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ON THE NUMBER OF LATTICE CONVEX CHAINS

JULIEN BUREAUX AND NATHANAËL ENRIQUEZ

Abstract. An asymptotic formula is presented for the number of planar lattice
convex polygonal lines joining the origin to a distant point of the diagonal.
The formula involves the non-trivial zeroes of the zeta function and leads to a
necessary and sufficient condition for the Riemann Hypothesis to hold.

The paper deals with the enumeration of lattice increasing convex chains
starting from the origin and ending at a point (n,n) of the diagonal. Convex
chains are defined as finite sequences of points (xi , yi)0≤i≤k of Z2 satisfying:

0 = x0 < x1 < x2 < · · · < xk−1 ≤ xk ,
0 = y0 ≤ y1 < y2 < · · · < yk−1 < yk ,

0 ≤
y1 − y0

x1 − x0
< · · · <

yk − yk−1

xk − xk−1
≤ +∞.

The point (xk , yk) will be called the endpoint of the chain.

(0, 0)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

x

y

(x1, y1)

In 1979, Arnol’d [1] considered the question of the number of equivalence
classes of convex lattice polygons having a prescribed area (we say that two
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polygons having their vertices on Z
2 are equivalent if one is the image of the

other by an affine automorphism of Z2). Later, Vershik changed the constraint
in this problem and raised the question of the number, and typical shape, of
convex lattice polygons included in a large box [−n,n]2. The cornerstone in this
problem is the estimation of the number p(n) of convex polygonal chains with
vertices in (Z∩ [0,n])2 and joining (0,0) to (n,n) (or more generally (n,cn) for
some c > 0). In 1994, a solution to this problem was found independently by
Bárány [2], Vershik [8] and Sinaı̆ [6]. Namely, they showed by different methods
that

p(n) = exp
[
3κ1/3n2/3(1 + o(1))

]
, where κ =

ζ(3)
ζ(2)

,

and that the limit shape of a typical convex polygonal chain is the arc of parabola
tangent to the sides of the square, which maximizes the affine perimeter.

Note that the approach of Sinaı̆ was recently made rigorous and extended
by Bogachev and Zarbaliev [4]. This is also this approach that we choose in
this paper and we make use of a proposition of this latter paper. Here, we go
further and fully exploit Sinaı̆’s probabilistic model by giving an exact integral
representation of the partition function and by making a precise asymptotic
analysis of it.

The appearance of the values of the Riemann zeta function in the above
formula suggests the arithmetic aspects of the problem. In this paper, we
establish a connection between the combinatorial analysis of the number of
convex chains and the zeroes of Riemann’s zeta function.

Theorem. The number p(n) of lattice convex chains with endpoint (n,n) satisfies

(1) p(n) ∼ e−2ζ′(−1)

(2π)7/6
√

3κ1/18n17/18
exp

[
3κ1/3n2/3 + Icrit

((κ
n

)1/3
)]
,

where κ = ζ(3)/ζ(2) and where the function Icrit will be defined later by equation (8).
Moreover, under the assumption that the zeroes ρ of the Riemann zeta function

inside the critical strip 0 <<(ρ) < 1 are simple, this function can be expressed as

(2) Icrit(β) =
∑
ρ

Γ (ρ)ζ(ρ+ 1)ζ(ρ − 1)
ζ′(ρ)βρ

,

where the precise meaning of the series will be given by (10).

A straightforward corollary of this theorem is that, if Riemann’s Hypothesis
was to hold, the oscillatory term Icrit((κ/n)1/3) inside the exponential would be
roughly of order n1/6. Both statements are actually equivalent, as we will show
in the comments section: the condition

(H) ∀ε > 0, logp(n) = 3κ
1
3n

2
3 +O(n

1
6 +ε)

holds if and only if Riemann’s Hypothesis does.
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In [3], Bodini, Duchon, Jacquot and Mutafchiev presented a precise asymptotic
analysis of digitally convex polyominoes, based on generating functions and on
some version of the circle method. This problem turns out to be strongly related
to the enumeration of convex chains. In the last section, we show how a slight
modification of Sinaı̆’s model makes its treatment possible.

1. A statistical mechanical model

We start this paper by reminding the correspondence between lattice convex
chains and non-negative integer-valued functions on the set of pairs of coprime
positive integers.

Let P be the set of primitive vectors, that is to say the set of all vectors (x,y)
whose coordinates are coprime positive integers, including the pairs (0,1) and
(1,0). As already used in Jarnı́k [5], the space of lattice increasing convex chains
starting from the origin is in one-to-one correspondence with the space Ω of
nonnegative integer-valued functions ω : P →Z+ with finite support (that is to
say, ω(v) , 0 only for finitely many v ∈ P ):

• The function ω associated to the convex chain (xi , yi)0≤i≤k is defined for
all v ∈ P by ω(v) = gcd(xi+1−xi , yi+1−yi) if there is exists i ∈ {0, . . . , k} such
that (xi+1 − xi , yi+1 − yi) is proportional to v, and ω(v) = 0 otherwise.
• The inverse map is obtained by adding up the vectorsω(v)v by increasing

slope order. In particular, the endpoint of the chain is equal to∑
v∈P

ω(v)v.

1.1. Description of Sinaı̆’s model and overall strategy. We endow the space
Ω with Boltzmann-like probability measures depending on two parameters
β = (β1,β2) ∈ (0,+∞)2 and characterized by the fact that the random variables
(ω(v))v∈P are independent and geometrically distributed with parameter e−β·v.
In this setting, ∑

v∈P
Pβ[ω(v) , 0] <∞

hence the function ω has almost surely finite support and we can write

Pβ(ω) =
∏
v∈P

(
1− e−β·v

)
e−ω(v)β·v =

1
Z(β)

exp

−β ·∑
v∈P

ω(v)v


where the partition function Z(β) is equal to

(3) Z(β) =
∏
v∈P

(
1− e−β·v

)−1
.

Since, as noticed above, X(ω) =
∑

v∈P ω(v)v is the endpoint of the chain corre-
sponding to ω, we deduce that the conditional distribution induced by Pβ on
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the set of convex chains ending at n = (n1,n2) is the uniform distribution. In
particular, we obtain the following formula which will be instrumental in the
proof:

(4) Pβ [X = n] = p(n)
e−β·n

Z(β)

In order to get a formula for p(n), our strategy is to choose the two parameters
so that Eβ[X] = n. This will indeed lead to an asymptotic equality of Pβ[X = n]
due to a local limit result. Together with the analysis of the partition function,
this local limit result will constitute the key of the proof.

1.2. Integral representation of the partition function. It turns out that the
Mellin inversion formula leas to an exact integral representation of the logarith-
mic partition function logZ of Sinaı̆’s model in terms of the Euler Γ function,
the Riemann ζ function, and the modified Barnes zeta function

χ(s;β) :=
∑

v∈Z2
+\{0}

1
(β · v)s

, <(s) > 2.

Lemma 1.1. For all β = (β1,β2) ∈ (0,+∞)2,

(5) logZ(β) =
1

2iπ

∫ 3+i∞

3−i∞

Γ (s)ζ(s+ 1)
ζ(s)

χ(s;β)ds.

Proof. We first take logarithms in (3) and then expand in Taylor series,

logZ(β) = −
∑
v∈P

log
(
1− e−β·v

)
=

∑
v∈P

∑
m≥1

1
m
e−mβ·v.

Now, we make use of the Mellin inversion formula

e−z =
1

2iπ

∫ c+i∞

c−i∞
Γ (s)z−sds,

which holds for every real numbers z > 0 and c > 0. For all c > 0, we know,
from the exponential decrease of Γ , that its integral on c + iR is absolutely
convergent. Taking c > 2 in order to ensure that sups∈c+iR

∑
m≥1

∣∣∣ 1
ms+1

∣∣∣ <∞ and

sups∈c+iR
∑

v∈P

∣∣∣∣ 1
(β·v)s

∣∣∣∣ <∞, we can apply Fubini’s theorem and write

logZ(β) =
1

2iπ

∫ c+i∞

c−i∞

∑
v∈P

∑
m≥1

1
m

Γ (s)
(mβ · v)s

ds

=
1

2iπ

∫ c+i∞

c−i∞
ζ(s+ 1)Γ (s)

∑
v∈P

1
(β · v)s

ds.



ON THE NUMBER OF LATTICE CONVEX CHAINS 5

To conclude the proof of (5), notice that the partition Z
2
+ \ {0} =

⊔
d≥1(dP )

translates into the identity of Dirichlet series∑
v∈Z2

+\{0}

1
(β · v)s

=
∑
d≥1

1
ds

∑
v∈P

1
(β · v)s

. �

Our main contribution is to exploit this integral representation in order to
push further the estimates of logZ, leading to a precise estimate of p(n,n). As
Sinaı̆ does in his paper, we could also get precise asymptotics for p(n,cn), but for
the sake of readability of the paper, we limit our scope to p(n,n) which leads to a
choice of equal parameters β1 = β2 = β. In this case, we observe by elementary
manipulations, that for<(s) > 2,

(6) χ(s; (β,β)) =
∑

v∈Z2
+\{0}

1
(βv1 + βv2)s

=
∑
n≥1

n+ 1
βsns

=
ζ(s − 1) + ζ(s)

βs
.

Therefore, equation (5) becomes

(7) logZ(β,β) =
1

2iπ

∫ 3+i∞

3−i∞

Γ (s)ζ(s+ 1)(ζ(s − 1) + ζ(s))
ζ(s)βs

ds.

2. Analysis of the partition function

We start by giving the first order estimates of logZ(β) and of its partial deriva-
tives. For this purpose, we make use of the meromorphic continuation of the
modified Barnes zeta function χ which is detailed in the appendix.

Lemma 2.1. For all nonnegative integers k1, k2, for all ε > 0, and all β = (β1,β2) ∈
(0,+∞)2, such that ε < β1

β2
< 1
ε ,

∂k1+k2

∂βk1
1 ∂β

k2
2

logZ(β1,β2) ∼
β→0

(−1)k1+k2
ζ(3)
ζ(2)

k1!k2!

βk1+1
1 βk2+1

2

.

Proof. We apply formula (5), and shift the line of integration to the left by using
the residue theorem. We remind here that, by Corollary A.2 of the Appendix, all
the integrated functions can be meromorphically continued, that the only pole
in the region<(s) ≥ 1 lies at s = 2, and that for all δ ∈ (0,1),

logZ(β) =
ζ(3)
ζ(2)

1
β1β2

+
1

2iπ

∫ 1+δ+i∞

1+δ−i∞

Γ (s)ζ(s+ 1)
ζ(s)

χ(s;β)ds.

We can take the iterated derivatives formally in the previous equality, since
we control the derivatives of χ(s;β) by Corollary A.2, and since both functions
ζ(s+ 1) and 1/ζ(s) are bounded on the line 1 + δ+ iR. �
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In the special case β1 = β2 = β, we derive a much more precise asymptotic
series expansion of logZ(β,β) and of its derivatives in β. The proof is based on
formula (7) and on the residue theorem again.

Lemma 2.2. Let A be a positive number such that the contour γ defined below
surrounds all the zeroes of ζ inside the critical strip.

The contour γ is defined as the union of the following oriented paths: on the right
side the curve γright(t) = 1− A

log(2+|t|) + it for t going from −∞ to +∞ and on the left

side the curve γleft(t) = A
log(2+|t|) + it for t going from +∞ to −∞ (see Figure 1).

We define the functions Icrit and Ierr respectively by

(8) Icrit(β) =
1

2iπ

∫
γ

Γ (s)ζ(s+ 1)(ζ(s − 1) + ζ(s))
ζ(s)βs

ds.

and

Ierr(β) =
1

2iπ

∫ − 1
2 +i∞

− 1
2−i∞

Γ (s)ζ(s+ 1)(ζ(s − 1) + ζ(s))
ζ(s)βs

ds.

(i) For all k ≥ 0, when β goes to 0, the k-th derivative of Icrit(β) is o(β−k−1).
(ii) When β goes to 0, the function Ierr(β) is of order O(β1/2) and I ′err(β) = o(1/β).

(iii) For all β > 0,

(9) logZ(β,β) =
ζ(3)
ζ(2)

1
β2 + Icrit(β) +

7
6

log
1
β

+C + Ierr(β)

with C = −2ζ′(−1)− 1
6 log(2π).

Proof. The existence of a suitable number A is a consequence of [7, Theorem 3.8],
and the fact that the set of nontrivial zeroes of ζ is symmetric with respect to
the vertical line<(s) = 1

2 . In addition, the integrals defining Icrit(β) and Ierr(β)
are convergent. Indeed, along the path γ , the function 1/ζ(s) is O(log(|=(s)|))
by formula (3.11.8) in [7]. Moreover, this domination makes it possible to apply
Lebesgue’s dominated convergence theorem to show that the function Icrit(β) is
a o(β−1) as β→ 0. The same domination allows us to differentiate Icrit under the
integral sign as many times as needed. The dominated convergence theorem
implies that the k-th derivative of Icrit(β) is o(β−k−1).

Assertion (ii) is easier since the function 1/ζ(s) is bounded on the vertical line
<(s) = −1

2 .
We turn now to the proof of (iii). As in previous lemma, the strategy is

to start from the integral representation (7) of logZ. Here, in order to get a
sharper asymptotic expansion, we introduce a contour whose left side is the line
<(s) = −1

2 . Since such a contour crosses the critical strip where the denominator
ζ(s) has zeroes, we will use the following result of Valiron [7, Theorem 9.7]:
there exists α > 0 and a sequence (Tk) such that for all k ∈N, k < Tk < k + 1 and
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3 + iTk

3− iTk

−1
2 + iTk

−1
2 − iTk

γright

−1 −1
2

20 1
2

1

γleft

Figure 1. Localization of poles (in blue) and contours of integra-
tion with which the residue theorem is applied to get the asymp-
totic expansion of logZ(β,β) as β tends to 0.

|ζ(s)| > |=(s)|−α uniformly for all s such that |=(s)| = Tk and −1 ≤ <(s) ≤ 2.
Therefore, if one applies the residue theorem with the rectangle [3∓ iTk ,−1

2 ± iTk]
and let k tends to +∞, the contributions of the horizontal segments tend to 0
and one gets that logZ(β,β) is the sum of Icrit(β), Ierr(β) and of the residues of
the integrated function between the lines<(s) = −1

2 and<(s) = 3 which are
outside of the contour γ . See Figure 1 for a landscape of the proof.

Since the singularity at s = 1 is cancelled by the presence of ζ(s) in the de-
nominator, these residues come only from the simple pole at s = 2 and from the
double pole at s = 0. It is straightforward to observe that the residue at s = 2
equals (ζ(3)/ζ(2))β−2. A more involved but yet elementary computation yields

Ress=0

(
Γ (s)ζ(s+ 1)(ζ(s − 1) + ζ(s))

ζ(s)βs

)
=

7
6

log
1
β
− 2ζ′(−1)− 1

6
log(2π).

The announced formula (9) is thus proven. �

The residue theorem applied to the above growing contours also leads to the
following alternative expression:

(10) Icrit(β) = lim
k→∞

∑
|=(ρ)|<Tk

Γ (ρ)ζ(ρ+ 1)ζ(ρ − 1)
ζ′(ρ)βρ

,

where ρ runs through the zeroes of ζ with 0 <<(ρ) < 1. Here we have assumed
for notational simplicity that these zeroes have multiplicity 1 but this is actually
not restrictive.
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Remark that in the previous arguments, one could push the left-side of the
rectangular contour of integration as far as needed to the left in order to obtain
complete asymptotic series expansions.

3. Proof of the theorem

Let us recall that the endpoint is defined by

X(ω) = (X1(ω),X2(ω)) =
∑
v∈P

ω(v)v.

We look for a parameter (β1,β2) such that Eβ(X1) = Eβ(X2) = n. If one chooses
β1 = β2 = β, then Eβ(X1) = Eβ(X2) = 1

2Eβ(X1 +X2). It now remains to find β > 0
satisfying Eβ(X1 +X2) = 2n. A direct computation shows that Eβ(X1 +X2) =
− d
dβ logZ(β,β). By monotonicity of the function β 7→ d

dβ logZ(β,β), we can find
β > 0 depending on n such that

d
dβ

logZ(β,β) = −2n.

From now on, β1 and β2 are going to be chosen equal to the unique solution β of
this equation, depending on n. Note that β tends to 0 as n tends to∞.

As a consequence of statements (ii) and (iii) of Lemma 2.2, the following
asymptotic expansion holds:

2n = − d
dβ

logZ(β,β) =
2κ
β3 − I

′
crit(β) +

7
6β

+ o
(

1
β

)
,

where κ = ζ(3)/ζ(2). In order to estimate the error made when replacing the
argument β of I ′crit by its first order approximation (κ/n)1/3, we use the estimates
of Lemma 2.2, statement (i), for I ′crit and I ′′crit. We obtain therefore

(11)
1
β3 =

n
κ

+
1

2κ
I ′crit

((κ
n

)1/3
)
− 7

12κ

(n
κ

)1/3
+ o(n1/3).

The covariance matrix of the random vector X = (X1,X2) is equal to the Hessian
matrix of logZ(β1,β1) at (β,β), as seen by a straightforward computation. For the
calibrated parameter β, Lemma 2.1 implies that its determinant is asymptotically
equal to ∣∣∣∣∣∣∣

2κ
β4

κ
β4

κ
β4

2κ
β4

∣∣∣∣∣∣∣ =
3κ2

β8 ∼
3n8/3

κ2/3
.

Therefore, a local limit theorem, which is a simplified version of Theorem 1.3 in
[4] (in the case r = 1, with the notations of the paper), gives

(12) Pβ[X1 = n,X2 = n] ∼ κ1/3

2π
√

3n4/3
.
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From formula (4), logp(n) = 2nβ + logZ(β,β) + logPβ[X1 = n,X2 = n]. Hence,
gathering (9), (11), (12), we are able to state

logp(n) = 2nβ + logZ(β,β) + log
κ1/3

2π
√

3
− 4

3
logn+ o(1)

= 3κ1/3n2/3 + Icrit

((κ
n

)1/3
)
− 17

18
logn+ log

(
e−2ζ′(−1)

(2π)7/6
√

3κ1/18

)
+ o(1).

This concludes the proof of the theorem.

4. Comments

4.1. Link with Riemann’s Hypothesis. As we observed in the proof of state-
ment (i) of Lemma 2.2, the fact that the additional term Icrit((κ/n)1/3) is at most of
order o(n1/3) follows from the existence of large zero-free regions of the Riemann
zeta function in the critical strip. This estimation can be considerably improved
if one assumes Riemann’s Hypothesis, namely that all zeroes of the zeta function
in the critical strip lie actually on the line<(s) = 1

2 . Under this assumption, the

oscillating term Icrit((κ/n)1/3) is at most of order O(n
1
6 +ε) for all ε > 0.

Actually, Riemann’s Hypothesis turns out to be equivalent to the statement

(H) ∀ε > 0, logp(n) = 3κ
1
3n

2
3 +O(n

1
6 +ε).

Indeed, hypothesis (H) implies, by our theorem, that for all ε > 0, Icrit((κ/n)
1
3 )) =

O(n
1
6 +ε). Since I ′crit(β) = o(β−2) by statement (i) of Lemma 2.2, this implies that

for all ε > 0, Icrit(β) =O(β−
1
2−ε). Statement (iii) of Lemma 2.2 then yields

(H’) ∀ε > 0, logZ(β,β)− κ
β2 =O

 1

β
1
2 +ε

 .
Now, we compute the Mellin transform of logZ(β,β) =

∑
v∈P

∑
m≥1

1
me
−mβ(v1+v2)

for<(s) > 2 by manipulations similar to the proof of Lemma 1.1:∫ +∞

0
logZ(β,β)βs−1dβ =

Γ (s)ζ(s+ 1)(ζ(s − 1) + ζ(s))
ζ(s)

.

We obtain therefore the following identity for<(s) > 2:

Γ (s)ζ(s+ 1)(ζ(s − 1) + ζ(s))
ζ(s)

− κ
s − 2

=∫ 1

0

(
logZ(β,β)− κ

β2

)
βs−1dβ +

∫ +∞

1
logZ(β,β)βs−1dβ.

The condition (H’) implies that the right-hand side function is holomorphic
in the region <(s) > 1/2, hence defining a holomorphic continuation of the
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left-hand side function in the same region. Since Γ (s), ζ(s+ 1) and ζ(s− 1) do not
vanish in the region 0 <<(s) < 1, this prevents ζ(s) from having zeroes in the
region 1/2 <<(s) < 1.

4.2. Numerical considerations. In view of numerical computations, one can
truncate the series defining Icrit in (10) at the two conjugate zeroes of the zeta
function with smallest imaginary part, which is approximately 1

2 ± i14.1347.
Indeed, the next zeroes have an imaginary part around 21.0220 and the exponen-
tial decrease of the Γ function makes this next term around 104 times smaller
than the first one. Therefore, with a relative precision of 10−4,

Icrit(β) ≈
6.0240 · 10−11 cos(14.1347logβ) + 9.5848 · 10−10 sin(14.1347logβ)√

β

for usual values of β = (κ/n)1/3. In addition, one can see from this approximation
that for a large range of values of n, the importance of the oscillatory term in
the exponential part of (1) is actually extremely small in comparison with the
polynomial prefactor.

4.3. Digitally convex polyominoes. We present here a modification of our
model which leads to an asymptotic analysis of digitally convex polyominoes as
in [3]. Our probabilistic approach notably differs from the circle method used in
this paper. We were not able to follow all the steps of the computations in [3],
and we obtain eventually a slightly different result.

Let us first recall that a digitally convex polyomino is the set of all cells of Z2

included in a bounded convex region of the plane. The contour of a digitally
convex polyomino can be decomposed into four specifiable sub-paths through
the standard decomposition of polyominoes. In [3], the authors focus on one of
these paths, namely the one joining the rightmost lowest point to the highest
rightmost one. More precisely, they want to find the asymptotics of the number
p̃(n) of such paths with total length n.

Taking the convex hull of such a path defines a one-to-one correspondence
with (increasing) convex chains having no horizontal segment. For this reason,
we slightly modify the model by changing the set P into P̃ = P \ {(1,0)} and the
probability measure on configurations which are now integer-valued functions
on P̃ :

P̃β(ω) =
∏
v∈P̃

(
1− e−β·v

)
e−ω(v)β·v =

1

Z̃(β)
exp

−β ·∑
v∈P̃

ω(v)v


where β = (β,β) and where

Z̃(β) =
∏
v∈P̃

(
1− e−β·v

)−1
.
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Again, the ending point is equal to

X(ω) = (X1(ω),X2(ω)) =
∑
v∈P̃

ω(v)v.

Moreover the connection between combinatorics and the probabilistic model is
encompassed in the formula

P̃β[X1 +X2 = n] =
p̃(n)

Z̃(β,β)
e−βn.

A computation similar to (6) shows that the integral representation (7) of the
logarithmic partition function is changed into

log Z̃(β,β) =
1

2iπ

∫ c+i∞

c−i∞

Γ (s)ζ(s+ 1)ζ(s − 1)
ζ(s)βs

ds,

which leads to the following asymptotic expansion as β tends to 0:

log Z̃(β,β) =
κ

β2 + Icrit(β) +
1
6

log
1
β

+C + o(1),

where the constants κ and C are still ζ(3)/ζ(2) and −2ζ′(−1)− 1
6 log(2π). In order

have the correct calibration Eβ[X1 +X2] = n for the length of the path, we choose
β > 0 depending on n such that − d

dβ log Z̃(β,β) = n. This leads to the following
analogue to (11):

1
β3 =

n
2κ

+
1

2κ
I ′crit

((2κ
n

)1/3)
− 1

12κ

( n
2κ

)1/3
+ o(n1/3).

An statement analogous to (12) asserts the one-dimensional local limit result:

Pβ[X1 +X2 = n] ∼ 1
√

3π

(κ
4

) 1
6 1

n
2
3

.

We have finally obtained

p̃(n) ∼
(κ

4

) 5
18 e−2ζ′(−1)

√
3π

2
3

1

n
11
18

exp

3(κ
4

) 1
3
n

2
3 + Icrit

(2κ
n

) 1
3
 .

This amends the constant in the prefactor term of [3], Proposition 2.5.

Appendix A. Analytic continuation of the Barnes function

We introduce here the Barnes zeta function defined for all β = (β1,β2) ∈ [0,+∞),
w > 0 and s ∈C in the region<(s) > 2 by

ζ2(s,w,β) :=
∑

v1,v2≥0

1
(w+ β1v1 + β2v2)s

.
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Lemma A.1. The meromorphic continuation of ζ2(s,w;β) to the half-plane<(s) > 1
is given by

ζ2(s,w;β) =
1

β1β2

w−s+2

(s − 1)(s − 2)
+

(β1 + β2)w−s+1

2β1β2(s − 1)
+
w−s

4

−
β2

β1

∫ +∞

0

{y} − 1
2

(w+ β2y)s
dy −

β1

β2

∫ +∞

0

{x} − 1
2

(w+ β1x)s
dx

− s
β2

2

∫ +∞

0

{y} − 1
2

(w+ β2y)s+1dy − s
β1

2

∫ +∞

0

{x} − 1
2

(w+ β1x)s+1dx

+ s(s+ 1)β1β2

∫ +∞

0

∫ +∞

0

({x} − 1
2 )({y} − 1

2 )

(w+ β1x+ β2y)s+2 dxdy.

Proof. We need only prove that the equality holds for<(s) > 2 since the right-
hand side of the equation is meromorphic in <(s) > 1 with a single pole at
s = 2. Let {x} = x − bxc denote the fractional part of x. We apply a first time the
Euler-Maclaurin formula to the partial summation defined by F(x) =

∑
n2≥0(w+

β1x+ β2n2)−s, leading to∑
n1≥1

F(n1) =
∫ ∞

0
F(x)dx − F(0)

2
+
∫ ∞

0
({x} − 1

2
)F′(x)dx.

We use again the Euler-Maclaurin formula for each of the summations in n2. �

We state here the results we need on the modified Barnes zeta function χ,
which is nothing but a byproduct of the above Barnes function.

Corollary A.2. For all β = (β1,β2) ∈ [0,+∞), the function χ(s;β) =
∑

v∈Z2
+\{0}

1
(β·v)s

can be meromorphically continued to the region<(s) > 1.
(i) The function χ(s;β) has a unique pole at s = 2 which is simple and the residue

is equal to 1
β1β2

.
(ii) For all nonnegative integers k1, k2, for all δ ∈ (0,1), for all ε > 0, there exists a

constant C > 0 such that for all β = (β1,β2) ∈ (0,+∞)2 satisfying ε < β1
β2
< 1
ε , for

all s such that 1 + δ ≤<(s) ≤ 3,∣∣∣∣∣∣∣ ∂k1+k2

∂βk1
1 ∂β

k2
2

χ(s;β)

∣∣∣∣∣∣∣ ≤ C|s|C

|β|k1+k2+<(s)|s − 2|
.

Proof. Elementary manipulations on sums yield

χ(s;β) =
ζ(s)
βs1

+
ζ(s)
βs2

+ ζ2(s,β1 + β2;β).

We then apply Lemma A.1 and observe that the integral terms in the right-hand
side of the equation can be differentiated formally. �
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