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On mixed polynomials of bidegree (n, 1)

Specifying the bidegrees (n, m) of mixed polynomials P (z, z) of the single complex variable z, with complex coefficients, allows to investigate interesting roots structures and counting; intermediate between complex and real algebra. Multivariate mixed polynomials appeared in recent papers dealing with Milnor fibrations, but in this paper we focus on the univariate case and m = 1, which is closely related to the important subject of harmonic maps. Here we adapt, to this setting, two algorithms of computer algebra: Vandermonde interpolation and a bissection-exclusion method for root isolation. Implemented in Maple, they are used to explore some interesting classes of examples.

Introduction

An expression P (z, z) = k=0..n j=0..m a k,j z k zj where z and z are complex conjugated, is called a (univariate) mixed polynomial of bidegree (n, m). We will assume m ≤ n and concentrate on the case where m = 1. Our aim is to study the roots in C of P . Identifying C with R 2 and separating real and imaginary parts of P , i.e. writing P = f (x, y) + ig(x, y) with i 2 = -1 and z = x + iy, we get a pair of real bivariate polynomials of degrees at most n + m. Conversely from a pair of bivariate polynomials (f (x, y), g(x, y)), letting x = z+z 2 , y = z-z 2i and P = f + ig, we get a univariate mixed polynomial. However, since the two representations are different, we can investigate interesting roots structures and develop algorithms, intermediate between complex and real algebra. This representation can be also used with several variables (z 1 , .., z l ); it received a renewed interest with the works in Algebraic Geometry of [START_REF] Ruas | On Real Singularities with a Milnor fibration[END_REF] on a new exotic sphere (à la Pham-Brieskorn); more recently Mutsuo Oka [START_REF] Oka | Non-degenerate mixed functions[END_REF], thanks to mixed polynomials, answered a question of [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF] on real generalizations of Milnor fibration theorem. Harmonic polynomials and rational maps are important special cases of mixed polynomials; they have been extensively studied and were applied to the study of gravitational lensing [START_REF] Khavinson | On the number of zeros of certain rational harmonic functions[END_REF][START_REF] Petters | Mathematics of gravitational lensing: Multiple imaging and and magnification[END_REF]. Indeed after simplification, the roots finding problem for a mixed polynomial equation P (z, z) of bidegree(n, 1) reduces to the study of z = r(z), where r is a rational map; we will briefly recall some recent root counting formulas obtained in that field, [START_REF] Khavinson | On the number of zeros of certain rational harmonic functions[END_REF][START_REF] Rhie | Gravitational lenses with 5(n -1) images[END_REF][START_REF] Bleher | Counting zeros of harmonic rational functions and its application to gravitational lensing[END_REF].

Several techniques developed in Computer algebra seem useful to better investigate these objects. Specially in the case m = 1 where one expects properties similar to those of usual complex univariate polynomials. Unfortunately, the presentation of a univariate polynomial as a product via its roots is not valid in this context. Moreover, although P of bidegree (n, 1) has 2n + 2 coefficients, it may admit more than 2n + 2 roots in C. We will discuss and illustrate this behavior, directly related to bounding the number of zeros of harmonic maps. Beside the case m = 1, the results obtained so far on harmonic polynomials, see e.g. [START_REF] Wilmhurst | The valence of harmonic polynomials[END_REF][START_REF] Sheil-Small | Complex Polynomials[END_REF][START_REF] Lee | Remarks on Wilmshurst's theorem[END_REF], concentrated on m near n. The study of the case m = 2 is still lagging behind.

In this paper, we adapt two basic algorithms in this new setting and use them to explore some interesting classes of examples, including random mixed polynomial of bi-degree (n, 1) for rather large n. The first tool is a variant of Vandermonde matrix needed to interpolate P (z, z), in such a way that we can prescribe some roots in C and then investigate the set of roots of P in C. The second tool is a bisection-exclusion method which generalizes the classical one, see e.g. [START_REF] Yakoubsohn | Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions[END_REF]. Together with a specific Newton process, it allows us to certify the set of complex roots we computed in each of our examples. We do not provide general complexity formulas but restrict ourselves to the case of mixed polynomials with simple roots (with an algorithm to check this property). Experiments, with the computer algebra system Maple, on mixed polynomials, of degrees (n, 1), with given random distribution of coefficients allowed to observe interesting patterns.

The paper is organized as follows: In the next section 2, after some examples we present general properties of mixed polynomials and give an overview of results recently obtained on zeros counting of rational harmonic maps. In section 3, we construct generalized Vandermonde matrices and prove that they are generically invertible. In section 4, we present some investigation tools and together with examples; we investigate the effect of choosing the coefficients with several stochastic distributions. In section 5, we develop for the case (n, 1), our bisection-exclusion method for locating the roots of P in C, together with a Newton process and a test to check that a small disc contains only one root.

This paper is an amplification and a continuation of our presentation at the conference SNC'2014 [START_REF] Elkadi | Exploring univariate mixed polynomials[END_REF].

We denote by ā the complex conjugated of a complex number a, and by P the complex conjugated of a (mixed or usual) polynomial P , its coefficients are the complex conjugated of the coefficients of P . 

General properties

We begin with some examples of mixed polynomials and pictures of their roots.

Example 1 A random mixed polynomial of bidegree (4, 1)

P :=(4-3i)z 4 z+(3+7i)z 4 +(8i)z 3 z+(7+9i)z 3 +(-6-9i)z 2 z +(6-3i)z 2 +(-5-6i)z z+(1-7i)z+(-5-9i)z+4+2i.
It has 3 roots in C shown in green in Figure 1. Writing P = f (x, y)+ig(x, y), the implicit curves defined by f = 0 and g = 0 are shown in red and blue.

Example 2 An example of a random polynomial of bidegree [START_REF] Schehr | Condensation of the Roots of Real Random Polynomials on the Real Axis[END_REF][START_REF] Khavinson | On a maximal number of zeros of certain harmonic polynomials[END_REF] with 19 roots, see Figure 2.

Example 3 Consider P = z z + e, when e = -1, its roots form a circle; when e = 0, the only root is a point; while when e = 1, P has no root in C.

We briefly review some properties of univariate mixed polynomials inherited by their representations.

Factorization

The product of two mixed polynomials P 3 = P 1 P 2 can be expressed by a set of algebraic conditions on their coefficients, identical to the set of conditions corresponding to "usual" bivariate polynomials with the same bidegrees. Therefore, the factorization properties and algorithms valid for bivariate polynomials, are also valid for univariate mixed polynomials.

Dimension

The real variety V (P ) defined in C = R 2 by P = 0, where P is an univariate mixed polynomial (non identically zero), can be either of dimension 1, 0 or -1 (i.e. V (P ) is empty).

In the first case, writing P = f + ig as above, the bivariate polynomials f (x, y) and g(x, y) have a non constant gcd h(x, y) which vanishes on a curve of R 2 . In other words this cannot happen if the gcd is constant, e.g. with probability 1 in a "random" case.

As we will see below, the third case cannot happen if the bidegree satisfy n > m = 1.

The most "common" case is the second one. If it is so, a natural question to ask is: what is the maximum number of roots for a given bidegree?

Topological degree

Let P = f + ig as above. For each isolated root z j = (x j , y j ), j = 1..N of P we can attach the local topological degree of the map (f, g) : R 2 → R 2 at (x j , y j ). Let us recall that the topological degree is defined as follows: since (f, g) is (locally) continuous and differentiable the image of a sufficiently small circle γ around (x j , y j ) is a closed loop around (f (x j , y j ), g(x j , y j )); the (signed) degree counts the number of turns (clockwise) of this loop. For a simple root, this degree is 1 or -1 according to the sign of the (non vanishing) jacobian determinant of (f, g) at that root.

In particular, near a simple root z 0 of P , the local equation of P can be written Φ := zφ(z) = 0; by a well known formula, the jacobian of Φ is equal to |φ (z)| 2 -1; hence this jacobian is negative if and only if |φ (z)| < 1, in other words φ is locally a contraction map. We will return below to this condition when we consider attractive fixed points, see 2.5.2. Now, a sufficiently big circle, containing all the roots, can be viewed either as a loop "around infinity" or as a loop around each root of P . So, one relates the degree "at infinity" to the sum of the local degrees at all roots of P . The degree at infinity for a "generic" univariate mixed polynomial of bidegree (n, m) is simply nm and this is always true when m = 1. This observation was turned into a precise theorem by Oka [START_REF] Oka | Non-degenerate mixed functions[END_REF], who after factorizing the total degree part of P , P m+n = cz p zq s j=1 (z +γ j z), says that P is admissible iff for all j, |γ j | = 1 and let

(j) = 1 if |γ j | < 1 and (j) = -1 if |γ j | > 1.
In that case, Oka proved that the sum of the local degrees is pq + j (j). As a first consequence, if the sum of the local degrees is non zero, in particular if m = 1, n > 1, the zero set V (P ) of P cannot be empty. As a second consequence, in the "generic" case (for instance in the random case, as a claim with probability one) all roots of P are simple and the sum of the (signed) degrees is equal to nm, this implies that the number of roots is nm + 2K where K is a non negative integer.

When m = 1, this result is known in the community of researchers on harmonic maps as the argument principle.

Resultants

Instead of calculating the resultant of the real representation f (x, y), g(x, y) of P (z, z) to study the variety V (P ), we can use another resultant which respect the structure of P (z, z).

Since P (z, z) = 0 iff P (z, z) = 0, the complex roots of P (z, z) can also consider as roots of the pair of "usual" polynomials P (z, w) and P (w, z), such that w = z.

The elimination of a variable in

P (z, w) = 0 P (w, z) = 0. (1) 
leads to a "biprojectif" resultant of degree n 2 + m 2 , a consequence of multiprojective Bézout theorem, see [START_REF] Shafarevich | Basic Algebraic Geometry[END_REF]. In the discrete case, the number of solutions in

P 1 (C) × P 1 (C) is n 2 + m 2 .
Notice that the elimination of one variable in the system of polynomials equations f (x, y) = 0 and g(x, y) = 0 leads to (n + m) 2 solutions (x j , y j ) in P 2 (C). With this representation, the size of the Sylvester matrix is 2(n + m) whereas in the case of the resultant in (z, w) the size is n + m.

Real coefficients

Proposition 1 Let P (z, z) = f (x, y) + ig(x, y) be a mixed polynomial of bidegree (n, m) with real coefficients; where f and g are real bivariate polynomials; let also Y = y 2 . Then y is a factor of g, writing g = yĝ, f and ĝ are polynomials in (x, Y ), that we denote by f and g. Moreover, the number of solutions in

C 2 of f (x, Y ) = 0, g(x, Y ) = 0 is bounded by n(n-1) 2 + m(m-1) 2 .
The proof is easy, see [START_REF] Elkadi | Exploring univariate mixed polynomials[END_REF].

Rational harmonic map

Consider the case of mixed polynomials of bidegree (n, 1): P (z, z) := zq(z)p(z) with deg(q) = n, deg(p) ≤ n; after a translation on z also called Tchirnhausen transform, we can assume deg(p) ≤ n-1. We first characterize the case when dimension V (P ) equals one, then in the sequel of the paper, we will assume n > 1 and gcd(p, q) = 1 which implies that the dimension of V (P ) is zero.

Dimension of V (P )

We already observed that the mixed equation of a circle of center a ∈ C and radius R is the mixed polynomial of bidegree (1, 1), Q a,R := z zāzaz + |a| 2 -R 2 = 0. In that case the imaginary part g(x, y) of Q a,R is identically zero. Similarly, the mixed equation of a general line in C \ 0 is the mixed polynomial of bidegree (1, 1), L a := az + āz -1 = 0.

Multiplying one of these two equations by a "usual" polynomial p(z) of degree n -1, we get a mixed polynomial P (z, z) of bidegree (n, 1) such that its zero set has real dimension one. Indeed its zero set V (P ) contains a circle or a line.

The following property is attributed to Ph. Davis since it was first mentioned in his 1974 book [START_REF] Davis | The Schwarz function and its application[END_REF]. We also gave a simple proof in [START_REF] Elkadi | Exploring univariate mixed polynomials[END_REF].

Proposition 2

The only possible curve contained in the zero set V (P ) of a mixed polynomial P (z, z) of bidegree (n, 1) is either a circle or a line. Now, we will only consider the case where V (P ) = 0 and assume n > 1.

Counting roots of z = r(z)

We assume n > 1, deg(p) ≤ n -1, gcd(p, q) = 1, and gcd(q, q ) = 1; deg(q) = n. The roots of P (z, z) = zq(z)p(z) are the roots of z = r(z), with r(z) := p(z) q(z) . We will also write r(z) := n j=1 µ j z-z j , where z j denotes the (distinct) roots of q(z) and µ j ∈ C. Counting the roots of z = r(z) has been an active field of research due to its interpretation in gravitational lensing, see e.g. [START_REF] Petters | Mathematics of gravitational lensing: Multiple imaging and and magnification[END_REF] and important progresses have been achieved.

Theorem 1 ([14])

The number N (r, n) of roots of z = r(z) is bounded by 5n -5.

Theorem 2 ([24]

) There exists a family of rational functions r n , n > 1 such that N (r n , n) = 5n -5.

Theorem 3 ([4]) There exists a family of rational functions r

n,k , n > 1, k = 0, .., 2n -2, such that N (r n,k , n) = n -1 + 2k.
Let us briefly comment these results. We already observed that N (r, n) ≤ n 2 + 1 and that N (r, n) = n -1 + 2K, by the count of topological degrees (see section 2.3). Let z 0 be a (simple) root of P = f + ig, hence of z = r(z). Then a straightforward computation shows that the topological degree at z 0 of (f, g) is 1, (resp. -1), iff |r (z 0 )| > 1, (resp. |r (z 0 )| < 1). Moreover, z 0 is called sense preserving, (resp. reversing), and z 0 is a repelling, (resp. attractive), fixed point of the discrete dynamics z l+1 := r(z l ), l ∈ N. Denoting by N + and N -the numbers of attractive and repelling fixed points, we have

N -= N + + (n -1), then N (r, n) = N + + N -= 2N + + n -1.
Therefore, the first result reduces to prove that N + ≤ 2(n -1). The strategy, developed in [START_REF] Khavinson | On the number of zeros of certain rational harmonic functions[END_REF], is to show that each of the N + attractive fixed point, also attracts at least n + 1 critical points of the rational function Q(z) := r(r(z), which has 2(n 2 -1) critical points.

Rhies' examples [START_REF] Rhie | Gravitational lenses with 5(n -1) images[END_REF] are invariant under rotations centered at the origin of angle 2π n , in particular this makes the number of roots easier to count. They have a physical interpretation since they correspond to a configuration of equal masses (µ j = µ > 0) equally spaced on a circle centered at the origin and an additional small mass at the origin (which gives rise to a set of solutions very near to the origin).

The construction of generalizations of this configuration, in [START_REF] Bleher | Counting zeros of harmonic rational functions and its application to gravitational lensing[END_REF], proceeds for a fixed k, by induction on n, by adding a small enough mass which produces the expected effect but does not destroy the previous count, moving a little bit (almost infinitesimally) the previous roots.

The remaining question is: What happens far from these regular configurations and their small perturbations?

Vandermonde matrices

In this section, we consider the interpolation problem for finding the N = (n + 1)(m + 1) coefficients of a univariate mixed polynomial P (z, z) of bidegree (n, m), knowing its values at N points w j , j = 1..N of C. Writing the corresponding linear constraints, we obtain a square (N, N ) complex matrix which is a generalization of the classical Vandermonde matrix. Its determinant ∆ is a (not identically zero) multivariate mixed polynomial. Unfortunately, the property that when the N points w j are pairwise distinct then ∆ does not vanish, which holds true for usual polynomials, is not true for mixed polynomials.

Since we are interested by characterizing P by its roots, we will consider variants of that problem. First, we normalize to 1 the constant coefficient (we could similarly have fixed the highest bidegree coefficient) to get rid of the trivial solution. Then for the simple roots problem, we force P to vanish on N -1 points w j , j = 1..N -1. While for the case of simple and double roots problem, we force P to have a simple root at N -1 -2K points and a double root (with a specified direction) at K other pairs of points and directions (w j , θ j ) j = 1..K, with w j ∈ C and θ j ∈ [0, π[.

To ease the presentation, we consider separately the two cases and skip the study of the interpolation problem which is very similar to the first case. With the same approach, we can analyze mixed polynomials with real coefficients.

Simple roots

Given N -1 distinct points w l , l = 1..N -1, or equivalently a point W ∈ C N -1 , and sorting the pairs (k, j), k = 1..N -1, j = 1..N -1 lexicographically, we construct the (N -1, N -1) square matrix A whose l-th row is formed by the evaluation at w l of the monomial z k zj . Let us denote by ∆(W ) its determinant.

Proposition 3 ∆(W ) is a non identically zero mixed polynomial (in several variables).

Proof: It is clear that ∆(W ) is a mixed polynomial. We will show that it admits a higher derivative in (z, z) non identically equal to zero.

Since ∆(W ) is a determinant, its derivatives are linear function of its rows. For a fixed l, observe that the derivative, with respect to (w l , wl ), of a row where the variables (w l , wl ) do not appear, is just a zero row. While the highest order derivative, with respect to (w l , wl ), of a row where the only appearing variables are (w l , wl ), is a row with a non zero constant entry and all the other entries are zero.

We proceed by induction. We first consider the higher derivative ∆ 1 (W ) of order n in w 1 and order m in w1 of ∆. By the previous observations, it is a determinant of a matrix similar to A but where the first row has been replaced by n!m! times the unit row (1, 0, ..., 0): a 1 followed by N -2 zeros. Hence ∆ 1 (W ) does not depend on (w 1 , w1 ) and is equal to n!m! times the determinant of the first principal (N -2, N -2) sub matrix of A.

The argument can be repeated, and the proposition is proved by induction. •

When n = m = 1, three points w 1 , w 2 , w 3 in C \ 0 determine a unique circle or a unique line (if they are aligned).

When n = 2, m = 1, five points w 1 , w 2 , w 3 , w 4 , w 5 in C \ 0 on a circle centered at the origin of radius R, satisfy w l wl = R 2 , hence w 2 l wl = R 2 w l , for all l = 1..5. In other words, with the previous notations, the first and the fourth column of the determinant ∆ are proportional; hence ∆ = 0. This indicates that, unlike in the usual polynomial case, the zero locus of ∆ can be rather complicated. Here the "bad" points W correspond to a factorization of a mixed polynomial P of bidegree (2, 1) into a mixed polynomial of bidegree (1, 1) (z z/R 2 -1) and a polynomial of bidegree (1, 0).

Simple and double roots

We consider the case when we impose a double root at w in the direction u = e iθ . Infinitesimally, this amounts to consider the limit situation where P vanishes at w and at w + u when tends to zero. We keep the first row L 1 = (w k wj ) k,j like in the previous matrix A, but we replace the following row L 2 = [(w + u) k ( w + ū) j ) k,j ] by the limit L 2 of the linear combination (L 2 -L 1 )/ when tends to zero. More precisely we have L 2 = [(kw k-1 u wj + jw k ū wj-1 ) k,j ]. Factoring out ū = e -iθ , we obtain

L (w, w, θ) = e -iθ [kw k-1 e 2iθ wj + jw k wj-1 ] for k = 1..N -1, j = 1..N -1.
We denote by B this second generalization of the Vandermonde matrix corresponding to the case where we force P to have a simple root at N -1 -2K points w 2K+l , l = 1..N -2K -1, and a double root at K other pairs of points and directions (w l , u l = e iθ l ) l = 1..K. B is also a square (N -1, N -1) matrix, its first 2K rows L 1 , L 1 , L 2 , L 2 , ...L K are modeled as described in the previous paragraph. Dividing out each L l by the corresponding e -iθ l we obtain a determinant that we denote by ∆(W, Θ). To prove that it is not identically zero, it is sufficient to exhibit one of its higher derivative which is not identically zero. We follow roughly the same argument than in the previous subsection. Here we first perform the K differentiations with respect to θ 1 , .., θ K and divide out by the factors 2ie 2iθ l , l = 1..K; which amounts to get another determinant ∆ (W ) where the K rows L l have been replaced by the K rows (kw k-1 l wl j ) k,j . Hence we got rid of the variables θ l . Now, we perform on ∆ the maximum higher differentiation with respect to w 1 and w1 i.e. 2n -1 times with respect to w 1 and 2m times with respect to w1 ; we obtain a determinant which first row is n!m! times the unit row and the other rows are unchanged. Again, we perform the maximum higher differentiation with respect to w 1 and w1 so, we obtain a constant times a sub-principal minor of ∆ , of two orders less, which does not contain neither w 1 nor w1 .

We can iterate the argument. So we proved by induction the following generalization of the previous proposition.

Proposition 4 ∆(W, Θ) is a non identically zero mixed polynomial.

Real coefficients

We consider the case of mixed polynomials P with real coefficients.

We force a real mixed polynomial P of bidegree (n, 1) to vanish at K distinct pairs of conjugated complex numbers w 1 , w1 , ..., w K , wK and N -1-2K real numbers w 2K+k , with N = 2n + 1. We also normalize the coefficient of z n z to 1.

If the corresponding generalized Vandermonde matrix is invertible, the unique solution P will have real coefficients, the reason is that P (w l , wl ) = 0 implies P ( wl , w l ) = 0 hence, P satisfies the same equations P (w l , wl ) = 0 for l = 1..N -1, then by unicity P = P .

The first 2K rows of the generalized Vandermonde determinant are made of K pairs of conjugated rows, hence can be replaced by rows formed by their real and imaginary parts. It turns out that we can find adapted higher differentiations to generalize the argument of the section 3.

Requiring only r < 2n + 1 such linear independent conditions, we expect to obtain an affine space of dimension 2n + 1r.

Then, using (real) discriminant loci or quadrics defined from 2.5.2, we can imposer extra conditions to maximize the number of real roots. See section 4 for examples computed with this approach.

Exploration tools and examples

The techniques developed in the previous section are useful for finding examples and investigating roots sets.

A probabilist exploration tool with real coefficients

We write, a mixed polynomial P := zz n + a j z j + z b j z j then, P = f (x, y) + ig(x, y). Since the 2n coefficients a j and b j are real, y is a factor of g. Moreover f and g/y are polynomials in (x, Y ) with Y = y 2 .

We call R(Y ) the discriminant with respect to x of f and g/y. It is a polynomial in Y ; its coefficients are polynomials in the coefficients a j and b j . We also consider F (x) = f (x, 0), which is a real polynomial of degree n + 1. The roots of P in C are: first, the real roots of F and second, the real pairs (x, y) with Y = y 2 such that Y is a non negative root of R; then, generically, x can be written as a polynomial in Y . defined by the system (f, g/y) (e.g. thanks to a Groebner basis, or with minors of the Sylvester matrix).

We proceed as follows. We first require that x = 0 is a root of F if the degree of F is odd. We (repeatedly) choose randomly real values x 1 , x 2 , .., x n-1 ; and real positive values Y 1 , Y 2 , .., Y n-1 , and we require that P vanishes at the 2(n -1) pairs of conjugated roots

(x k + i √ Y , x k -i √ Y ), k = 1.
.n -1. These constraints are independent with probability one. They define an affine subspace of dimension 2 that we parameterize with two coefficients, say a 1 and b 0 .

We denote by F 1 the evaluation of F (divided by x, if the degree of F is odd) and by R 1 the evaluation of R divided by (Y -Y 1 )..(Y -Y n-1 ). We compute the discriminant A 1 of F 1 , viewed as as a polynomial in x. Its graph is the image (by a change of coordinates) of a section of a "swallowtail", studied in Catastrophe theory, it delimits portions of the plane (a 1 , b 0 ) where F 1 admits a fixed number of real roots.

Then, we compute the discriminant of R 1 , viewed as as a polynomial in Y . It admits generically two factors: a squared polynomial in (a 1 , b 0 ), and a simple polynomial in (a 1 , b 0 ), that we denote by A 2 . The graphs of A 2 = 0 and R 1 = 0 delimit regions where R 1 admits a fixed number of non negative real roots. We further analyze these regions to choose the coefficients (a 1 , b 0 ).

A variant of this method is to exploit the fact (recorded in section 2) that over n -1, the number of roots of P increases as twice the number of roots at which the topological degree is -1. So one can explore regions where the corresponding jacobian are negative. The evaluation of the jacobian at a point(x 0 , y 0 ) is a quadratic form in the coefficients. So, we get regions delimited by conics in the parameter plane. Notice that when P has real coefficients, the sign of the jacobian is the same at two conjugated roots.

Example with n = 5

We wish to compute an example with maximal number of roots, different from Rhies'one, with less symmetries.

To simplify the computation and the presentation, we set to 1 the leading coefficient and perform a translation on z, z := zα, (similar to the Tchirnhausen transform) in order to fix one term in the expansion of P .

For n = 5, following Theorem 1, the maximal possible number of roots is 5n -5 = 20, while the number of coefficients of P is only 11.

We proceed as explained above: interpolating at the origin and at 4 pairs of conjugated roots, corresponding to (x = 1, Y = 1), (x = -1, Y = 2), (x = -3, Y = 4), (x = 3, Y = 4), we end with two free parameters a 0 , b 0 . Then, we construct 4 conics defined by the jacobians of (f, g) at these 4 pairs. Then we can delimit a region where 3 of the 4 jacobians are negative, see Figure 3. We chose in that region, after two trials, the value a 0 = 70, b 0 = 40 which corresponds to a mixed polynomial with 8 pairs of conjugated roots and 4 real roots, hence the maximum number of roots. These roots are shown in Figure 4: the graphs of real and imaginary parts are colored in red and blue, the 8 attractive fixed points of z = r(z) are indicated by black solid boxes and the 12 repelling ones by green solid discs, while the 5 poles of r are indicated by brown diamonds. Observe the distributions of the intersections points (and their color) on the different ovals.

Physical configurations

We consider z = r(z), with r := p q = µ j z-z j , where gcd(q, q ) = 1, gcd(p, q) = 1; in the physical interpretation µ j are masses and should be real positive. Moreover, here we will assume here that p, q have real coefficients. This hypothesis implies some symmetries, in particular if µ j > 0 and z k = zj then µ j = µ k .

The family of examples studied by [START_REF] Rhie | Gravitational lenses with 5(n -1) images[END_REF], and by [START_REF] Bleher | Counting zeros of harmonic rational functions and its application to gravitational lensing[END_REF], used this representation. If we fix all the input data (except two) and express the constraints, we get nonlinear constraints which are difficult to deal with. So it is better to first convert the representation into a polynomial fraction and then, with linear constraints, apply the methodology of the previous subsection.

Random Mixed polynomials

In this section, we fix a distribution law of real numbers (such as the normal Gaussian or the uniform, with mean zero). Then we study the roots of a mixed polynomial P (z, z), which coefficients are chosen using this law.

A natural question is to find the expectation of the number of roots w.r.t. these choices. We made some statistics on different kinds of distributions. Recently, a related question has been studied theoretically in [START_REF] Petters | A Mathematical Theory of Stochastic Micro lensing. II. Random Images, Shear, and the Kac-Rice Formula[END_REF], the authors provided a generalized integral formula.

Uniform distribution

For n = 30, 31, 41, 50, we computed the roots of 100 mixed polynomials of bidegree (n, 1), which coefficients are integers uniformly distributed in -10..10 and collected the number of roots. From these statistics, we observed the same pattern shown in Figure 5 which corresponds to n = 100. For all these values of n, a typical distribution of the solutions roughly concentrate around the unit circle.

For this uniform distribution of real coefficients, the experimental average number of roots is about n. Moreover in about two third of the cases, we get n -1 i.e. the minimum number of roots respecting the lower bound provided by the topological degree (see section 2). Notice that for the "physical" case, [START_REF] Petters | Mathematics of gravitational lensing: Multiple imaging and and magnification[END_REF] showed that the minimum number of roots is indeed n + 1 and not n -1. 

Condensation

For "usual" univariate polynomials, when the coefficients are real and uniformly distributed, say in -10..10, the average number of roots is about (2/π)Log(n), while when the size of the coefficients depends exponentially on the exponents then, as proved in [START_REF] Schehr | Condensation of the Roots of Real Random Polynomials on the Real Axis[END_REF], the number becomes a O(n s ), 0 < s < 1 and increase with the level of exponentiation; this phenomena was observed by Majundar and Scher in [START_REF] Schehr | Condensation of the Roots of Real Random Polynomials on the Real Axis[END_REF] who compared it to a condensation process. Therefore, one wonders if the same kind of behavior occurs for random mixed polynomials of bidegree (n, 1). Our experiments indicate that it is not the case.

It would be interesting to find random distributions of coefficients which increase the number of attractive fixed points of the corresponding discrete dynamics; hence the number of roots of P .

Equidistribution of poles

We also considered a random case which approximate equidistribution of poles with same mass: We took a Kac type polynomial q of degree n (with standard normal distribution of coefficients) such that its roots roughly concentrate near the circle centered at the origin of radius 1 and its derivative p and considered the mixed polynomial P = nzqp. We found about n + 1 solutions near the unit circle. Figure 6 shows a typical set of solutions of P in red solid boxes together with the n roots of q in blue circles (3 more solutions, approximately at -1.7, 2 + 2.8i and 22.8i do not appear on the picture, very near to 3 roots of q). Notice the "almost pairing" between the red solid boxes and the blue circles almost aligned with the origin, the interpretation is that the non real solutions are near-by the non real roots of q, moreover the solutions seem a bit farther from the origin than the roots of q.

Compare with the patterns of the roots of q described in [START_REF] Galligo | Deformation of roots of polynomials via fractional derivatives[END_REF] which, in the uniform random case, also form an "almost aligned pairing" with the roots of q but are contained inside the convex hull of the roots of q.

Inverse problem: Given a random distribution of masses, positioned at the roots of a polynomial q(z). We can express the physical situation thanks to an additional polynomial p(z). We observe the n + 1 solutions Z k of the equation nzq(z)q (z) = 0. The problem of recovering the masses and q(z) from the set Z k , k = 1..n + 1 can be addressed using linear algebra, relying on the Vandermonde matrices of section 3.

For higher values of n, all these explorations require efficient methods for finding (i.e. isolating in a small box) the root of a mixed polynomial. It is the subject of the next section.

Numerical computations

Our aim is to locate, up to a prescribed precision, the roots in C of the equation

P := zB(z) -A(z) = 0 ( * )
where A and B are co-prime complex polynomials of degree n; we also let

Q := A B .
Equivalently this amounts to locate the roots of z -Q(z) = 0. Near a simple root of P , we can adapt Newton process to our setting.

Hypothesis: In all this section, we assume that all the roots of ( * ) are simple.

Newton process

Newton process near a simple root is based on a linear approximation of an equation. Here, we set w k+1 := z k+1 and solve, in w k+1 , z k+1 the linear system formed by the pair of conjugated linear equations:

w k+1 -z k+1 Q (z k ) = Q(z k ) -z k Q (z k ); z k+1 -w k+1 Q (z k ) = Q(z k ) -z k Q (z k ).
Then, Newton iteration can be written:

z k+1 := z k - (Q(z k ) -z k )Q (z k ) + (Q(z k ) -z k ) |Q (z k )| 2 -1 .
Alternatively, considering linear approximations of ( * ) and its conjugate, we get another formula:

z k+1 := z k - (z k B (z k ) -A (z k ))(z k B(z k ) -A(z k )) -B(z k )(z k B (z k ) -A (z k )) |z k B (z k ) -A (z k )| 2 -|B(z k )| 2
As usual, if the root is simple the process converges quadratically in a small enough neighborhood of the root, which is difficult to determine efficiently. In theory, one should be able to adapt the bounds given by Smale and his coworkers, see [START_REF] Blum | Complexity and Real Computation[END_REF]. But, since we focus on justifying the computations of our examples, it suffices to keep subdividing till we get convergence, up to a prescribed precision.

Near a simple root, the subdivision follows a bisection-exclusion scheme.

A bisection-exclusion algorithm

Bisection-exclusion algorithms are classical methods used to isolate roots of a polynomial or an analytic function, they were initiated by H. Weyl in [START_REF] Weyl | Randbemerkungen zu Hauptproblemen der Mathematik II[END_REF] in 1924, then improved by P. Henrici, see some historical hints in [START_REF] Yakoubsohn | Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions[END_REF], which provides a up to date presentation of the subject.

First reduction

If z 0 is a root of ( * ), then u 0 := 1 z 0 satisfies, after simplification, the equation

ūA 1 (u) -B 1 (u) = 0 ( * * )
where A 1 and B 1 are the so called reciprocal polynomials of A and B (i.e. just invert the order in the list of the coefficients).

Since the two equations are quite similar, we can apply twice a root finding algorithm restricted to the unit disc. Moreover if the coefficients of the polynomials are real numbers (which will be frequent in our examples) we can further restrict our study to the closed upper half unit disc, and complete by conjugation.

Principle

We will update a domain of the complex plane, equal to the union of a set S of squares S(z, c), z is the center of that square and c is its half length side. At the initialization, the domain includes the unit disc. A test function M is also chosen; given a square S, it returns a real number M (S). S is inductively updated as follows: For each square S of S, if M (S) > 0 then S is just removed from S, else S is divided in 4 smaller squares which are added at the end of the list S, while S is removed from S.

An invariant of the loop is that the roots of P are always contained in the union of the squares of S, while the length side of the squares decreases. The semantic of the exclusion test function M is that if M (S) > 0 then the square S does not contain any root.

Exclusion test functions

A first (natural) exclusion test function is

M 0 (S(z 0 , t √ 2 )) = | z0 -Q(z 0 )| -t(1 + ∞ k=1 |Q (k) (z 0 )| k! t k-1 )
obtained using the Taylor expansion of Q. Its positivity implies that for any z in the disc of radius t √ 2 centered at z 0 , |z -Q(z)| > 0 holds. Since the square S(z 0 , t) is contained in that disk, there are no root in S(z 0 , t).

However, we prefer to rely on the finite Taylor expansions of the polynomials A and B as follows. We denote, as usual, by A (k) and B (k) the k-th derivative of A and B, and to ease the reading of the formulas we also denote by A 0 , A 0 , A (k) 0 the values A(z 0 ), A (z 0 ), A (k) (z 0 ) and similarly for B. We collect the terms of the Taylor expansions of ( * ) at z 0 with z = z 0 + te, t ∈ R + , |e| = 1; we get:

P := zB(z) -A(z) = ( z0 B 0 -A 0 ) + t( n k=0 B (k) 0 k! t k ēe k ) +t( n k=1 z0 B (k) 0 -A (k) 0 k! t k-1 e k ).
Now, we define M (S(z 0 , t/ √ 2)) as

M := | z0 B 0 -A 0 | -t( n k=0 |B (k) 0 | k! t k ) -t( n k=1 | z0 B (k) 0 -A (k) 0 | k! t k-1 ).
Clearly, if M (S(z 0 , t √ 2 )) > 0 then P has no root in the square S(z 0 , t √ 2 ). We also define another test function using the Taylor expansion of a linear combination of P and P , which eliminates the term in zz 0 in a similar way than in the computation of Newton formula, expanding

B 0 P (z) -( z0 B 0 -A 0 )P (z).
Then, we obtain another test function M 1 , which is equal to:

M 1 := |B 0 ( z0 B 0 -A 0 )-( z0 B 0 -A 0 )(z 0 B 0 -A 0 )|-|z -z 0 |||B 0 | 2 -|z 0 B 0 -A 0 || - n j=2 |z -z 0 | j j! |B 0 ( z0 B (j) 0 -A (j) 0 ) -( z0 B 0 -A 0 )(z 0 B (j) 0 -A (j) 0 )| - n-1 k=1 |z -z 0 | k+1 k! |B 0 B (k) 0 -( z0 B 0 -A 0 )B (k) 0 |.

Algorithm

We now describe the algorithm we implemented in Maple.

A precision 2 -N and a number of digits for the floating point computations are fixed; they depend on the degree n and some a priori knowledge (or assumption) on the geometry. As a pre-processing, a small integer m 0 is also fixed, it is used to subdivide the unit square into 2 m 0 +2 small squares of side length 2 -m 0 , we initialize the set S to be a subset of these squares such that their union contains the unit disk. We order this set and call T the obtained list. The initial a priori division of the unit square allows to spare unnecessary evaluations of the function test, when the side length is not small enough. To give an idea of the parameters, for a degree n = 100 and a generic position of the roots, a typical choice we made for m 0 is 8, for Digits it is 30 and for N it is 40.

The algorithm consists of several loops which update the list T , it calls 3 different test functions M , M 1 and T .

First, we update T , recursively removing and testing with M its first square S(z 0 , 2 -m ), if the result is non positive we append at the end of T four new smaller squares obtained by dividing S(z 0 , 2 -m ) into four squares. We stop either when T is empty or when all the side length of its square are smaller than 2 -N/2 .

Examples show that the drawback of using M is that the size of the squares diminish but their number remain important and they form clusters of squares. The test function M 1 is a bit more complicated but is more efficient for diminishing the number of squares in the clusters Second, we update T , recursively removing and testing with M 1 . We also delimit clusters of squares. We stop either when T is empty or when all the sizes of the clusters are smaller than 2 -N/2 . Third, for each cluster of squares, we apply 10 times a Newton iteration, if it converges we get a candidate root and we apply a local injectivity test function (see next subsection), and subdivide further if needed till we reach the length side 2 -N .

Finally we return either FAIL or a list of approximations of simple roots.

Illustration

Let us give an illustration where A and B are random polynomials with real coefficients and degree n = 50. We chose N = 20 and start with about 250 squares. During the computation, the number of elements in T decreases and increases several times and eventually stabilizes. In Figures 7 and8 we show two states of subdivision: after 3000 and 10000 calls of the function M , the side length were about 2 -7 and 2 -9 (a red solid-box correspond to the center of a square). Notice the appearance of clusters of small squares. Then, to compare the effects of the two functions M and M 1 on a cluster of squares, we performed two different computations. First, we performed a loop of 2000 calls of the function M , Figure 9 shows a zoom of a cluster near a root (represented by a blue solid-box), the side length is about 2 -10 . Second, we performed a loop of 2000 calls of the function M 1 , Figure 10 shows a zoom of a cluster near the same root, the side length is about 2 -12 .

Observe that the scales are different in the two pictures; at this stage of the computation, the function M 1 is more efficient since it produces smaller clusters with less squares.

A local result

Here, we prove that, in a sufficiently small neighborhood of a simple root of P = z -Q(z) = 0, the test function M 1 behaves more efficiently than the test function M . Without lost of generality, we can assume that the root is the origin, so Q(0) = 0, we also set a := Q (0). Since the root is simple, we have |a| = 1. Then, in a small neighborhood V of 0, Q(z) = az + O(|z| 2 ), and Q(z) = āz + O(|z| 2 ). Let us specialize the functions M and M 1 for a square contained in V , using these notations, so here A = az + O(|z| 2 ), B = 1 and we consider 

|z 0 | = O(t). M (z 0 , t) = | z0 -az 0 | -t(1 + |a|) + O(t 2 ).
| z0 -az 0 | ≥ |1 -|a| 2 ||z 0 |. M 1 (z 0 , t) = |1 -|a| 2 ||z 0 | -t|1 -|a| 2 | + O(t 2 ) = |1 -|a| 2 |(|z 0 | -t) + O(t 2 ).
We see that when t tends to zero, while we cannot find a lower bound for M , for [START_REF] Blum | Complexity and Real Computation[END_REF]. We have indeed the following proposition.

M 1 if |z 0 | > (1 + b)t with b > 0 then (|z 0 | -t) remain strictly positive and M 1 (z 0 ,t) t > b + O
Proposition 5 After a sufficient number of subdivisions using the exclusion function M 1 , it remains at most 4 squares around each simple root of P .

Proof: If the root is the origin or a point 2 -l + 2 -k i of the subdivision grid, then it is clear that the four adjacent squares cannot be excluded. So, we consider the next adjacent squares as indicated in Figure 11. To simplify the presentation, assume that the root is the origin and let 2t be the diagonal length of a square. Let also z 0 be the center of a next adjacent square, then |z 0 | 2 ≥ 13 8 t 2 , hence |z 0 | > (1+0.25)t. Applying the reasoning of the previous paragraph, this implies that for t sufficiently small, the function M 1 excludes all the near-by squares around the four squares adjacent to the root. •

Injectivity Criteria

The calls to test functions M and M 1 in the bisection process, provide a family of clusters of squares. We would like to check if each of these cluster contains one and only one root. We proceed as follows. Given such a cluster, we run several times a Newton process starting from the center of one of the squares, till we get a convergence to a value; let call it z 0 . Then we consider a disc centered at z 0 containing all the squares of the cluster, and compute the following criteria based on an exclusion function T , if T > 0 then there are no other root in that disc. See an illustration in Figure 12.

For that purpose, we first write the equality z0 -Q(z 0 ) = 0, then consider the Taylor expansion of z -Q(z) near z 0 .

We get z -

z 0 -(z -z 0 ) ∞ k=1 Q (k) (z 0 ) k!
(zz 0 ) k-1 . A first local injectivity test function T 0 (t) is:

T 0 := ||Q (z 0 )| -1| - ∞ k=2 |Q (k) (z 0 )| k! t k-1 .
If T 0 (t) > 0 then there is no other root than z 0 in the disk of radius t centered at z 0 . The test works pretty well (up to a prescribed precision) in the examples, the draw back is that the sum is infinite.

We prefer to similarly construct another test function T (t), in terms of A and B, as follows:

T := ||B 0 | 2 -| z0 B 0 -A 0 | 2 | - n k=2 t k-1 k! |(z 0 B (k) 0 -A (k) 0 )| - n k=2 t k k! |B (k) 0 |.

Illustration (continued)

In the previous illustrative example with n = 50, when m reached m = 13 in the algorithm, there were 17 clusters of square in the half unit disc. For each of them the Newton process converges and the injectivity criteria can be called. After 1000 more subdivisions it was satisfied. Hence, up to the precision of the computations, we could conclude that they were 17 roots in the half unit disc.

For the cluster around z 0 = -.3885684 + .92085638i, shown in Figure 10, all the squares were contained in a disc of radius 10 -10 , after 1000 more subdivisions, there remained only four squares in the clusters which is contained in a disc of radius 2 -15 , then the injectivity criteria was satisfied.

In order to get rid of the clause "up to the precision of the computations", one should use interval arithmetic, as done e.g. in [START_REF] Sagraloff | A simple but exact algorithm and efficient algorithm for root isolation[END_REF].

Conclusion

In this paper we presented univariate mixed polynomials from a Computer algebra view point. After some general results, we concentrated on the case where the bidegree is (n, 1) and the coefficients are real numbers, aiming generalizations of behaviors of "usual" univariate polynomials; the complex plane C included in C 2 is viewed as a substitute of the real axis R included in C = R 2 . The equation zq(z)p(z) = 0 is (generically) equivalent to the equation z = p(z) q(z) . This second equation has been extensively studied for its application in gravitational lensing, and important results were obtained, that we briefly reviewed. We started its study from a computational point of view, and adapted to this setting, some efficient roots isolation algorithms. Relying on resultants and generalized Vandermonde matrices, we also constructed exploration tools and described some significant examples. Little is known on roots of mixed equations of bidegrees (n, m) with small m > 1. We plan to generalize the exposed methods to address the study of the equation z2 = r(z) and beyond.

Also, the polynomial solutions of the bi-Laplacian ∆ 2 , called bi-harmonic functions, are of great interest since they have important applications, see e.g. [START_REF] Muskhelishvili | Some basic problems of the mathematical theory of elasticity[END_REF]; they are real (and imaginary) part of mixed polynomials of the form zQ 1 (z) + Q 2 (z) + zQ 3 (z) + Q 4 (z),
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