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APPLICATION OF STOCHASTIC FLOWS TO THE STICKY

BROWNIAN MOTION EQUATION

Hatem Hajri
(1)

and Marc Arnaudon
(2)

Abstract. We show how the theory of stochastic flows allows to recover in an
elementary way a well known result of Warren on the sticky Brownian motion
equation.

1. Introduction

A θ-sticky Brownian on the half line [0,∞[ is a diffusion with generator

(Af)(x) =

{

1
2
f ′′(x) if x > 0

θf ′(0+) if x = 0

and domain

D(A) =

{

f ∈ C2(0,∞) : f ∈ C0([0,∞)), f ′(0+),

f ′′(0+) exist, f ′′(0+) = 2θf ′(0+), lim
x→∞

f ′′(x) = 0

}

where θ > 0 is the stickiness parameter. This is a special case of Feller one di-
mensional diffusions introduced by Feller by means of their infinitesimal generators
[4]. Sticky Brownian motion has an intermediate behavior, depending on θ, between
Brownian motion absorbed at 0 and reflected Brownian motion. One possible path
construction of a θ-sticky Brownian motion X started from 0 consists in slowing down
a reflected Brownian motion R started from 0 whenever it is at 0 in the following
way

Xt = R
inf{u:u+ 1

θ
Lu>t}

where Lt = limǫ→0
1
2ǫ

∫ t

0
1{0≤Rs≤ǫ}ds is the local time of R [8, 7]. As a consequence

of this construction, the amount of time spent at 0 by X up to t,
∫ t

0
1{Xs=0}ds, has
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positive probability of being greater than 0. More precisely, the following equality
holds in law

∫ t

0

1{Xs=0}ds
law
=

|N |

θ

√

t +
N2

4θ4
−

N2

2θ2

where N ∼ N (0, 1) (see Proposition 5 in [7]).
In this paper, we are interested in sticky Brownian motion as solution of the

following stochastic differential equation

(1) Xt = x+

∫ t

0

1{Xs>0}dWs + θ

∫ t

0

1{Xs=0}ds

driven by a standard Brownian motion W and where θ > 0 is a given constant and
x ∈ [0,∞[ is a given initial condition.

It has been proved by Chitashvili [2] that (1) has a weak solution X which is a
θ-sticky Brownian motion started from x, the law of (X,W ) is unique but X is not a
strong solution to (1). Later on, Warren [14] derived the following remarkable result
describing the law of Xt given W (the form given here follows Theorem 2 [12]).

Theorem 1.1. For all t ≥ 0 and all measurable bounded f ,

E[f(Xt)|F
W ] = Gf(W

+
t )

where W+
t = Wt −min0≤u≤tWu and Gf(y) = E[f((y − T )+)] with T an exponential

variable with mean 1
2θ

.

This theorem shows, in particular, that X can not be a strong solution to (1).
Subsequently, Warren [12] described all couplings of solutions to (1) which leave the
diagonal. Before going on, we mention the work of Engelbert and Peskir [3] where a
third proof of the non strong solvability of (1) and a two sided version of it can be
found (see also [1]).

A remarkable and attractive fact in Warren’s conditional law identity is that it
involves the well known and habitual process W+ strong solution to

(2) Yt = Wt + Lt(Y )

where Lt(Y ) = limǫ→0
1
2ǫ

∫ t

0
1{0≤Ys≤ǫ}ds. This raises the question whether there is a

link between (1) and (2) explaining Theorem 1.1.
In this paper, it is shown that stochastic flows of kernels [10] provide an answer to

the previous question. More precisely, define

(3) ϕs,t(x) = (x+Wt −Ws)1{t≤τs(x)} +W+
s,t1{t>τs(x)}

where τs(x) = inf{u ≥ s : x +Wu −Ws = 0}. Then ϕ is a stochastic flow of maps
which solves the flow version of (2)

ϕs,t(x) = x+Wt −Ws + Ls,t(x)
2



where Ls,t(x) = limǫ→0
1
2ǫ

∫ t

s
1{0≤ϕs,u(x)≤ǫ}du. Now, let

(4) Ks,tf(x) =

{

f(ϕs,t(x)) if s ≤ t ≤ τs(x)

Gf (ϕs,t(x)) if t > τs(x)

Then K is a stochastic flow of kernels which is a strong solution to the flow of kernels
version of (1): for all t ≥ s, f ∈ D(A) and x ≥ 0 a.s

(5) Ks,tf(x) = f(x) +

∫ t

s

Ks,u(f
′1(0,∞))(x)dWu +

1

2

∫ t

s

Ks,uf
′′(x)du

K, called the Wiener solution of (5) in [10], is characterized by being the unique
(up to modification), strong solution of (5). This leads to Theorem (1.1) as the
conditional law of Xt given W should coincide with K0,t(0, dy).

The next section gives details and proofs of the previously claimed facts. It can
be remarked that the proofs only rely on the definition of stochastic flows with no
additional results of the theory and can be taught to various students. The present
paper provides, in particular, a direct application of stochastic flows to the study of
weak solutions (see [6] for another recent application by the same authors).

2. Proof of Theorem 1.1

2.1. The generalized sticky Brownian motion equation.

Let us now recall the definition of stochastic flows from [10]. In this definition
P(R+) denotes the space of all probability measures on R+ and B(E) indicates the
Borel σ-field of E.

Definition 2.1. A stochastic flow of kernels K on R+, defined on a probability space
(Ω,A,P), is a family (Ks,t)s≤t such that

(1) (s, t, x, ω) 7→ Ks,t(x, ω) is measurable;
(2) For all h ∈ R, s ≤ t, Ks+h,t+h is distributed like Ks,t;
(3) For all s1 ≤ t1 ≤ · · · ≤ sn ≤ tn, the family {Ksi,ti , 1 ≤ i ≤ n} is independent;
(4) For all s ≤ t ≤ u and all x ∈ R+, a.s. Ks,u(x) = Ks,tKt,u(x) and Ks,s(x) =

δx;
(5) For all f ∈ C0(R+), t ≥ 0,

lim
t→0+

E[(K0,tf(x)− f(x))2] = 0;

(6) For all f ∈ C0(R+), x ∈ R+, t ≥ 0,

lim
y→x

E[(K0,tf(y)−K0,tf(x))
2] = 0;

(7) For all t ≥ 0, f ∈ C0(R+), limx→∞ E[(K0,tf(x))
2] = 0.
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We say that ϕ is a stochastic flow of mappings on R+ if Ks,t(x) = δϕs,t(x) is a
stochastic flow of kernels on R+.

For K, a stochastic flow of kernels on R+,

(6) P n
t f(x1, · · · , xn) = E

[

∫

R
n
+

f(y1, · · · , yn)K0,t(x1, dy1) · · ·K0,t(xn, dyn)

]

defines a Feller semigroup on R
n
+. Moreover (P n)n≥1 is a compatible family (in a sense

explained in [10]) of Feller semigroups acting respectively on C0(R
n
+) that uniquely

characterize the law of K. Conversely, it has been proved in [10] that to each family
of compatible Feller semigroups (P n)n≥1 is associated a (law unique) stochastic flow
of kernels such that (6) holds for every n ≥ 1.

Definition 2.2. (Real white noise) A family (Ws,t)s≤t is called a real white noise if
there exists a Brownian motion on the real line (Wt)t∈R, that is (Wt)t≥0 and (W−t)t≥0

are two independent standard Brownian motions such that for all s ≤ t, Ws,t =
Wt −Ws (in particular, when t ≥ 0, Wt = W0,t and W−t = −W−t,0).

For a family of random variables Z = (Zs,t)s≤t, define FZ
s,t = σ(Zu,v, s ≤ u ≤ v ≤ t)

for all s ≤ t.

Definition 2.3. Let K be a stochastic flow of kernels and W be a real white noise
defined on the same probability space. We say that (K,W ) is a (generalized) solution
of the sticky equation if for all s ≤ t and for all f ∈ D(A), t ≥ 0 and x ∈ R a.s

Ks,tf(x) = f(x) +

∫ t

s

Ks,u(f
′1(0,∞))(x)dWu +

1

2

∫ t

s

Ks,uf
′′(x)du

If FK
s,t ⊂ FW

s,t for all s ≤ t, then K is called Wiener solution of the sticky equation.

The Wiener solution was introduced in [9] (it is called statistical solution there)
by means of its Wiener chaos expansion with respect to W only depending on the
semigroup of the diffusion (sticky Brownian motion here). Interestingly, this solution
exists and is unique under weak assumptions.

Let us explain the link between the generalized SDE and the original sticky equa-
tion (1). We start with the following

Lemma 2.4. If (K,W ) is a solution of the generalized sticky equation, then FW
s,t ⊂

FK
s,t for all s ≤ t.

In view of this lemma, we may sometimes say K is a solution of the generalized
sticky equation without specifying the white noise since it is deteremined by K.

Proof. Define τs(x) = inf{u ≥ s : x + Ws,u = 0}, then following Lemma 3.1 in
[11], one proves that Ks,t(x) = δx+Ws,t

for all s ≤ t ≤ τs(x). Since this holds for x

arbitrarily distant from 0, the lemma follows.
4
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Assume (K,W ) satisfies Definition (2.3) and set

Qt(f ⊗ g)(x, w) = E[K0,tf(x)g(w +Wt)]

Then (Qt)t defines a Feller semigroup. Denote by L its generator and D(L) its
domain. A simple application of Itô’s formula shows that D1 ⊗ C2

K(R+) ⊂ D(L)
where D1 = {f ∈ D(A) : f ′(0+) = 0} and C2

K(R+) denotes the space of C2 functions
on R+ with compact supports. Moreover for all f ∈ D1 and g ∈ C2

K(R+),

L(f ⊗ g)(x, w) =
1

2
f(x)g′′(w) +

1

2
g(w)f ′′(x) + f ′(x)g′(w).

Let (X,B) be the Markov process associated to (Qt)t and started from (x, 0). Then
X is a θ-sticky Brownian motion started from x and B is a standard Brownian motion
started from 0. The first claim holds because (Qt)t is the unique Feller semigroup
satisfying

Qtf = f +

∫ t

0

Qu(Af)du, f ∈ D(A)

Now for f ∈ D1 and g ∈ C2
K(R+),

(7) f(Xt)g(Bt)−

∫ t

0

L(f ⊗ g)(Xs, Bs) is a martingale.

As X is a θ-sticky Brownian motion, it satisfies Xt = x+Mt+θ
∫ t

0
1{Xs=0}ds with M

a martingale with quadratic variation 〈M〉t =
∫ t

0
1{Xs>0}ds. Writing Itô’s formulas

for f(X)g(B) and using (7) shows that
∫ t

0

f ′(Xs)g
′(Bs)d〈M,B〉s =

∫ t

0

f ′(Xs)g
′(Bs)ds.

Now by an approximation argument 1{Xs>0}d〈M,B〉s = 1{Xs>0}ds and consequently

Mt =
∫ t

0
1{Xs>0}dBs in L2(P). So finally, (X,B) is a weak solution to the sticky

equation.
More generally, considering the semigroups Qn

t (f ⊗ g)(x, w) = E[K⊗n
0,t f(x)g(w +

Wt)] for n ≥ 1, one can prove that there exists a one to one correspondance between
the laws of stochastic flows of kernels satisfying Definition (2.3) and compatible weak
solutions to the sticky equation (see Proposition 2.1 in [5] for more details in a similar
context).

To close this paragraph, we mention that if ϕ is a flow of mappings such that
K = δϕ satisfies Definition (2.3), then necessarily ϕ is a flow of mappings solution of

ϕs,t(x) = x+

∫ t

s

1{ϕs,u(x)>0}dWu + θ

∫ t

s

1{ϕs,u(x)=0}ds
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and vice versa. Warren [13] proved that such a flow ϕ exists and its law is uniquely
determined. This flow can also be constructed by applying the general results of [10].

Proposition 2.5. Let (K1,W ) and (K2,W ) be two Wiener solutions of the sticky
equation relatively to the same W . Then for all s ≤ t and x ∈ R, with probability
one, K1

s,t(x) = K2
s,t(x).

Proof. We follow the proof of Proposition 4.2 [5]. Note that Ks,t(x, y) = K1
s,t(x) ⊗

K2
s,t(y) is a stochastic flow of kernels on R

2
+ and

Qt(f ⊗ g ⊗ h)(x, y, w) = E[K1
0,tf(x)K

2
0,tg(y)h(w +Wt)]

is a Feller semigroup on (R+)
2 × R. Fix x ∈ R+ and let (X1, X2, B) be the Markov

process associated to Q started from (x, x, 0), then B is a standard Brownian motion
and X1, X2 are two θ-sticky Brownian motions. Moreover X1, X2 are solutions of
the sticky equation driven by B and in particular (X1, B) and (X2, B) have the same
law. Since K1 and K2 are two Wiener solutions, there exist two measurable func-
tions F 1

t,x, F
2
t,x : C([0, t],R) → P(R) such that K1

0,t(x) = F 1
t,x(Wu, u ≤ t), K2

0,t(x) =

F 2
t,x(Wu, u ≤ t). Let N1

0,t(x) = F 1
t,x(Bu, u ≤ t) and N2

0,t(x) = F 2
t,x(Bu, u ≤ t). We will

prove that for all measurable bounded f : R → R a.s.

(8) N i
0,tf(x) = E[f(X i

t)|σ(Bu, u ≤ t)], i = 1, 2

To prove (8), we will check by induction on n that for all t1 ≤ · · · ≤ tn−1 ≤ tn = t

and all bounded functions f, g1, · · · , gn : R → R, we have

(9) E
[

Ki
0,tf(x)

n
∏

j=1

gj(Wtj )
]

= E
[

f(X i
t)

n
∏

j=1

gj(Btj )
]

, i = 1, 2.

Let us prove this for i = 1 and set Q1
t (f ⊗ g) = Qt(f ⊗ Id ⊗ g). For n = 1, (9) is

immediate from the definition of Q. Let us prove (9) for n = 2. We have

E[K1
0,tf(x)g1(Wt1)g2(Wt)] = E[K1

0,t1(Q
1
t−t1

(f ⊗ g2)(·,Wt1))(x)g1(Wt1)].

On the other hand

E[f(X1
t )g1(Bt1)g2(Bt)] = E[Q1

t−t1
(f ⊗ g2)(X

1
t1
, Bt1)g1(Bt1)].

Now (9) holds using a uniform approximation of Q1
t2−t1

(f⊗g) by a linear combination
of functions of the form h⊗k, h, k ∈ C0(R+). It is clear now from (8), that N1

0,t(x) =

N2
0,t(x) since (X,B) and (Y,B) have the same law.

�

Now in the rest of the paper, we take W a real white noise and will check that K
defined in (4) is the Wiener solution of the generalized sticky equation. This gives
Theorem (1.1) in vue of (8).
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Proposition 2.6. K is the, unique up to modification, Wiener stochastic flow of
kernels solution of the generalized sticky equation driven by W .

Proof. To check that K is a stochastic flow of kernels, we will only check the flow
property for all f ∈ C0(R+), s ≤ t ≤ u and x ∈ R+, with probability 1,

(10) Ks,uf(x) = Ks,tKt,uf(x)

The other claims in Definition 2.1 are easy to verify. Let us now check (10). For
this, we will use the fact that ϕ defined in (3) is a stochastic flow of mappings (for
non specialists of stochastic flows, this can be proved following the same steps (a),
(b), (c) given below). Moreover this is a coalescing flow : for all x ≥ 0, the paths
ϕs,·(x) and ϕs,·(0) meet for the first time at τs(x) and then finish together.

Note that Gf writes as (with λ = 2θ)

(11) Gf(y) = f(0)e−λy + λe−λy

∫ y

0

f(u)eλudu

We first check (10) for x = 0. By the flow property of ϕ, Ks,uf(0) = Gf(ϕs,u(0)) =
Gf(ϕt,u ◦ ϕs,t(0)) and Ks,tKt,uf(0) = GKt,uf (ϕs,t(0)). Using the independence of
increments of ϕ, it suffices to prove that for all y ≥ 0, a.s Gf (ϕt,u(y)) = GKt,uf(y)
which is equivalent to

eλyGf (ϕt,u(y)) = Gf(ϕt,u(0)) + λ

∫ y

0

Kt,uf(a)e
λada

To prove this identity, note that for all y > 0, z 7→ ϕt,u(z) is differentiable at y with
derivative at y given by 1{u<τt(y)}. Thus by a simple calculation, the derivative of
z 7→ eλyϕt,u(z) at y coincides with λeλyKt,uf(y). This proves (10) for x = 0.

Now take x > 0 and let y = ϕs,t(x).

(a) On the event {u ≤ τs(x)}, we have τs(x) = τt(y), Ks,uf(x) = f(ϕs,u(x)), Ks,t(Kt,uf)(x) =
(Kt,uf)(y) = f(ϕt,u(y)) since u ≤ τt(y) and so (10) holds by the flow property
of ϕ.

(b) On the event {t ≤ τs(x) < u}, we still have τs(x) = τt(y) and Ks,uf(x) =
Gf(ϕs,u(x)) = Gf(ϕt,u(y)). Moreover Ks,t(Kt,uf)(x) = GKt,uf (y) and so the
flow property holds by the calculations above.

(c) On the event {τs(x) ≤ t}, we have Ks,uf(x) = Gf (ϕs,u(x)) = Gf(ϕs,u(0)) =
Ks,uf(0). Moreover Ks,t(Kt,uf)(x) = GKt,uf (y) = GKt,uf(ϕs,t(0)) = Ks,t(Kt,uf)(0)
and the flow property holds again from the case x = 0.

Thus K is a stochastic flow of kernels. Note that FK
s,t ⊂ FW

s,t for all s ≤ t. It remains
now to check that K solves the generalized equation. We take s = 0 and first x = 0.
Denote W+

0,t simply by W+
t . Let

D = {g ∈ C2(0,∞) : g ∈ C0[0,∞), g′(0+) = 0, g′′(0+) exists}
7



By Itô’s formula, for all g ∈ D

g(W+
t ) = g(0) +

∫ t

0

g′(W+
u )dWu +

1

2

∫ t

0

g′′(W+
u )du

Let f ∈ D(A) and set g(y) = Gf(y). Then g is continuous on R+, C2 on R
∗
+ and

(12) g′(y) = −λf(0)e−λy − λ2e−λy

∫ y

0

f(u)eλudu+ λf(y)

In particular g′(0+) = 0. Moreover

g′′(y) = λ2f(0)e−λy + λ3e−λy

∫ y

0

f(u)eλudu− λ2f(y) + λf ′(y)

and so Gf ∈ D. Consequently for all f ∈ D(A),

Gf(W
+
t ) = Gf(0) +

∫ t

0

(Gf )
′(W+

u )dWu +
1

2

∫ t

0

(Gf)
′′(W+

u )du

= f(0) +

∫ t

0

(Gf)
′(W+

u )dWu +
1

2

∫ t

0

(Gf)
′′(W+

u )du

We now check that for all f ∈ D(A) and y ≥ 0,

Gf ′1(0,∞)
(y) = (Gf )

′(y) and Gf ′′(y) = (Gf)
′′(y)

Using (11), we see that

Gf ′1(0,∞)
(y) = λe−λy

∫ y

0

f ′(u)eλudu

which is also equal to (Gf)
′(y) given in (12) by a simple integration by parts. Again

from (11), we have

Gf ′′(y) = f ′′(0)e−λy + λe−λy

∫ y

0

f ′′(u)eλudu

Integrating twice by parts, we see that

Gf ′′(y) = f ′′(0)e−λy−λf ′(0)e−λy+λf ′(y)−λ2f(y)+λ2f(0)e−λy+λ3e−λy

∫ y

0

f(u)eλudu

which is the same as (Gf)
′′(y) using the hypothesis f ′′(0) = λf ′(0) as f ∈ D(A).

Finally for all f ∈ DA,

Gf (W
+
t ) = f(0) +

∫ t

0

Gf ′1(0,∞)
(W+

u )dWu +
1

2

∫ t

0

Gf ′′(W+
u )du

or equivalently

K0,tf(0) = f(0) +

∫ t

0

K0,u(f
′1(0,∞))(0)dWu +

1

2

∫ t

0

K0,uf
′′(0)du

8



Now the case x > 0 holds by discussing t ≤ τ0(x) and t > τ0(x) and using the fact
that K0,t(x) = K0,t(0) for t ≥ τ0(x). �
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