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Stéphane Chau and André Galligo
Université de Nice Sophia-Antipolis and INRIA (GALAAD project)

FRANCE

Résumé

The intersection curve of two parameterized surfaces is characterized
by 3 equations Fi(s, t) = Gi(u, v), i = 1, 2, 3 of 4 variables. So, it is the
image of a curve in four dimensional space. We provide a method to draw
such curve with a guaranteed topology.

1 Introduction

1.1 Interest of the problem

In Computer Aided Geometric Design (CAGD), parameterized surfaces are
used for delimiting volumes. The computation of the intersection curve between
such two surfaces is thus crucial for the description of the CAGD objects. A
simple used method to address this problem consists in using a mesh for each
surface, and then proceed to their intersection via intersection of triangles. A
drawback is instability created by intersecting almost parallel triangles. A more
stable method relies on global representations of the surfaces by B-splines ; ho-
wever the usual CAGD procedures (offsetting, drafting, ...) do not conserve this
model. In practice, so-called procedural surfaces (i.e. given by evaluation) are
used, in CAGD systems, for representing sequences of constructions indicated by
the user. Then a B-spline approximation is computed for further developments.
So, even if the intersection method is exact, in its final step, it only provides an
approximation of the “real” intersection curve.
Idealistically, approximations of the surfaces should not be separated from the
intersection process. An intermediate strategy is to approximate the given sur-
faces by meshes of algebraic shapes more complex than the triangles ; hence
the intersection locus will be more precise. A good choice is to approximate by
Bézier surface patches of small degree (see section 1.2). Then, it is crucial to be
able to efficiently intersect such two polynomial parameterized surfaces.
In this paper, we aim to contribute to a robust solution of this problem which
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Figure 1 – Grid of biquadratic patches on the left. Grid of boxes with n = 2p

and m = 2q on the right.

avoid some drawbacks as large intermediate algebraic expressions that appear
in projection methods.
The intersection curve of two such parameterized surfaces is characterized by 3
equations Fi(s, t) = Gi(u, v), i = 1, 2, 3 of 4 variables. So, it is the image of a
curve in four dimensional space. We provide a method to draw such curve with
a guaranteed topology.

1.2 An example of biquadratic meshing of a procedural
surface

Let S be a general parameterized surface given by evaluations. We consider
a grid of points on S of size (2m + 1, 2n + 1). This is used to construct a grid
of biquadratic patches of size (m,n). Figure 1 left illustrates this grid in the 2D
parameter space. Thus the coefficients are shared between adjacent patches. An
example of such kind of approximation is given in figure 2. In this example, we
have on the left a shape composed by three B-spline surfaces, then we consider
an offset, which cannot be represented by a B-spline, and we approximate it by
a grid of 144 biquadratic patches (the result is shown on the right). In order to
see the offset, a clipped picture is also given (figure 3).

Now, we consider two such grids and hierarchies on S1 and S2 two surfaces
to be intersected. We produce another grid of m × n 3D boxes taking min-
max values of the patch coefficients, each box contains the patch thanks to
the convex hull property of the Bézier surfaces. Then, we build a quadtree
hierarchy covering this grid. Figure 1 right illustrate this construction. Using
these quadtrees we search for intersecting boxes and we obtain a set of pairs of
intersecting boxes associated to patches. This process is efficient and, as we will
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Figure 2 – Approximation of an offset by a grid of 144 biquadratic patches.

see, provides a good description of the intersection curve. However, it requires an
efficient and robust algorithm for the intersection of two Bézier surface patches.

Remark 1 If m and n as powers of 2, then the data structure is simplified.

In the sequel of the paper, we concentrate on the presentation of our subdi-
vision algorithm for the intersection of algebraic pacthes.

1.3 Organization of the paper

In section 2, a brief description of previous work on topology computation is
given. Especially an introduction on subdivision approach for the plane curves is
illustrated. Then, section 3 deals with the topology of an implicit four dimension
curve. A complete description of its computation, by a subdivision method, is
given in this case. In fact, this case corresponds to the intersection curve between
two polynomial parameterized patches.
Some implementation aspects are addressed in section 4 and some examples are
presented. The last section (5) is about the topology in R3. It shows that the
link between the intersection problem in R4 and the corresponding geometric
situation in R3 is not trivial.
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Figure 3 – Approximation of an offset by a grid of 144 biquadratic patches
(clipped picture).

2 Previous work on topology computation of a
curve

2.1 Isotopic curve

The topology of an algebraic curve C in Rn (n ≥ 2) can be represented by
a list of line segments whose concatenation forms a curve isotopic to C. Several
constructions make this definition effective.
Sweeping methods rely on parallel lines or planes and detect topological events
(critical points) such as tangent points to the sweeping planes or singularities ;
we refer to [1, 2] for planar curves and [3, 4] for spatial curves. With these
algebraic approaches, the precise determination of the critical points generally
requires to compute sub-resultant sequences and is often time consuming.

Subdivision and exclusion techniques (see [5, 6]) rely on (simple) criteria
to remove unnecessary domains then restrict to domains where the situation is
tame. Polynomial representation in Bernstein bases is generally preferred (see
[7, 8]).
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Figure 4 – Topology via regularity test in 2D case.

2.2 Regularity test and subdivision method

A subdivision approach for computing the topology of the intersection curve
between two algebraic surfaces is given in [5]. It consists in subdividing the
domain until a regularity test is satisfied. Let us briefly recall it.

Let f(x, y) be a polynomial and B = [a, b]× [c, d] ⊂ R2 a box, consider the
implicit curve associated to f in the box B by the equation f(x, y) = 0. A regu-
larity test will allow to determine uniquely the topology of the curve in the box
from its intersection with the boundary. A collection of segments is provided,
which realizes an isotopy.

Proposition 1 If ∂yf(x, y) 6= 0 for all (x, y) ∈ B = [a, b] × [c, d], then for all
x ∈ [a, b] there exists at most one y ∈ [c, d] such that f(x, y) = 0.

Proof. Let x0 be a value in [a, b]. If there were two different values y0 < y1 in
[c, d] such that f(x0, y0) = f(x0, y1) = 0 then by Rolle’s theorem, it would exist
y2 ∈ [y0, y1] such that ∂yf(x0, y2) = 0. �

Remark 2
— This criterion considers ∂yf(x, y) for all values (x, y) in the box and not

only for all points of the curve, so it is rather restrictive.
— To implement this criterion, the polynomial ∂yf(x, y) is expressed in

Bernstein basis and the coefficients are required to share the same sign.
— A similar statement holds replacing the condition ∂yf(x, y) 6= 0 by ∂xf(x, y) 6=

0 (for all (x, y) ∈ B).

If f satisfies this test, then the topology of the curve {(x, y) ∈ B | f(x, y) = 0}
can be determined uniquely knowing the intersection points between the curve
and the border of B. Hence, a first step is to compute all these intersection
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points (a point is repeated if its multiplicity is even) and sort them by their
x component to obtain a list of points p1, p2, . . . , p2s−1, p2s. Then, in the box,
the curve is isotopic to the set of segments : [p1, p2], . . . , [p2s−1, p2s] (see the
illustration in figure 4).
The criterion can be checked recursively subdividing the initial curve (using De
Casteljau’s algorithm) until a family of boxes is obtained where the test is ve-
rified.
The approach is extended (in [5]) to the case of 3D curve defined implicitly by
2 equations.
This provides an elegant and efficient solution to the topology computation
problem of an intersection curve between two implicit surfaces.

3 Topology of a parameterized surface/parameterized
surface intersection

3.1 Equations

Let F and G be two polynomial surface patches

F :

(
[0, 1]2 −→ R3

(s, t) 7−→ F (s, t)

)

G :

(
[0, 1]2 −→ R3

(u, v) 7−→ G(u, v)

)

We suppose that the intersection F ∩G is a curve :

C =
{

(s, t, u, v) ∈ [0, 1]4 | F (s, t)−G(u, v) = 0
}
.

Our aim is to compute the topology of C by a subdivision method generalizing
the approach described in section 2. An injectivity criterion which says that for
all s0 ∈ [0, 1] there exist at most one (t0, u0, v0) ∈ [0, 1]3 such that F (s0, t0) −
G(u0, v0) = 0 is needed. So, for a fixed s0 ∈ [0, 1], let us study the map :

φ :

(
[0, 1]3 −→ R3

(t, u, v) 7−→ F (s0, t)−G(u, v)

)

Thereafter, we set the notation φ(t, u, v) = F (s0, t)−G(u, v) = (φ1, φ2, φ3).

3.2 Topology of a 4 dimension implicit curve (regularity
criterion)

3.2.1 Construction of the injectivity criterion for φ

.
A necessary condition of injectivity is the local injectivity of φ. By the inverse

function theorem, it is satisfied when the jacobian of φ is non zero over [0, 1]3 :

∀(t, u, v) ∈ [0, 1]3,det (∂tφ(t, u, v), ∂uφ(t, u, v), ∂vφ(t, u, v)) 6= 0.
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If φ is not injective, there exist two different points A and B in [0, 1]3 such
that for all i ∈ {1, 2, 3}, φi(A) = φi(B). Our analysis relies on the introduction
of the two following subsets of [0, 1]3 :

S1 :=
{
M ∈ [0, 1]3 | φ1(M) = φ1(A)

}
(1)

C1,2 :=
{
M ∈ [0, 1]3 | φ1(M) = φ1(A) and φ2(M) = φ2(A)

}
. (2)

We assume local injectivity and look for sufficient conditions of injectivity
of φ.

First case : A and B are on a same connected component of C1,2 denoted by
Γ. As Γ is a connected curve, local injectivity of φ implies that Γ can be
parameterized (by the implicit function theorem). So φ3 restricted to Γ
is differentiable and takes the same value at A and B. Hence, φ3 admits
an extremum on C1,2. This would contradicts local injectivity of φ, so it
cannot happen.

Second case : A and B are on two different connected components of C1,2

denoted by CA and CB . None of these two curves can describe a loop
because this would contradict the local injectivity of φ.

Therefore CA (respectively CB) intersects two times the border of the cube
[0, 1]3 ; in four distinct points P1, P2, P3 and P4. So we get a sufficient condition
of injectivity if we can rule out this last possibility. Our strategy is to impose
sufficient monotony conditions on φ1 and φ2.

3.2.2 Monotony condition on φ1

First, we impose monotony conditions on φ1 restricted to the edges of [0, 1]3.
For example, we can require that φ1 increases on each edges of [0, 1]3 as indicated
in figure 5. So φ1 vanishes at most once on each path going from the vertex O to
the vertex I following the ordered egdes. This condition implies that the implicit
surface S1 (of equation φ1(t, u, v) = φ1(A)) is connected. Indeed, if S1 admitted
two connected components in the cube, they would intersect the edges at the
same points which is impossible. Moreover we classify all possible configurations
by the number of the intersection points (3, 4, 5 or 6) between S1 and the edges
as illustrated in figure 6. Note that as C1,2 ⊂ S1 and ∂S1 ⊂ ∂[0, 1]3, the equality
#(C1,2 ∩ ∂S1) = #(C1,2 ∩ ∂[0, 1]3) holds (see figure 7)

3.2.3 Monotony condition on φ2 along ∂S1

Now, we study each configuration. We impose monotony conditions on φ2
along the border of S1 to force C1,2 to have at most two intersection points with
this border.
The following lemma will be useful :
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Figure 5 – Example of monotony of φ1 on the edges of [0, 1]3.

Lemma 1 Let f be a C1 real function over an open convex set U ⊂ R2 and h
be a nonzero vector in R2. If for all u ∈ U we have ∇f(u) · h > 0, then f is
increasing in the direction h on U i.e ∀u ∈ U and ∀ε > 0 such that (u+ε h) ∈ U ,
we have f(u+ ε h) > f(u).

Proof. Let u0 ∈ U and ε > 0 such that (u+ε h) ∈ U . Then f(u0+ε h)−f(u0) =∫ 1

0
ϕ(t) dt with ϕ(t) = ∇f (u0 + tεh) · h which is positive. �

— Replacing f by −f , we get similarly that ∇f(u) · h < 0 implies f is de-
creasing in the direction h on U .

— Recall that in the plane, for a nonzero vector −→w = (a, b), the vector
−→w⊥ := (−b, a) is normal to −→w and the oriented angle ̂(−→w ,−→w⊥) is equal
to π/2.

So, in order to ensure monotony of φ2 along the border of S1 (see figure 7), we
orient S1 by the vector field ∇φ1. This induces an orientation on the border ∂S1

of S1 ; ∂S1 is the intersection of S1 with the faces of the cube. This orientation of
the border of S1 in each face is given by −→w⊥ where −→w is the projection of ∇φ1 on
the faces. Then, we impose a monotony direction of φ2 restricted to ∂S1 on each
face of the cube. To illustrate this procedure, figure 8 represents, in the three
coordinates planes, the monotonies shown on figure 7 : the desired monotony
in the (u, v)-plane (pictured in the middle of figure 8) is obtained by projecting
the vector ∇φ1 on this plane and we have −→w = (∂uφ1(0, ·), ∂vφ1(0, ·)). Then,
we force the decreasing of (u, v) 7→ φ2(0, u, v) in the direction −→w⊥. Applying
Lemma 1, we require :

∀(u, v) ∈ [0, 1]2,

(
∂uφ2(0, u, v)
∂vφ2(0, u, v)

)
·
(
−∂vφ1(0, u, v)
∂uφ1(0, u, v)

)
< 0.
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Figure 6 – Configurations of the surface S1 in [0, 1]3 under the monotony
constraint on φ1.

This previous dot product is a polynomial of bi-degree (3, 3) with respect to
the variables (u, v). Considered also as a polynomial in s (that we fixed at the
beginning of this section) it is of degree 4 in s.

3.2.4 Choice of monotony constraints

Here, we present our choice of sufficient condition such that #(C1,2∩∂S1) ≤
2. First, we consider the case where S1 intersects the 6 faces of the cube [0, 1]3.
In the other cases, we just skip the condition corresponding to missing segments
contracted to a point (see figure 9).

The border of S1 is isotopic to an hexagon {M1, . . . ,M6} as shown on figure
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Figure 8 – Traces of S1 on the faces of the box with orientations.

11.
A sufficient monotony condition is given by a choice of an initial point MI

and a final point MF among {M1, . . . ,M6} with the possible choice MI = MF

such that φ2 is monotonic on the paths on ∂S1 joining MI to MF . This clearly
implies that φ2 vanishes at most twice on ∂S1. Now, we can extend our choice
of sufficient conditions simply by remarking that the 4 variables {s, t, u, v} play
similar roles.

1. Instead of fixing s, we can fix t, u or v and consider the corresponding
maps.

2. Also, the roles of φ1, φ2,and φ3 can be exchanged.
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S1 intersect 6 faces of the box and the resulting configurations in the other cases.

All these options will be considered to speed up the implementation.

4 Algorithms and data structure used for im-
plementation

In this section, we present some implementation aspects of the intersection
algorithm described in section 3. They are implemented in Axel 1 which is an
algebraic geometric modeler.

1. http ://axel.inria.fr
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Figure 11 – Traces of S1 on the faces of the box (it corresponds to the case
represented in figure 9).

4.1 Hexatree data structure and topology

A subdivision algorithm on a box in [a1, b1]× [a2, b2]× [a3, b3]× [a4, b4] ⊂ R4

explores sub-boxes constructed by considering intermediate values ci between
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ai and bi for i ∈ {1, . . . , 4} ; here we choose ci =
ai + bi

2
. So a box has 16 sub-

boxes. Iterating this construction, an hexatree is build ; i.e. each node of the
tree has 16 children numbered from 0 to 15. In binary expression, this num-
ber is written α1α2α3α4 with αi = 0 or 1 ; for i ∈ {1, . . . , 4}, if αi = 0, the
sub-boxe is constructed over [ai, ci] and if αi = 1 it is constructed over [ci, bi].
For example, the child twelve is written 1100 and corresponds to the sub-box
[c1, b1]× [c2, b2]× [a3, c3]× [a4, c4].
This is called an hexatree data structure, it generalizes the quadtrees which are
widely used to represent planar shapes. To each node of the tree is associated
a label which stores the needed information. Here, the information will be the
description of the topology of the intersection curve C into the corresponding
sub-boxe. More precisely, we require that, at the leaves of the tree, this inter-
section is empty or its dimensions are below some threshold or it is isotopic to
a collection of disjoint segments ; each segment connects two intersection points
of the curve C with the border of the considered sub-box. Each such segment
is represented by the coordinates of its extremal points. Note that in R4, all
the 16 children sub-boxes of a given box are adjacent. Our injectivity criterion
described in 3 is implemented in a test function (called regular) if it returns
false on a sub-box then the sub-box is subdivided.

4.2 Subdivision algorithm

The algorithm 4.1 describes the subdivision method for the topology com-
putation. Some other functions are needed and are described in the sequel.
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Algorithm 4.1: Subdivision algorithm for topology in 4D.

topology(C, B, ε)
Input: The curve C, a box B = [a1, b1]× [a2, b2]× [a3, b3]× [a4, b4] and a

tolerance ε.
Output: A liste of segments in R4 representing the topology.
Create the hexatree H;
Initialize the root of H by B and the intersection points C ∩ ∂B;
Create a list of nodes L;
L ←− rootOf(H);
while L 6= ∅ do

Take the first item n of L (and remove it from L);
if regular(C, n) then

n←− regularTopology(C, n);
else if the current box has a size ≥ ε then
L ←− subdivision(C, n);

else
Give an arbitrary topology by connecting all the border points to
the center of the box (this applies when we stop the subdivision);

end

end
return fusion(H);

Now we describe the other functions called by topology.

Function regular :

This function is the injectivity criterion described in section 3. In fact there
are 4 different tests and each of them corresponds to the fixed variable choice
s, t, u or v (see algorithm 4.2). If one is verified, then we call the corresponding
function regularTopology.

Function regularTopology :

If one of the four regularity tests regular is verified, then the topology of C
is known. In the function regularTopology, we just have to connect the border
points in the current node. In fact, we also have 4 different regularTopology

functions corresponding to the fixed variable s, t, u or v. For example, if s = s0
is fixed, then we have, in the current node, a list of even number of border points
p1, p2, . . . , p2k−1, p2k (by repeating a point if its multiplicity is even) sorted by
their s component. Then, the topology is described by the list of segments :
[p1, p2], . . . , [p2k−1, p2k].

Function subdivision :

This function subdivides the current box creating 16 children as described in
section 4.1. It allocates the inherited intersection points and compute the new

14



Algorithm 4.2: Injectivity criterion.

regular(C, n)
if φ is locally injective in n then

if φ1 has the wanted monotony on the edges of n then
if φ2 or φ3 has the wanted monotony on ∂S1 then

return true;
else

return false;
end

else if φ2 has the wanted monotony on the edges of n then
if φ1 or φ3 has the wanted monotony on ∂S2 then

return true;
else

return false;
end

else if φ3 has the wanted monotony on the edges of n then
if φ1 or φ2 has the wanted monotony on ∂S3 then

return true;
else

return false;
end

else
return false;

end

else
return false;

end

intersection points that appear with the faces of these sub-boxes.

Function fusion :

This function is called when the construction of the hexatree H is finished.
More precisely each leaf of H contains the topology in the corresponding sub-
box. fusion provides the topology of C in the initial box B. Its implementation
(see algorithm 4.3) consists in merging recursively the topology between the
children of each node. For a given node n and an integer i ∈ {0, . . . , 15}, we
denote by child(i, n) the i-th child as described in section 4.1. Besides, if l1
and l2 are two list of segments in R4, merge(l1, l2) will be the list of segments
in R4 formed by all the segments of l1 and l2.

15



Algorithm 4.3: Topology by subdivision.

fusion(n)
Input: A node of hexatree as it is described in section 4.1
Output: A list of segments in R4

if n is a leaf then
return the list of segments in n;

else
return
merge(

merge(

merge(

merge(fusion(child(0, n)), fusion(child(1, n)))
merge(fusion(child(2, n)), fusion(child(3, n))))

merge(

merge(fusion(child(4, n)), fusion(child(5, n)))
merge(fusion(child(6, n)), fusion(child(7, n)))))

merge(

merge(

merge(fusion(child(8, n)), fusion(child(9, n)))
merge(fusion(child(10, n)), fusion(child(11, n))))

merge(

merge(fusion(child(12, n)), fusion(child(13, n)))
merge(fusion(child(14, n)), fusion(child(15, n))))));

end

4.3 Connected components and loops

The algorithm 4.1 allows to identify the connected components easily. In-
deed, the resulted topology of C is a list of segments (in R4) of the form
{[p1, p2], . . . , [p2k−1, p2k]} where k is a positiv integer. If there exist i ∈ {1, . . . , k−
1}, such that p2i 6= p2i+1, then the two segments [p2i−1, p2i] and [p2i+1, p2i+2]
are on two different connected components of the topology. A similar simple
argument allows to detect the loops (connected) components.

4.4 Examples

We illustrate the algorithm on some examples. First we gives two intersec-
tion situations of two polynomial patches shown on figures 12 and 13. Another
classical example (the teapot) is given. Figure 14 shows an approximation of the
teapot by 32 biquadratic patches with intersection loci. The resulting topology
of these loci is shown on figure 15.
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Figure 12 – Example of intersection between two polynomial patches.

Figure 13 – Example of intersection between two polynomial patches.

5 Topology in R3

Sections 3 and 4 presented an algorithm for computing the topology of a
curve C in R4 defined by 3 equations F (s, t) = G(u, v) (with (s, t, u, v) ∈ [0, 1]4
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Intersection loci

Figure 14 – Teapot intersection loci.

Figure 15 – Topology of the teapot intersection.
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for example). We introduce the following notations :

π1 :

(
[0, 1]4 −→ R2

(s, t, u, v) 7−→ (s, t)

)

π2 :

(
[0, 1]4 −→ R2

(s, t, u, v) 7−→ (u, v)

)
.

The intersection Γ in R3 of the two parameterized surface patches F and G is
the image of C by F ◦ π1 (or G ◦ π2) of C. Our algorithm guarantee (up to the
tolerance ε) the topology of C, which is isotopic to a collection of segments in
[0, 1]4. This implies that the image by F ◦ π1 of a connected component C1 of C
is connected. However, if C1 is a loop in ]0, 1[4 (a closed path) then its image is
also a loop in R3 but we do not know its knot structure. Moreover, if C admits
several connected components which are loops in [0, 1]4, their images by F ◦π1 in
R3 may be interlaced (like the olympic rings). If C1 is determined by a segment
discretization which is too coarse, the knot structure (and the interlacements)
can be missed in the image by F ◦ π1 of this piecewise approximation. We may
have the situation depicted in figure 16.

Similarly, the topology of the projection Ĉ of C ⊂ [0, 1]4 on [0, 1]2 by π1, may
not be determined by a coarse discretization of C, even if this discretization
is sufficient to determine the topology of C in [0, 1]4, see figure 17 : the self-
intersection point is missed. In order to capture these features, the algorithm
described in section 3 and 4 should be extended and the subdivision criteria
refined.

As described in sections 3 and 4, we chose a threshold ε such that the singular
points of the curve Γ will be contained in boxes of size smaller than ε. We aim
to determine the topology of the curve Γ up to this indetermination, i.e. two

F ◦ π1

C1 ⊂ [0, 1]4 intersection curve in R3

Figure 16 – Image of a loop with knot structure.
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C ⊂ [0, 1]4

π1

Ĉ ⊂ [0, 1]2

Figure 17 – Missing a self-intersection point by projection.

segments entering a box of size smaller than ε are supposed to intersect and
form a singular point. All other points are considered smooth.
Suppose that C has k loops connected components (where k is a positiv integer)
denoted respectively by C1, . . . , Ck (we can detect them by using the criterion
described in section 4.3). We denote Γi = (F ◦ π1)(Ci) for all i ∈ {1, . . . , k}.

5.1 One curve box

Recall that each node of the hexatree H (described in section 4.1) stores
a box in R4 and the topology of C in this box. Let n be a node of H, Bn be
the corresponding box and Bn = BF ∩ BG, where BF (respectively BG) is
the bounding box constructed with the control points of F (s, t) (respectively
G(u, v)) written in the Bernstein basis with respect to π1(Bn) (respectively
π2(Bn)). Then, by the convex hull property of the Bézier patches, the bounding
box Bn contains the part of Γ corresponding to Bn i.e. the image of C ∩ Bn by
F ◦ π1 (or G ◦ π2).

The discretization of C is refined, by subdividing all the leafs of H, such that
each box (in R4) intersecting one of the loops C1, . . . , Ck contains at most one
segment, i.e. its border intersects C in two points. Note that in the previous
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section our algorithm allowed more intersection points. After this step some
ambiguities of the node and interlacement structure of Γ may remain. One can
see in figure 18 two bounding boxes (in R3) sharing interior points. Joining
the pairs of points on the borders, the red curve segment may (or may not)
pass behind the other green curve segment. So we need to refine further the
discretization.

Lemma 2 Let γ1, γ2 ⊂ Γ be two disjoint segments of curves. After a finite
number of subdivisions of (F ◦π1)−1(γ1) and (F ◦π1)−1(γ2), the boxes containing
γ1 are disjoint from the boxes containing γ2.

Proof. Indeed by subdivision, the boxes can be made nearer to the curves than
the distance between the two curves. �

The subdivision on the leafs of H is refined by using lemma 2. Then, we
rule out potential ambiguity on interlacements between two loops (situation
corresponding the to right picture on figure 16) because we avoid the situation
depicted on figure 18. So it remains to analyze the ambiguity on a possible node
that is not a loop.

Figure 18 – Two boxes sharing interior points.
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5.2 Node and discretization

Lemma 3 Let γ ⊂ Γ be a segment of curve contained in a bounding box obtained
after the subdivision process described in section 5.1. Then, the border of this
box has just two points p1 and p2 of γ. After a finite number of subdivisions of
(F ◦ π1)−1(γ), we have det(NF , NG,

−−→p1p2) 6= 0 (in the corresponding box) with
NF = ∂sF × ∂tF and NG = ∂uG× ∂vG.

Proof. The condition det(NF , NG,
−−→p1p2) 6= 0 means that the tangent vector of

γ is never orthogonal to −−→p1p2. As γ is smooth par hypothesis, the lemma is a
consequence of the implicit function theorem. �

If we subdivide the leafs of H by using lemma 3, then we rule out potential
interlacements ambiguities inside each bounding box. However, it remains to
avoid interlacing from two adjacent branches.

Proposition 2 Assume the discretization satisfies lemma 2 and lemma 3. Sup-
pose also that det(NF , NG,

−−→p1p2) 6= 0, det(NF , NG,
−−→p2p3) 6= 0 and det(NF , NG,

−−→p1p3) 6=
0 for two adjacent branches [p1, p2] and [p2, p3].

If the image (by F ◦π1 or G◦π2) of a loop connected component of C admits
a node, then it shows up on the discretization i.e. the sequence of segments
obtained by subdivision also describes a node isotopic to that of Γ.

Proof. Indeed, we will have the situation depicted on figure 19. By the condi-
tions det(NF , NG,

−−→p1p2) 6= 0, det(NF , NG,
−−→p2p3) 6= 0 and det(NF , NG,

−−→p1p3) 6= 0,
we cannot have a node with formed by two adjacent segments (depicted on figure
20). So, we just have to investigate the case where we have at least three seg-
ments [p1, p2], [p2, p3] and [p3, p4]. Lemma 3 ensure that each of these segments
does not interlace. If the three segments are interlacing, then the bounding boxes
containing respectively [p1, p2] and [p3, p4] intersect each other so it contradicts
lemma 2. �
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Figure 19 – Interlacement situation.
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Figure 20 – Interlacement with two adjacent segments.
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