤ t and x ∈ R, with probability one, K 1 s,t (x) = K 2 s,t (x).

Proof. We follow the proof of Proposition 4.2 [START_REF] Hajri | On flows associated to Tanaka's SDE and related works[END_REF]. Note that K s,t (x, y)

= K 1 s,t (x) ⊗ K 2 s,t (y) is a stochastic flow of kernels on R 2 + and Q t (f ⊗ g ⊗ h)(x, y, w) := E[K 1 0,t f (x)K 2 0,t g(y)h(w + W t )
] is a Feller semigroup on (R + ) 2 × R. Fix x ∈ R + and let (X 1 , X 2 , B) be the Markov process associated to Q started from (x, x, 0), then B is a standard Brownian motion and X 1 , X 2 are two θ-sticky Brownian motions. Moreover X 1 , X 2 are solutions of the sticky equation driven by B and in particular (X 1 , B) and (X 2 , B) have the same law. Since K 1 and K 2 are two Wiener solutions, there exist two measurable functions

F 1 t,x , F 2 t,x : C([0, t], R) → P(R) such that K 1 0,t (x) = F 1 t,x (W u , u ≤ t), K 2 0,t (x) = F 2 t,x (W u , u ≤ t). Let N 1 0,t (x) = F 1 t,x (B u , u ≤ t) and N 2 0,t (x) = F 2 t,x (B u , u ≤ t).
We will prove that for all measurable bounded f : R → R a.s.

(9) N i 0,t f (x) = E[f (X i t )|σ(B u , u ≤ t)], i = 1, 2
To prove (9), we will check by induction on n that for all t 1 ≤ • • • ≤ t n-1 ≤ t n = t and all bounded functions f, g 1 , • • • , g n : R → R, we have ( 10)

E K i 0,t f (x) n j=1 g j (W t j ) = E f (X i t ) n j=1 g j (B t j ) , i = 1, 2.
Let us prove this for i = 1 and set

Q 1 t (f ⊗ g) = Q t (f ⊗ Id ⊗ g). For n = 1, (10) 
is immediate from the definition of Q. Let us prove [START_REF] Kostrykin | Brownian motions on metric graphs: Feller brownian motions on intervals revisited[END_REF] for n = 2. We have

E[K 1 0,t f (x)g 1 (W t 1 )g 2 (W t )] = E[K 1 0,t 1 (Q 1 t-t 1 (f ⊗ g 2 )(•, W t 1 ))(x)g 1 (W t 1 )]. On the other hand E[f (X 1 t )g 1 (B t 1 )g 2 (B t )] = E[Q 1 t-t 1 (f ⊗ g 2 )(X 1 t 1 , B t 1 )g 1 (B t 1 )
]. Now (10) holds using a uniform approximation of Q 1 t 2 -t 1 (f ⊗ g) by a linear combination of functions of the form h ⊗ k, h, k ∈ C 0 (R + ). It is clear now from [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF], that N 1 0,t (x) = N 2 0,t (x) since (X 1 , B) and (X 2 , B) have the same law. Now in the rest of the paper, we take W a real white noise and will check that K defined in ( 4 Proof. To check that K is a stochastic flow of kernels, we will only check the flow property for all f ∈ C 0 (R + ), s ≤ t ≤ u and x ∈ R + , with probability 1,

(11) K s,u f (x) = K s,t K t,u f (x)
The other claims in Definition 2.1 are easy to verify. Let us now check [START_REF] Jan | Integration of Brownian vector fields[END_REF]. For this, we will use the fact that ϕ defined in (3) is a stochastic flow of mappings (for non specialists of stochastic flows, this is a rather simple exercise). Note that G f writes as (with λ = 2θ)

(12) G f (y) = f (0)e -λy + λe -λy y 0 f (u)e λu du
We first check [START_REF] Jan | Integration of Brownian vector fields[END_REF] for x = 0. By the flow property of ϕ, K s,u f (0

) = G f (ϕ s,u (0)) = G f (ϕ t,u • ϕ s,t (0)) and K s,t K t,u f (0) = G Kt,uf (ϕ s,t (0)).
Using the independence of increments of ϕ, it suffices to prove that for all y ≥ 0, a.s G f (ϕ t,u (y)) = G Kt,uf (y) which is equivalent to

e λy G f (ϕ t,u (y)) = G f (ϕ t,u (0)) + λ y 0 K t,u f (a)e λa da
To prove this identity, note that for all y > 0, z → ϕ t,u (z) is differentiable at y with derivative given by 1 {u<τt(y)} . Thus by a simple calculation, the derivative of z → e λz ϕ t,u (z) at y coincides with λe λy K t,u f (y). This proves [START_REF] Jan | Integration of Brownian vector fields[END_REF] for x = 0. Now take x > 0 and let y = ϕ s,t (x).

On the event {u ≤ τ s (x)}, we have

τ s (x) = τ t (y), K s,u f (x) = f (ϕ s,u (x)), K s,t (K t,u f )(x) = (K t,u f )(y) = f (ϕ t,u ( 
y)) since u ≤ τ t (y) and so [START_REF] Jan | Integration of Brownian vector fields[END_REF] holds by the flow property of ϕ.

On the event {t ≤ τ s (x) < u}, we still have τ s (x) = τ t (y) and

K s,u f (x) = G f (ϕ s,u (x)) = G f (ϕ t,u (y)). Moreover K s,t (K t,u f )(x) = G Kt,uf ( 
y) and so the flow property holds by the calculations above.

On the event {τ s (x) ≤ t}, we have

K s,u f (x) = G f (ϕ s,u (x)) = G f (ϕ s,u (0)) = K s,u f (0). Moreover K s,t (K t,u f )(x) = G Kt,uf (y) = G Kt,uf (ϕ s,t (0)) = K s,t (K t,u f )(0)
and the flow property holds again from the case x = 0.

Thus K is a stochastic flow of kernels. Note that F K s,t ⊂ F W s,t for all s ≤ t. It remains now to check that K solves the generalized equation. We take s = 0 and first x = 0. Denote W + 0,t simply by

W + t . Let D = {g ∈ C 2 (0, ∞) : g ∈ C 0 ([0, ∞)), g ′ (0 + ) = 0, g ′′ (0 + ) exists} By Itô's formula, for all g ∈ D g(W + t ) = g(0) + t 0 g ′ (W + u )dW u + 1 2 t 0 g ′′ (W + u )du Let f ∈ D(A) and set g(y) = G f (y). Then g is continuous on R + , C 2 on R * + and (13) 
g ′ (y) = -λf (0)e -λyλ 2 e -λy y 0 f (u)e λu du + λf (y)

In particular g ′ (0+) = 0. Moreover

g ′′ (y) = λ 2 f (0)e -λy + λ 3 e -λy y 0 f (u)e λu du -λ 2 f (y) + λf ′ (y)
and so G f ∈ D. Consequently for all f ∈ D(A),

G f (W + t ) = G f (0) + t 0 (G f ) ′ (W + u )dW u + 1 2 t 0 (G f ) ′′ (W + u )du = f (0) + t 0 (G f ) ′ (W + u )dW u + 1 2 t 0 (G f ) ′′ (W + u )du
We now check that for all f ∈ D(A) and y ≥ 0,

G f ′ 1 (0,∞) (y) = (G f ) ′ (y) and G f ′′ (y) = (G f ) ′′ (y)
Using ( 12), we see that

G f ′ 1 (0,∞) (y) = λe -λy y 0 f ′ (u)e λu du
which is also equal to (G f ) ′ (y) given in ( 13) by a simple integration by parts. Again from [START_REF] Jan | Flows, coalescence and noise[END_REF], we have

G f ′′ (y) = f ′′ (0)e -λy + λe -λy y 0 f ′′ (u)e λu du
Integrating twice by parts, we see that

G f ′′ (y) = f ′′ (0)e -λy -λf ′ (0)e -λy +λf ′ (y)-λ 2 f (y)+λ 2 f (0)e -λy +λ 3 e -λy y 0 f (u)e λu du
which is the same as (G f ) ′′ (y) using the hypothesis

f ′′ (0) = λf ′ (0) as f ∈ D(A). Finally for all f ∈ D A , G f (W + t ) = f (0) + t 0 G f ′ 1 (0,∞) (W + u )dW u + 1 2 t 0 G f ′′ (W + u )du or equivalently K 0,t f (0) = f (0) + t 0 K 0,u (f ′ 1 (0,∞) )(0)dW u + 1 2 t 0 K 0,u f ′′ (0)du
Now the case x > 0 holds by discussing t ≤ τ 0 (x) and t > τ 0 (x) and using the fact that K 0,t (x) = K 0,t (0) for t ≥ τ 0 (x).

Wiener chaos expansion

When the canonical flow is filtered with respect to F W , it can be be expanded into a series of iterated Wiener integrals, see e.g. [12, pg.57] and [START_REF] Jan | Integration of Brownian vector fields[END_REF]. In this section, we derive the Wiener chaos expansion of E[f (X t )|F W ] using the semigroup P of the sticky Brownian motion. This semigroup can be obtained explicitly by the inverse Laplace transform of the resolvent [15, Prop.13] for x, y ∈ R + and t > 0 as [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] P t (x, dy) = p t (x, y) dyp t (x, -y) dy + 2g t (x + y) dy + 1 θ g t (x) δ 0 (dy) where p t (x, •) is the probability density function of a Gaussian random variable with mean x and variance t, and

g t (x) = θ exp(2θx + 2θ 2 t) erfc x √ 2t + θ √ 2t with erfc(x) = 2 √ π ∞
x e -y 2 dy [START_REF] Kostrykin | Brownian motions on metric graphs: Feller brownian motions on intervals revisited[END_REF]Cor.3.11]. The following lemma will be useful for deriving an equation to iterate for Wiener chaos expansion. Let S := {f : [0, ∞) → R : f ∈ C 2 (0, ∞), f (0 + ), f ′ (0 + ) and f ′′ (0 + ) are finite, lim x→∞ f (x) = 0}. Lemma 3.1. If f ∈ S, then P t f ∈ D(A) and (P t f ) ′ 1 (0,∞) ∈ S for each t > 0.

Proof. Note that p t (x, y) = p t (0, yx) and p t (x, -y) = p t (0, x + y) and let p ′ t denote the derivative of p t (0, •). For x ≥ 0, we have

(P t f ) ′ (x) = - ∞ 0 p ′ t (0, y -x)f (y) dy - ∞ 0 p ′ t (0, x + y)f (y) dy +2 ∞ 0 g ′ t (x + y)f (y) dy + 1 θ g ′ t (x)f (0)
and

(P t f ) ′′ (x) = ∞ 0 p ′′ t (0, y -x)f (y) dy - ∞ 0 p ′′ t (0, x + y)f (y) dy +2 ∞ 0 g ′′ t (x + y)f (y) dy + 1 θ g ′′ t (x)f (0) .
By a change of variable yx to y in the first integral in the expression for (P t f ) ′ above, we get

(P t f ) ′ (x) = - ∞ -x p ′ t (0, y)f (y + x) dy - ∞ x p ′ t (0, x + y)f (y) dy +2 ∞ x g ′ t (y)f (y -x) dy + 1 θ g ′ t (x)f (0) .
Then, lim x→∞ (P t f ) ′ (x) = 0 since f , p ′ t , and g ′ t all vanish at infinity, f is bounded, and the third integral above also goes to 0 as x → ∞. Moreover, (P t f ) ′ (0), (P t f ) ′′ (0), (P t f ) ′′′ (0) are all finite since p t , g t and their derivatives are continuous and bounded. It follows that the function (P t f ) ′ 1 (0,∞) , and its first and second derivatives are all finite at 0 + . Hence, (P t f ) ′ 1 (0,∞) ∈ S.

On the other hand, one can easily verify that

g ′′ t (x) = 2θ g ′ t (x) + 2θ (x/ √ 2πt 3 ) exp(-x 2 /2t) .
In view of this and the identity p ′ t (0, y) = (-y/t)p t (0, y), we get (P t f ) ′′ (0+) = 2θ (P t f ) ′ (0+). The other properties in D(A) are also satisfied by P t f and P t f ∈ D(A) follows.

Proposition 3.2. For f ∈ S, we have

E[f (X t )|F W ] = P t f (0) + ∞ n=1 J n t f
where

J n t f = 0<s 1 <...<sn<t P s 1 (D(P s 2 -s 1 . . . D(P t-sn f )))(0) dW s 1 . . . dW sn and Dg = 1 (0,∞) g ′ .
Proof. Let H(s, x) := P t-s f (x) for 0 < s < t, x ≥ 0 and f ∈ S, and recall that

P t-s f (x) = ∞ 0 p t-s (0, y -x)f (y) dy - ∞ 0 p t-s (0, x + y)f (y) dy +2 ∞ 0 g t-s (x + y)f (y) dy + 1 θ g t-s (x)f (0) .
By continuity of p and g, it follows that H is differentiable when f is measurable and bounded, in particular when f ∈ S. By Itô's formula for H(s, X s ), we get

H(s, X s ) = H(0, 0) + s 0 ∂ ∂u H(u, X u ) du + s 0 ∂ ∂x H(u, X u ) dX u + 1 2 s 0 ∂ 2 ∂x 2 H(u, X u ) d X u = H(0, 0) + s 0 [(P t-u f ) ′ (X u )] 1 {Xu>0} dW u + s 0 A(P t-u f )(X u ) du + s 0 d du P t-u f (X u ) du
where we have identified A as P t-u f ∈ D(A) by Lemma 3.1. Then, the sum of the last two terms is 0 because for a transition semigroup P d dt

P t f = lim v→0 1 v [P t+v f -P t f ] = lim v→0 1 v [P v (P t f ) -P t f ] = A(P t f )
by definition of the generator of an infinitesimal semigroup; in particular, d du P t-u f = -A(P t-u f ). So, we have

H(s, X s ) = H(0, 0) + s 0 [(P t-u f ) ′ (X u )] 1 {Xu>0} dW u . By letting s ↑ t, it follows that f (X t ) = P t f (0) + t 0 (P t-u f ) ′ (X u )1 {Xu>0} dW u .
By conditioning with respect to F W and interchanging conditional expectation and integration (see e.g. [START_REF] Jan | Flows associated to Tanaka's SDE[END_REF]Lem.4 where Dg = 1 (0,∞) g ′ .

Note that Proposition 3.2 uniquely characterizes the conditional law of X t given W since S is dense in C 0 ([0, ∞)). It also gives the Wiener chaos expansion for G f (W + t ) as well by Theorem 1.1. We can alternatively consider the semigroup for W + , denoted by P + to obtain an expansion for G f (W + t ). By similar calculations as above, we find [START_REF] Warren | On the joining of sticky Brownian motion[END_REF] G f (W + t ) = P + t G f (0) + ∞ n=1 J n+ t f where J n+ t f = 0<s 1 <...<sn<t P + s 1 (D + (P + s 2 -s 1 . . . D + (P + t-sn f )))(0) dW s 1 . . . dW sn and D + g(x) = g ′ (x). Then, the Wiener chaos expansions of E[f (X t )|F W ] and G f (W + t ) must be equal. In particular, P t f (0) = P + t G f (0), and J n = J n+ for n ≥ 1. Vice versa, showing directly the equality of the Wiener chaos expansions of E[f (X t )|W ] and G f (W + t ) would be an alternative approach to verify the conditional law. Instead, our proof in this paper has drawn upon the broader perspective of the generalized equation satisfied by flows induced by the sticky equation and the Wiener flow is completely described.
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  ) is the Wiener solution of the generalized sticky equation. This gives Theorem (1.1) in view of what precedes. Proposition 2.7. K is the, unique up to modification, Wiener stochastic flow of kernels solution of the generalized sticky equation driven by W .

  .7]), we get[START_REF] Warren | Branching processes, the Ray-Knight theorem, and sticky Brownian motion[END_REF] E[f (X t )|F W ] = P t f (0) + P t-u f ) ′ 1 (0,∞) (X u )|F W ] dW u .Note that since the integrand is adapted and the quadratic variation of W is an absolutely continuous function of t, trivially, the stochastic integral can be defined uniquely in almost sure sense (see e.g.[9, Rem.3.2.11]). That is, we can work with a progressively measurable modification of E[(P t-u f ) ′ 1 (0,∞) (X u )|F W ]. Let the Wiener chaos expansion of E[f (X t )|F W ] be given by E[f (X t )|F W ] = P t f (0) + which exists in L 2 sense [14, pg.202]. Now, in view of Lemma 3.1 (P t f ) ′ 1 (0,∞) ∈ S and we can iterate Equation (15) to get P s (0, dx)(P t-s f ) ′ (x) dW s 1 <...<sn<t P s 1 (D(S s 2 -s 1 . . . D(P t-sn f )))(0) dW s 1 . . . dW sn

	and similarly J n t f =	J 1 t f =	0	t	(0,∞)	t	n=1 E[(∞	J n t f
					0			

0<s