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Introduction

If S = {p 1 , p 2 , . . . , p k } is a finite set of primes, we define the set of S-units to be those integers of the shape ±p α1 1 p α2 2 • • • p α k k , with exponents α i nonnegative integers. The arithmetic of such sets has been frequently studied due to its connections to a wide variety of problems in Number Theory and Arithmetic Geometry. In the latter direction, equations of the shape [START_REF] Bennett | Products of consecutive integers[END_REF] x + y = z 2 , where x and y are S-units for certain specific sets S, arise naturally when one wishes to make effective a theorem of Shafarevich on the finiteness of isomorphism classes of elliptic curves over a number field K with good reduction outside a given finite set of primes. By way of a simple example, if we wish to find all elliptic curves E/Q with nontrivial rational 2-torsion and good reduction outside {p 1 , p 2 , . . . , p k }, we are led to consider curves E of the shape

E : y 2 = x 3 + ax 2 + bx,
where a and b are rational integers satisfying

b 2 (a 2 -4b) = ±2 α0 p α1 1 • • • p α k k , for nonnegative integers α i . Writing |b| = 2 β0 p β1 1 • • • p β k k ,
we thus seek to solve equation [START_REF] Bennett | Products of consecutive integers[END_REF], with z = a and S = {2, p 1 , p 2 , . . . , p k }.

An algorithm for computing all solutions to equations of the shape (1), over Q, can be found in Chapter 7 of de Weger [START_REF] De Weger | Algorithms for Diophantine equations[END_REF], where, for instance, one can find a complete characterization of the solutions to equation [START_REF] Bennett | Products of consecutive integers[END_REF] in case S = {2, 3, 5, 7}. This algorithm combines lower bounds for linear forms in complex and p-adic logarithms with lattice basis reduction for p-adic lattices.

More generally, for a given set of primes S, we may consider equations of the shape [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] x + y = z n , with n ≥ 2 an integer, x and y S-units, and z a nonzero integer. We will call such a quadruple (x, y, z, n) a primitive solution of (2) if gcd(x, y) is nth-power free. Such equations are the main topic of discussion in Chapter 9 of Shorey and Tijdeman [START_REF] Shorey | Exponential Diophantine equations[END_REF], due to their connections to the problem of characterizing perfect powers in nondegenerate binary recurrence sequences of algebraic numbers. If we write y = y 0 y n 1 in equation ( 2), with y 0 nth-power free (whereby there are at most 2n |S| choices for y 0 ), then it follows from the theory of Thue-Mahler equations that, for a fixed value of n ≥ 3, the set of primitive solutions (x, y, z, n) of ( 2) is finite (see [START_REF] Shorey | Exponential Diophantine equations[END_REF]Thm. 7.2]). A stronger statement still is the following (essentially Theorem 9.2 of [START_REF] Shorey | Exponential Diophantine equations[END_REF]) : Theorem 1.1. There are only finitely many coprime S-units x, y and w for which there exist integers n ≥ 2 and z = 0 such that x + y = wz n .

The aim of this paper is to illustrate the use of Frey-Hellegouarch curves in solving equations like [START_REF] Bennett | Products of consecutive integers[END_REF] and, more generally, [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF]. Specifically, we will apply such an approach to provide a new proof of Theorem 1.1 that a priori avoids the use of lower bounds for linear forms in logarithms, instead combining Frey-Hellegouarch curves, modularity and level-lowering, with the aforementioned theorem of Shafarevich. In fairness, it must be mentioned, that effective versions of the latter result have typically depended fundamentally on linear forms in logarithms; for recent papers along these lines, see the work of Fuchs, von Känel and Wüstholz [START_REF] Fuchs | An effective Shafarevich theorem for elliptic curves[END_REF] and von Känel [START_REF] Känel | Modularity and integral points on moduli schemes[END_REF]. The benefit of our approach is it enables us to, in Section 7, explicitly solve equation [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] for a pair of sets S with cardinality |S| ≥ 2. To the best of our knowledge, this is the first time this has been carried out. Indeed, it is unclear whether the classical approach to Theorem 1.1 via only lower bounds for linear forms in logarithms can be made practical with current technology, in any nontrivial situations.

The outline of our paper is as follows. Section 2 introduces our basic notation. In Section 3, we show how to obtain various finiteness results currently proved with techniques from Diophantine approximation, via Frey-Hellegouarch curves over Q. Philosophically, this bears a strong resemblance to recent work of von Känel [START_REF] Känel | Modularity and integral points on moduli schemes[END_REF] and of Murty and Pasten [START_REF] Murty | Modular forms and effective diophantine approximation[END_REF]. Section 4 contains explicit details of the connections between Frey-Hellegouarch curves and modular forms. In Sections 5 and 6, we carry out such a "modular" approach quite explicitly for exponents n = 2 and n = 3 respectively. As an illustration of our methods, we completely solve [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] for S = {2, 3, 5, 7} and n ∈ {2, 3} (hence recovering de Weger's aforementioned result), and also for S = {2, 3, p} and n ∈ {2, 3}, for every prime p < 100. It should be emphasized that this is not a "serious" application of our method, but merely meant as an illustration of a partial converse of the connection between solving equations of the shape [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] and computing elliptic curves. The reader may wish to omit these sections at first (and, for that matter, subsequent) readings. A more interesting result along these lines is due to Kim [START_REF] Kim | A modular approach to Thue-Mahler equations[END_REF], where the connection between more general cubic Thue-Mahler equation and Shafarevich's theorem is mapped out.

Section 7 contains, as previously mentioned, the main result of the paper, namely an explicit solution of equation [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] for the sets S = {2, 3} and {3, 5, 7}. The techniques we employ to prove these results, besides the aforementioned use of Frey-Hellegouarch curves and their associated modular forms, are local methods and appeal to computer algebra packages for solving Thue and Thue-Mahler equations; for the last of these, we rely extensively upon the computational number theory packages MAGMA [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF], PARI [START_REF]PARI/GP version 2.7.1[END_REF] and SAGE [START_REF] Stein | Sage Mathematics Software (Version 5.13[END_REF].

We thank Rafael von Känel and Benjamin Matschke for pointing out to us a missing solution in a previous version of Proposition 5.4.

Notation

In what follows, we will let p be a prime number and m a nonzero integer. We denote by rad(m) the radical of |m|, i.e. the product of distinct primes dividing m, and by ord p (m) the largest nonnegative integer k such that p k divides m. We write rad p (m) for the prime-to-p part of the radical of |m|, that is, the largest divisor of rad(m) that is relatively prime to p.

We will begin by noting some basic results on modular forms and connections between them and elliptic curves. Suppose that the q-expansion

(3) f = q + i≥2 c i q i
defines a weight 2, level N 0 (cuspidal) newform, with coefficients c i generating a number field K/Q. Further, let E/Q be an elliptic curve of conductor N and n a rational prime. If l is a prime satisfying l ∤ N , we define

a l (E) = l + 1 -#E(F l ).
We say that E arises modulo n from the newform f and write E ∼ n f if there exists a prime ideal N | n of K such that, given any prime l = n, we have either

(4) a l (E) ≡ c l (mod N), if l ∤ nN N 0 or (5) l + 1 ≡ ±c l (mod N), if l ∤ nN 0 and ord l (N ) = 1.

Finiteness results via modularity and level-lowering

Throughout this section, we will let S denote a finite set of primes and a a positive integer. The second part of the following lemma is a classical and easy application of the theory of linear forms in logarithms (see Corollary 1.2 of [START_REF] Shorey | Exponential Diophantine equations[END_REF]). We here give a complete proof of the result below using instead Frey-Hellegouarch curves and Shafarevich's theorem (Theorem IX.6.1 of [START_REF] Silverman | The arithmetic of elliptic curves[END_REF]). Lemma 3.1. There are only finitely many S-units x, y, w with gcd(x, y) ≤ a for which there exists a nonzero integer z such that x + y = wz 2 . In particular, if x, y are S-units with gcd(x, y) ≤ a such that x + y is again a S-unit, then max{|x|, |y|} is bounded by a constant depending on S and a.

Proof. Let x, y and w be S-units and let z = 0 be an integer such that x + y = wz 2 . Consider the elliptic curve

E : Y 2 = X 3 + 2wzX 2 + ywX with discriminant ∆(E) = 2 6 x 2 y 2 w 3 .
It follows that E has good reduction outside S ∪ {2}. By Shafarevich's theorem, there are only finitely many isomorphism classes of rational elliptic curves having good reduction outside a finite set of primes. This forces

j(E) = j(x, y) = 2 6 • (4x + y) 3 y 2 x
to take only finitely many values when x and y range over all S-units. But then, since j(x, y) = j(x/y, 1), the quotient x/y also takes finitely many different values and therefore max{|x|, |y|} is bounded whenever gcd(x, y) ≤ a.

We next prove a version of Theorem 9.1 of [START_REF] Shorey | Exponential Diophantine equations[END_REF] through appeal to (various) Frey-Hellegouarch curves and level-lowering. Theorem 3.2. Let x, y and w be S-units with gcd(x, y) ≤ a. Let n ≥ 2 and |z| > 1 be integers. If x + y = wz n , then n is bounded by a constant depending only on S and a.

Proof. Assume z = ±1. If z is an S-unit, then, by the previous lemma, max{|x|, |y|} and thus n is bounded by a constant depending only on S and a. Therefore, one may assume that z is not a S-unit and, in particular, we may choose a prime q ∈ S dividing z. Define an elliptic curve E/Q as follows. If q = 2, then consider

E : Y 2 = X(X -x)(X + y)
whose discriminant and c 4 -coefficient are given by ∆(E) = 2 4 (xywz n ) 2 and c 4 (E) = 2 4 (w 2 z 2n -xy).

If however q = 2, we take

E : Y 2 + 3xXY -x 2 yY = X 3
with discriminant and c 4 -coefficient given by ∆(E) = -3 3 x 8 y 3 wz n and c 4 (E) = 3 2 x 3 (9wz n -y).

In both cases, E has multiplicative reduction at q with ord q (∆(E)) divisible by n. Let us then further assume that n ≥ 7, n ∈ S and that the mod n representation attached to E is absolutely irreducible. By classical bounds on conductors (see [START_REF] Brumer | The conductor of an abelian variety[END_REF] for instance), modularity of elliptic curves over Q ( [START_REF] Breuil | On the modularity of elliptic curves over Q: wild 3-adic exercises[END_REF]) and Ribet's level lowering theorem ( [START_REF] Ribet | On modular representations of Gal(Q/Q) arising from modular forms[END_REF]), the elliptic curve E arises modulo n from a weight 2 newform f (z) = m≥1 c m e 2iπmz of (trivial Nebentypus and) level

N 0 | 2 8 • 3 5 • p∈S p =2,3 p 2 such
that N 0 is coprime to q. Therefore, N 0 is bounded by a constant depending only on S and there exists a prime ideal N above n in the ring of integers of the coefficient field K of f such that c q ≡ ±(q + 1) (mod N).

By Deligne's bounds, c q ± (q + 1) is a nonzero algebraic integer in K whose Galois conjugates are all less than (1 + √ q) 2 in absolute value and whose norm is divisible by n. Therefore we have n ≤

(1 + √ q) 2[K:Q] . Since [K : Q] is
bounded by the dimension of the space of weight-2 cuspforms of level N 0 , it follows that n is bounded from above by a constant depending only on S, as desired.

Combining these results with the finiteness of the number of solutions to Thue-Mahler equations (see, for instance, Theorem 7.1 of [START_REF] Shorey | Exponential Diophantine equations[END_REF]) allows us to prove the following.

Theorem 3.3. There are only finitely many S-units x, y, w with gcd(x, y) ≤ a for which there exist integers n ≥ 2 and z = 0 such that x + y = wz n . Proof. By Lemma 3.1, the equation x + y = ±w has only finitely many solutions in S-units x, y and w, with gcd(x, y) ≤ a. Further, if x, y and w are S-units with gcd(x, y) ≤ a such that there exist integers n ≥ 2 and z with |z| > 1 satisfying x + y = wz n , then, by the previous theorem, n is bounded by a constant depending only on S and a. But, for a fixed value of n ≥ 2, the finiteness of solutions to equation x + y = wz n in S-units x, y, w with gcd(x, y) ≤ a and integer z follows from Lemma 3.1 and from the finiteness of the set of solutions to Thue-Mahler equations for n = 2 and n ≥ 3 respectively. Given a primitive solution (x, y, z, n) of ( 2), let us denote by d the gcd of x and y. Then d divides z n and, without loss of generality, we may write z n /d = wz ′n where z ′ is a nonzero integer and w is a nth-power free positive S-unit. If x ′ = x/d and y ′ = y/d, then one has [START_REF] Breuil | On the modularity of elliptic curves over Q: wild 3-adic exercises[END_REF] x ′ + y ′ = wz ′n .

Conversely, let x ′ , y ′ , w be pairwise coprime S-units with w positive satisfying the above equation and let w ′ be a positive S-unit such that ww ′ = rad(w) n . Put x = w ′ x ′ , y = w ′ y ′ and z = rad(w)z ′ . Then, (x, y, z, n) is a primitive solution of [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF]. Therefore, all the primitive solutions of equation ( 2) can be deduced from the finite set of S-units satisfying the condition of Theorem 3.3 with a = 1. Moreover, combining this remark with the previous results, we have the following : Corollary 3.4. For a fixed value of n ≥ 2, there are only finitely many triples (x, y, z) such that x + y = z n with z nonzero integer, x, y S-units and gcd(x, y) nth-power free. Moreover, there are only finitely many primitive solutions to equation (2) if and only if 2 ∈ S.

Proof. According to the discussion above, the first part of the corollary is a direct consequence of Theorem 3.3 (with a = 1). If, however, 2 ∈ S, then (2 n-1 , 2 n-1 , 2, n) is a primitive solution to (2) for any n ≥ 2.

Conversely, if 2 ∈ S, consider a primitive solution (x, y, z, n) to [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF]. Dividing the equation by gcd(x, y) leads, as explained earlier, to an equation of the shape x ′ +y ′ = wz ′n where x ′ , y ′ , w are coprime S-units and z ′ | z. By assumption, x ′ , y ′ , w are odd and therefore z ′ is even. In particular, we have |z ′ | > 1 and by Theorem 3.2, n is bounded independently of x, y and z. The desired finiteness result now follows from the first part of the corollary.

In the proof of Lemma 3.1 we have appealed to (n, n, 2)-Frey-Hellegouarch curves and, for Theorem 3.2, to (n, n, n) and (n, n, 3)-Frey-Hellegouarch curves. The main goal of this paper is to make the statements of this section completely explicit in a number of situations. For this purpose, we will have use of refined information on Frey-Hellegouarch curves of the above signatures.

Background on Frey-Hellegouarch curves and modular forms

We recall some (by now) classical but useful results on Frey-Hellegouarch curves associated with generalized Fermat equations of signature (n, n, n), (n, n, 2) and (n, n, 3), and the newforms from which they arise. 4.1. Signature (n, n, n). Let A, B and C be nth-power free pairwise coprime nonzero integers and let a, b and c be pairwise coprime nonzero integers such that [START_REF] Brumer | The conductor of an abelian variety[END_REF] Aa n + Bb n = Cc n .

We make the additional simplifying assumptions (which are not without loss of generality, but will be satisfied in the cases of interest to us) that

Aa n ≡ -1 (mod 4) and Bb n ≡ 0 (mod 16).

Define an elliptic curve E A,B,C n,n,n (a, b, c) via

E A,B,C n,n,n (a, b, c) : Y 2 + XY = X 3 + Bb n -Aa n -1 4 X 2 - AB(ab) n 16 X.
We summarize the properties of E A,B,C n,n,n (a, b, c) that will be useful to us in the following result (see Kraus [START_REF] Kraus | Majorations effectives pour l'équation de Fermat généralisée[END_REF]). Proposition 4.1. If n ≥ 5 is prime and n ∤ ABC, we have that

E = E A,B,C n,n,n (a, b, c) ∼ n f, for f a weight 2 cuspidal newform of level N 0 = 2 rad 2 (ABC) if 0 ≤ ord 2 (B) ≤ 3 or ord 2 (B) ≥ 5 rad 2 (ABC) if ord 2 (B) = 4.
Further, if l is prime with l ∤ ABCabc, then a l (E) ≡ l + 1 (mod 4).

4.2. Signature (n, n, 2). Next let a, b, c, A, B and C be nonzero integers such that (8)

Aa n + Bb n = Cc 2 ,
with aA, bB and cC pairwise coprime, C squarefree and n ≥ 7 prime. Without loss of generality, we may suppose that A and B are nth-power free and that we are in one of the following situations :

(1) abABC ≡ 1 (mod 2) and b ≡ -BC (mod 4);

(2) ab ≡ 1 (mod 2) and either ord 2 (C) = 1 or ord 2 (B) = 1;

(3) ab ≡ 1 (mod 2), ord 2 (B) = 2 and c ≡ -bB/4 (mod 4);

(4) ab ≡ 1 (mod 2), ord 2 (B) ∈ {3, 4, 5} and c ≡ C (mod 4);

(5) ord 2 (Bb n ) ≥ 6 and c ≡ C (mod 4). In cases (1) and (2), we will consider the curve

E A,B,C
(1),n,n,2 (a, b, c) : Y 2 = X 3 + 2cCX 2 + BCb n X. In cases (3) and (4), we will instead consider

E A,B,C (2),n,n,2 (a, b, c) : Y 2 = X 3 + cCX 2 + BCb n 4 X,
and in case ( 5),

E A,B,C (3),n,n,2 (a, b, c) : Y 2 + XY = X 3 + cC -1 4 X 2 + BCb n 64 X.
These are all elliptic curves defined over Q.

The following lemma summarizes some useful facts about these curves. Apart from its (easy-to-check) assertion (2) and up to some slight differences of notation, this is Lemma 2.1 of [START_REF] Bennett | Ternary Diophantine equations via Galois representations and modular forms[END_REF]. 

∆(E) = 2 δi C 3 B 2 A(ab 2 ) n , where δ i =      6 if i = 1 0 if i = 2 -12 if i = 3 .
(2) The j-invariant j(E) of the curve E is given by

j(E) = 2 6 (4Aa n + Bb n ) 3 Aa n (Bb n ) 2 .
(3) The conductor N (E) of the curve E is given by

N (E) = 2 α rad 2 (C) 2 rad 2 (abAB),
where

α =                                  5 if i = 1, case (1) 8 if i = 1, case (2) and ord 2 (C) = 1 7 if i = 1, case (2) and ord 2 (B) = 1 2 if i = 2, case (3), ord 2 (B) = 2 and b ≡ -BC/4 (mod 4) 3 if i = 2, case (3), ord 2 (B) = 2 and b ≡ BC/4 (mod 4) 5 if i = 2, case (4) and ord 2 (B) = 3 3 if i = 2, case (4) and ord 2 (B) ∈ {4, 5} 0 if i = 3, case (5) and ord 2 (Bb n ) = 6 1 if i = 3, case (5) and ord 2 (Bb n ) ≥ 7.
In particular, E has multiplicative reduction at each odd prime p dividing abAB. Also, E has multiplicative reduction at

2 if ord 2 (Bb n ) ≥ 7. (4) The curve E has a Q-rational point of order 2.
For the purposes of our applications, we will have need of an analog of Proposition 4.1, essentially Lemma 3.3 of [START_REF] Bennett | Ternary Diophantine equations via Galois representations and modular forms[END_REF].

Proposition 4.3. If n ≥ 7 is prime and ab = ±1, we have, for each i ∈ {1, 2, 3}, that E = E A,B,C (i),n,n,2 (a, b, c) ∼ n f, for f a weight 2 cuspidal newform of level N 0 = 2 α ′ rad 2 (C) 2 rad 2 (AB) where α ′ = 1 if ab ≡ 0 (mod 2) and AB ≡ 1 (mod 2) α otherwise,
where α is as defined in Lemma 4.2. with n ≥ 5 prime. Assume Aa, Bb, and Cc are pairwise coprime, and, without loss of generality, that Aa ≡ 0 (mod 3) and Bb n ≡ 2 (mod 3). Further, suppose that C is cubefree and that A and B are nth-power free. We consider the elliptic curve

E A,B,C n,n,3 (a, b, c) : Y 2 + 3CcXY + C 2 Bb n Y = X 3 .
With the above assumptions, we have the following result (Lemma 2.1 of [START_REF] Bennett | Ternary Diophantine equations of signature (p[END_REF]).

Lemma 4.4. Let E = E A,B,C n,n,3 (a, b, c). (1) The discriminant ∆(E) of the curve E is given by ∆(E) = 3 3 AB 3 C 8 (ab 3 ) n .
(2) The j-invariant of E is given by

j(E) = 3 3 Cc 3 (9Aa n + Bb n ) 3 AB 3 (ab 3 ) n .
(3) The conductor N (E) of the curve E is

N (E) = 3 α rad 3 (ABab)rad 3 (C) 2 where α =                        2 if 9 | (2 + C 2 Bb n -3Cc), 3 if 3 (2 + C 2 Bb n -3Cc), 4 if ord 3 (Bb n ) = 1, 3 if ord 3 (Bb n ) = 2, 0 if ord 3 (Bb n ) = 3, 1 if ord 3 (Bb n ) > 3, 5 if 3 | C.
In particular, E has split multiplicative reduction at each prime p = 3 dividing Bb, split multiplicative reduction at each prime dividing Aa congruent to 1, 4, 5, 7, 16, 17 or 20 modulo 21, and non-split multiplicative reduction at all other primes dividing Aa, except 3. Also, E has split multiplicative reduction at

3 if ord 3 (Bb n ) > 3, and good reduction if ord 3 (Bb n ) = 3. (4) The curve E has a Q-rational point of order 3.
In what follows, we will apply Frey-Hellegouarch curves of signature (n, n, 3) more frequently than other signatures; the following result, essentially Proposition 4.2 of [START_REF] Bennett | Ternary Diophantine equations of signature (p[END_REF] (though it is worth noting that the value N n (E) as define in Lemma 3.4 of that paper is actually stated incorrectly for the cases where n | ABC), will be of particular use to us. Proposition 4.5. If n ≥ 5 is prime, ab = ±1 and E A,B,C n,n,3 (a, b, c) does not correspond to the identities

1 • 2 5 + 27 • (-1) 5 = 5 • 1 3 or 1 • 2 7 + 3 • (-1) 7 = 1 • 5 3 , then we have that E = E A,B,C n,n,3 (a, b, c) ∼ n f, for f = m≥1 c m q m a weight 2 cuspidal newform of level N 0 = 3 α ′ rad 3 (AB)rad 3 (C) 2 ,
where α ′ = α with α as defined in Lemma 4.4 unless ord 3 (Bb n ) ≥ 3 in which case we have

α ′ = 0 if ord 3 (B) = 3, 1 otherwise. More precisely, if l is a prime, coprime to nN 0 , then n divides Norm K/Q (c l -a l )
where K is the number field generated by the Fourier coefficients of f and a l ∈ S l , with 4, 5, 7, 16, 17, 20 (mod 21), and

S l = {x : |x| < 2 √ l, x ≡ l + 1 (mod 3)} ∪ {l + 1}, if l ≡ 1,
S l = {x : |x| < 2 √ l, x ≡ l + 1 (mod 3)} ∪ {-l -1, l + 1},
otherwise.

The case n = 2

In this section, we consider equation (1) (as treated by de Weger in [START_REF] De Weger | Algorithms for Diophantine equations[END_REF] and [START_REF] De Weger | The weighted sum of two S-units being a square, Indag[END_REF]), via an (n, n, 2) Frey-Hellegouarch curve approach. According to the discussion of Section 3, the corresponding equations to treat are of the shape [START_REF] Dahmen | Perfect powers expressible as sums of two fifth or seventh powers[END_REF] x + y = wz 2 where x, y and w are pairwise coprime S-units. Define a = b = 1, c = z, A = x, B = y and C = w. Then we have Aa n + Bb n = Cc 2 and may assume, without loss of generality, that we are in one of the situations (1)-( 5) of §4.2. Consider the associated elliptic curve E/Q of Lemma 4.2. It has good reduction outside S ′ = S ∪{2}.

Therefore, if we know representatives F/Q of all (the finitely many) isomorphism classes of rational elliptic curves (with a nontrivial two-torsion subgroup) having good reduction outside S ′ , all that remains to do to solve [START_REF] Dahmen | Perfect powers expressible as sums of two fifth or seventh powers[END_REF] is to check for an equality

j(E) = j(F ), where j(E) = 2 6 • (4x + y) 3 y 2 x
and j(F ) denote the j-invariants of E and F respectively. Computing such representatives is a classical but challenging problem that has only been achieved for a rather restrictive list of sets, including {2, 3, 5, 7}, {2, 3, 11}, {2, 13}, {2, 17}, {2, 19} and {2, 23} (see [START_REF] Cremona | Finding all elliptic curves with good reduction outside a given set of primes[END_REF]).

Nevertheless, the precise information on the conductor N (E) of E provided by Lemma 4.2, namely N (E) = 2 α rad 2 (w) 2 rad 2 (xy) where

α =                                  5 if xyw ≡ 1 (mod 2) and yw ≡ -1 (mod 4) 8 if ord 2 (w) = 1 7 if ord 2 (y) = 1 2 if ord 2 (y) = 2
and z ≡ w ≡ -y/4 (mod 4) 3 if ord 2 (y) = 2 and z ≡ -w ≡ -y/4 (mod 4) 5 if ord 2 (y) = 3 and z ≡ w (mod 4) 3 if ord 2 (y) ∈ {4, 5} and z ≡ w 0 if ord 2 (y) = 6 and z ≡ w (mod 4) 1 if ord 2 (y) ≥ 7 and z ≡ w (mod 4), allows us to sometimes show, for some specific sets S, that we have N (E) ≤ 350000 except for some precisely identified quadruples (x, y, w, z). In that situation, we can therefore appeal, via the SAGE package database_cremona_ellcurve ( [START_REF] Stein | Sage Mathematics Software (Version 5.13[END_REF], [START_REF] Cremona | Database of elliptic curves[END_REF]), to Cremona's tables which, at the time of writing (Spring 2015), contain representatives for all rational elliptic curves of conductor less than 350000.

By way of example, consider S = {2, 3, 5, 7} or S = {2, 3, p} with p prime, 11 ≤ p < 100. We stress the fact that, for most of these latter sets, we presently do not know a complete list of representatives of the isomorphism classes of rational elliptic curves having good reduction outside S. Nevertheless, the strategy outlined above does apply and this allows us to easily recover de Weger's result mentioned in the Introduction and to solve equations that remained unsolved in a recent paper by Terai [START_REF] Terai | A note on the Diophantine equation x 2 + q m = c n[END_REF] (see Corollary 5.5). We carry out the details in the next two subsections; the SAGE code used for our computations is available at http://www.math.ubc.ca/~bennett/Sum_Of_Two_S-units.pdf.

5.1.

The case S = {2, 3, 5, 7}. Specializing the approach above to the case S = {2, 3, 5, 7} considered by de Weger, we note that a priori we must consider conductors of the shape

N (E) = 2 α • 3 δ3 • 5 δ5 • 7 δ7
, where δ i = ord i (N (E)) ≤ 2, i = 3, 5, 7, and α = ord 2 (N (E)) ∈ {0, 1, 2, 3, 5, 7, 8}. However, we have the following easy result. Lemma 5.1. In each case N (E) ≤ 350000. Further, if (δ 3 , δ 5 , δ 7 ) ∈ {0, 2}, then either (x, y, w, z) ∈ {(-1, 8, 7, -1), (-1, 64, 7, 3), (1, 4, 5, -1), (-1, 16, 15, -1),

(1, 2, 3, ±1), (-1, 4, 3, -1), (-1, 2, 1, ±1), (1, 8, 1, -3), (1, 1, 2, ±1)},
or (δ 3 , δ 5 , δ 7 ) ∈ {(0, 0, 0), (0, 0, 2), (2, 2, 0)} and α = 1.

Proof. If δ 3 , δ 5 , δ 7 ∈ {0, 2}, we have a solution to an equation of the shape

2 k + ǫ = wz 2 ,
where k is nonnegative, ǫ = ±1 and rad(w) | 2 • 3 • 5 • 7. The solutions to this equation for k ≤ 6 correspond to those listed in the lemma. Moreover, if k ≥ 7, none of these equations has a solution modulo 840 unless we have w = 1, 7 or 15, that is (δ 3 , δ 5 , δ 7 ) ∈ {(0, 0, 0), (0, 0, 2), (2, 2, 0)}.

Similarly, it is easy to check that N (E) ≤ 350000, unless we have α = 8 and (δ 3 , δ 5 , δ 7 ) = (2, 2, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2), α = 7 and (δ 3 , δ 5 , δ 7 ) = (2, 2, 2), (1, 2, 2), or α = 5 and (δ 3 , δ 5 , δ 7 ) = (2, 2, 2). Of these, only the cases (α, δ 3 , δ 5 , δ 7 ) = (8, 2, 2, 1), (8, 2, 1, 2), (8, 1, 2, 2), (7, 1, 2, 2) may correspond to solutions to [START_REF] Dahmen | Perfect powers expressible as sums of two fifth or seventh powers[END_REF], namely to equations of the shape

7 k ± 1 = 2 • 3 • 5z 2 , 5 k ± 1 = 2 • 3 • 7z 2 , 3 k ± 1 = 2 • 5 • 7z 2 , 3 k ± 2 = 5 • 7z 2 ,
and 2•3 k ±1 = 5•7z 2 . Each of these equations, however, is insoluble modulo 840.

From Lemma 5.1 and the above discussion, we may thus appeal to Cremona's SAGE package to reproduce de Weger's results (with a slightly faster search provided by the restrictions on the exponents given in the above lemma). In particular, if S = {2, 3, 5, 7}, as noted in [25, Thm. 7.2], there are precisely 388 solutions (x, y, z) to (1) with gcd(x, y) squarefree and x ≥ |y| > 0 and z > 0. We list these solutions in the file http://www.math.ubc.ca/~bennett/2-3-5-7.pdf.

As an obvious byproduct, we also obtain a complete list of solutions to (1) with S = {2, 3} and S = {3, 5, 7}. As we will consider these sets again in Section 7, we state these results here.

Proposition 5.2. The only primitive solutions to equation ( 1) with S = {2, 3} and with, say, x ≥ |y| > 0 are given by (x, y) = (2, -1), (2, 2), (3, -2), (3, 1), (4, -3), (6, -2), (6, 3), (8, 1), (9, -8), (12, -3), [START_REF] Kraus | Majorations effectives pour l'équation de Fermat généralisée[END_REF][START_REF] Cremona | Finding all elliptic curves with good reduction outside a given set of primes[END_REF], (18, -2), (24, 1), (27, -2), (48, 1), (81, -32), (288, 1) and (486, -2). 

5.2.

The case S = {2, 3, p}. We now turn our attention to the case S = {2, 3, p} where p is a prime in the range 11 ≤ p < 100. Once again, we must a priori consider conductors of the shape

N (E) = 2 α • 3 δ3 • p δp ,
where δ i = ord i (N (E)) ≤ 2, i = 3, p, and α = ord 2 (N (E)) ∈ {0, 1, 2, 3, 5, 7, 8}; many of these conductors exceed the limits of the current Cremona database. However, we have the following result.

Proposition 5.4. In each case N (E) ≤ 350000, unless (x, y, w, z) corresponds to one of the following equations

3 4 + 1 = 2 • 41, 2 • 3 3 -1 = 53, 3 10 -1 = 2 • 61 • 22 2 , 3 4 + 2 = 83, 3 4 -2 = 79, 3 5 + 1 = 61 • 2 2 , 2 3 • 3 2 + 1 = 73, 2 3 • 3 2 -1 = 71, 3 4 + 2 3 = 89, 3 4 -2 3 = 73.
Proof. It is easy to check that we have N (E) ≤ 350000 unless we are in one of the following situations :

(α, δ 3 , δ p ) (8, 2, 2) (7, 2, 2) (8, 1, 2) (7, 1, 2) (8, 0, 2) p ≥ 13 ≥ 19 ≥ 23 ≥ 31 ≥ 37 (α, δ 3 , δ p ) (5, 2, 2) (7, 0, 2) (5, 1, 2) (3, 2, 2) p ≥ 37 ≥ 53 ≥ 61 ≥ 71
Of these, only the cases (α, δ 3 , δ p ) ∈ {(8, 1, 2), (7, 1, 2), (5, 1, 2)} may actually correspond to our equations. We are therefore led to solve the following equations, where ǫ = ±1 and k is a positive integer :

3 k + ǫ = 2pz 2 , for p ≥ 23, 2 • 3 k + ǫ = pz 2 and 3 k + 2ǫ = pz 2
, for p ≥ 31 and

3 k + ǫ = pz 2 , 2 3 • 3 k + ǫ = pz 2 and 3 k + 2 3 ǫ = pz 2 , for p ≥ 61.
We deal with each of these in turn. Considering first the equation 3 k + ǫ = 2pz 2 , we readily check that it has no solution modulo 8p for odd values of k and 23 ≤ p < 100. Assume therefore that k is even. If moreover ǫ = -1, then by factorization, we end up with an equation of the shape 3 m ± 1 = z ′2 or 3 m ± 1 = 2z ′2 for some integer z ′ . According to [START_REF] Bennett | Ternary Diophantine equations via Galois representations and modular forms[END_REF]Thm. 1.1], this leads to a unique solution to our equation, namely

3 10 -1 = 2 • 61 • 22 2 .
Finally, if k is even and ǫ = +1, the equation 3 k + 1 = 2pz 2 has no solution modulo 24p unless p = 29, 41, 53 or 89. However, for p = 29, 53 and 89, it has no solution modulo pq where q = 43, 313 and 23 respectively. In the remaining case, namely p = 41, write 3 k = 3 β x 3 with 0 ≤ β ≤ 2 and x ∈ Z. Then, (X,

Y ) = (2 • 3 β • 41x, 2 2 3 β • 41 2 z
) is an integral point on the elliptic curve

Y 2 = X 3 + 2 3 • 3 3β • 41 3 .
Computing its integral points using the aforementioned SAGE command thus leads to the unique solution 3 4 + 1 = 2 • 41.

We now turn our attention to the equation 2 • 3 k + ǫ = pz 2 . We easily check that for p in the range 31 ≤ p < 100, this equation has no solution modulo 24p unless we have (ǫ, p) = (1, 31), [START_REF] Bennett | Products of consecutive integers[END_REF]43), (1, 79), (-1, 53) or (-1, 89). For p = 31, 43, 79 and 89, the corresponding equation has no solution modulo pq where q = 13, 7, 13 and 23 respectively. For the remaining case, that is (ǫ, p) = (-1, 53), reducing modulo 53, we find that k ≡ 0 (mod 3). Writing

k = 3k 0 , (X, Y ) = (2 • 3 k0 • 53, 2 • 53 2 z) is thus an integral point on the elliptic curve Y 2 = X 3 -2 2 • 53 3 .
As before, we compute its integral points on SAGE and deduce the unique solution 2 • 3 3 -1 = 53.

Consider now equation 3 k + 2ǫ = pz 2 for p in the range 31 ≤ p ≤ 100. We check that there is no solution modulo 24p unless we have (ǫ, p) = (1, 53), [START_REF] Bennett | Products of consecutive integers[END_REF]59), [START_REF] Bennett | Products of consecutive integers[END_REF]83), (-1, 31), (-1, 79) and (-1, 97).

For p = 53, 59, 31 and 97, we however have that the corresponding equation has no solution modulo pq where q = 2887, 523, 13 and 7 respectively. It remains to deal with the cases (ǫ, p) = (1, 83) and (-1, 79). In the latter case, we find that k ≡ 1 (mod 3) by reducing modulo 79. Writing k = 3k 0 +1, (X, Y ) = (3 k0+1 •79, 3 1 •79 2 z) is necessarily an integral point on the elliptic curve

Y 2 = X 3 -2 • 3 2 • 79 3 .
This again leads to a unique solution, namely 3 4 -2 = 79. In the former case, that is (ǫ, p) = (1, 83), write

3 k = 3 β x 3 with 0 ≤ β ≤ 2 and x ∈ Z. Then, (X, Y ) = (3 β • 83x, 3 β • 83 2 z) is an integral point on the elliptic curve Y 2 = X 3 + 2 • 3 2β • 83 3 .
Computing its integral points using the command IntegralPoints in MAGMA ( [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) leads to a unique solution which is 3 4 + 2 = 83. We note here that the corresponding routine in SAGE has marked difficulty with this equation.

We now consider equation 3 k + ǫ = pz 2 . If ǫ = +1, then we have no solution modulo 24p unless p = 61, 67 or 79. For p = 67 or 79, however, we have that the corresponding equation has no solution modulo pq where q = 23 or 2341 respectively. If p = 61, write

3 k = 3 β x 3 with 0 ≤ β ≤ 2 and x ∈ Z. Then, (X, Y ) = (3 β • 61x, 3 β • 61 2 z) is an integral point on the elliptic curve Y 2 = X 3 + 3 2β • 61 3 .
Computing its integral points using SAGE leads to the unique solution 3 5 + 1 = 61 • 2 2 . If now ǫ = -1, then reducing 3 k -1 = pz 2 modulo 8 shows that k is necessarily even. Write k = 2k 0 and 3 k0 = 3 β x 3 with 0 ≤ β ≤ 2 and x ∈ Z. Then, for some divisor

z 1 of z, either (X, Y ) = (2•3 β x, 2 2 •3 β z 1 ) or (X, Y ) = (2•3 β x, 2•3 β z 1 )
is an integral point on one of the elliptic curves

Y 2 = X 3 ± 2 3 • 3 2β .
However none of their integral points (which we have already computed) corresponds to a solution of our equation.

Let us now consider the equation 2 3 • 3 k + ǫ = pz 2 . If ǫ = +1, then the corresponding equation has no solution modulo 24p unless p = 73 or 97. Moreover in the former case, we have k ≡ 2 (mod 3). If p = 97, we check that 2 3 • 3 k + 1 = 97z 2 has no solution modulo 13 • 97. Assume thus that p = 73 and write

k = 3k 0 + 2. Then (X, Y ) = (2 • 3 2+k0 • 73, 3 2 • 73 2 z) is an integral point on the elliptic curve Y 2 = X 3 + 3 4 • 73 3 .
We therefore find that there is only one solution corresponding to 2 3 • 3 2 + 1 = 73. Similarly, if ǫ = -1, then the corresponding equation has no solution modulo 24p unless p = 71. Write

3 k = 3 β x 3 with x ∈ Z and 0 ≤ β ≤ 2. Then, (X, Y ) = (2 • 3 β • 71x, 3 β • 71 2 z) is an integral point on the elliptic curve Y 2 = X 3 -3 2β • 71 3 .
This gives rise to the unique solution 2 3 • 3 2 -1 = 71.

We finally deal with the last equation, namely 3 k + 2 3 ǫ = pz 

Y 2 = X 3 + 2 3 • 3 2β • 89 3 .
We therefore conclude that there is only one solution corresponding to 3 4 + 2 3 = 89. Similarly, if ǫ = -1, then the corresponding equation has no solution modulo 24p unless p = 67 or p = 73. Moreover, in that latter case, we have k ≡ 1 (mod 3) and it is easy to check that 3 k -2 3 = 67z 2 has no solution modulo 23 • 67. Assume therefore that p = 73 and write k = 3k 0 + 1. Then (X, Y ) = (3 k0+1 • 73, 3 • 73 2 z) is an integral point on the elliptic curve

Y 2 = X 3 -2 3 3 2 • 73 3 .
This gives rise to the unique solution 3 4 -2 3 = 73, which completes the proof of the proposition. Utilizing Proposition 5.4, we can again appeal to Cremona's SAGE package to compute primitive solutions to equation [START_REF] Bennett | Products of consecutive integers[END_REF]. For each set S = {2, 3, p}, we have tabulated these solutions in the file http://www.math.ubc.ca/~bennett/2-3-p.pdf. By quick examination of this table for p = 23 and p = 47, we immediately deduce the following result about equations that remained unsolved in Proposition 3.3 of Terai [START_REF] Terai | A note on the Diophantine equation x 2 + q m = c n[END_REF] (but have been recently solved via rather different methods by Deng [START_REF] Deng | A note on the Diophantine equation x 2 + q m = c 2n[END_REF]).

Proposition 5.5. The only solutions to x 2 + 23 m = 12 n and x 2 + 47 m = 24 n are (x, m, n) = (±11, 1, 2) and (x, m, n) = (±23, 1, 2) respectively.

The case n = 3

We now deal with equation (2) when n = 3 using a (p, p, 3) Frey-Hellegouarch curve approach. The corresponding equations to treat are of the shape [START_REF] Deng | A note on the Diophantine equation x 2 + q m = c 2n[END_REF] x + y = wz 3 where x, y and w are pairwise coprime S-units. We may assume, without loss of generality, that w is cubefree and positive and that we have x ≡ 0 (mod 3) and y ≡ 2 (mod 3). With the notation of §4.3, we attach to such a solution the elliptic curve E = E x,y,w n,n,3 (1, 1, z) :

E : Y 2 + 3wzXY + w 2 yY = X 3 .
As in Section 5, all that remains to do to solve equation ( 11) is to check for an equality j(E) = j(F ), where j(E) = 3 3 (x + y)(9x + y) 3 xy 3

and j(F ) denote the j-invariants of E and F respectively, with F ranging over all representatives of the isomorphism classes of elliptic having good reduction outside S ∪ {3} (and a nontrivial 3-torsion subgroup). To circumvent the difficulty of computing representatives and make this approach work for a broader list of sets S (including some for which we do not know a complete list of such representatives), we also make use of the precise formula for the conductor of E given by Lemma 4.4, namely N (E) = 3 α rad 3 (xy)(rad 3 (w)) 2 where

α =                        2 if w 2 y -3wz ≡ -2 (mod 9) 3 if w 2 y -3wz ≡ 1 or 4 (mod 9) 4 if ord 3 (y) = 1 3 if ord 3 (y) = 2 0 if ord 3 (y) = 3 1 if ord 3 (y) > 3 5 if 3 | w.
As in the previous section, we now apply this approach to the sets S = {2, 3, 5, 7} and S = {2, 3, p} with p prime, 11 ≤ p ≤ 100.

6.1. The case S = {2, 3, 5, 7}. Specializing to S = {2, 3, 5, 7}, we a priori need to consider all conductors of the shape

N (E) = 2 δ2 • 3 α • 5 δ5 • 7 δ7
with δ i (N ) = ord i ∈ {0, 1, 2}, i = 2, 5, 7 and α = ord 3 (N ) ∈ {0, 1, 2, 3, 4, 5}. However, we have, as before, the following result.

Lemma 6.1. In each case N (E) < 350000.

Proof. It is easy to check that we have the desired inequality for N (E), unless (α, δ 2 , δ 5 , δ 7 ) ∈ {(5, 1, 2, 2), (5, 2, 2, 2), (4, 2, 2, 2)}.

Among these possibilities, only the case (α, δ 2 , δ 5 , δ 7 ) = (5, 1, 2, 2) may correspond to solutions. Since each of the equations

2 k ± 1 = 3 δ3 5 δ5 7 δ7 z 3 , with each δ i ∈ {1, 2}
is insoluble modulo 840, we obtain the stated result.

As explained previously, we can therefore appeal to Cremona's table of elliptic curves to solve equation [START_REF] Deng | A note on the Diophantine equation x 2 + q m = c 2n[END_REF] and thus (2) with n = 3 and S = {2, 3, 5, 7}. It turns out that there are exactly 207 triples (x, y, z) such that x + y = z 3 with x and y {2, 3, 5, 7}-units, with gcd(x, y) cubefree and, say, x ≥ |y| > 0, and z a positive integer. They are listed in the file http://www.math.ubc.ca/~bennett/2-3-5-7.pdf. From there we easily extract the latter solutions to this equation for S = {2, 3} and S = {3, 5, 7}. We list them here for later use. Proposition 6.2. The only primitive solutions to equation ( 2) with n = 3, S = {2, 3} and, say, x ≥ |y| > 0 are given by (x, y) = (2, -1), (3, -2), (4, -3), (4, 4), (6, 2), (9, -8), (9, -1), (12, -4), (18, 9), (24, 3), (36, -9) and (128, -3). 6.2. The case S = {2, 3, p}. We now turn our attention to the case S = {2, 3, p} where 11 ≤ p < 100 is prime. Once again, we a priori need to consider all conductors of the shape

N (E) = 2 δ2 • 3 α • p δp
with δ i = ord i (N ) ∈ {0, 1, 2}, i = 2, p and α = ord 3 (N ) ∈ {0, 1, 2, 3, 4, 5}. However, we have the following result, the proof of which, it being quite similar to that of Proposition 5.4, we omit for the sake of concision.

Proposition 6.4. We have N (E) ≤ 350000 unless (x, y, w, z) corresponds to a one of the following equations Combining this proposition with Cremona's tables of elliptic curves then allows us to compute all the solutions to (2) with n = 3, S = {2, 3, p} and p as above. We list them in the file http://www.math.ubc.ca/~bennett/2-3-p.pdf.

2 7 + 1 = 3 • 43, 3 • 2 4 -1 = 47, 3 • 2 5 + 1 = 97,

The general equation

In this last section, we completely solve equation ( 2) for two specific sets of primes, namely S = {2, 3} and S = {3, 5, 7}, using a variety of Frey-Hellegouarch curves, level-lowering and heavy computations involving modular forms and Thue-Mahler equations. It is only through careful combination of a variety of Frey-Hellegouarch curves, in conjunction with local arguments, that we are able to reduce these problems to a feasible collection of Thue-Mahler equations (in our case, all of degree 5). This is, in essence, the main feature of our approach that distinguishes it from one purely reliant upon lower bounds for linear forms in logarithms. This latter method is, in our opinion, at least with current technology, impractical for explicitly solving equation ( 2) for any set S with at least two elements.

7.1. The case S = {2, 3}. We prove the following result.

Theorem 7.1. The only primitive solutions to equation ( 2) with S = {2, 3} and, say, x ≥ |y| > 0 and z > 0 are given by the following infinite families

(x, y, z, n) = (2, -1, 1, n), (3, -2, 1, n), (4, -3, 1, n), (9, -8, 1, n), (2 n-1 , 2 n-1 , 2, n), (3 • 2 n-2 , 2 n-2 , 2, n), (3 • 2 n-1 , -2 n-1 , 2, n), (2 • 3 n-1 , 3 n-1 , 3, n), (2 2 • 3 n-1 , -3 n-1 , 3, n), (2 3 • 3 n-2 , 3 n-2 , 3, n), all with n ≥ 2, (x, y, z, n) = (3 2 • 2 n-3 , -2 n-3 , 2, n) for n ≥ 3
and by (x, y, z, n) = (16, 9, 5, 2), (18, -2, 4, 2), (24, 1, 5, 2), (27, -2, 5, 2), (81, -32, 7, 2), (48, 1, 7, 2), (128, -3, 5, 3), (288, 1, 17, 2) and (486, -2, 22, 2).

The cases where n ≤ 4 were covered in the previous two sections. We may therefore assume, without loss of generality, that n ≥ 5 is prime. The corresponding equation to treat is [START_REF] Fuchs | An effective Shafarevich theorem for elliptic curves[END_REF] x + y = wz n with x, y and w coprime {2, 3}-units and w nth-power free.

Assume first that ord 2 (xyw) ≥ 4. Since precisely one of x, y and wz is even, we may suppose, without loss of generality, that x ≡ -1 (mod 4) and that max {ord 2 (y), ord 2 (w)} ≥ 4.

We write (Aa n , Bb n ) = (x, y) or (x, -wz n ) if y or w is even, respectively, and set Cc n = Aa n + Bb n , for A, B and C nth-power free integers. With the notation of §4.1, considering the elliptic curve E = E A,B,C n,n,n (a, b, c), we thus have that n fails to divide ABC and ord 2 (ABC) ≥ 4, and hence, in the notation of Proposition 4.1, E ∼ n f where f is a weight 2 newform of level N 0 | 6. The resulting contradiction implies that necessarily ord 2 (xyw) ≤ 3.

Assume next that ord 3 (xyw) ≥ 4. Without loss of generality, we may suppose x ≡ 0 (mod 3), y ≡ 2 (mod 3) and that max {ord 3 (y), ord 3 (w)} ≥ 4.

We define (Aa n , Bb n , Cc 3 ) = (-wz n , y, -x) or (-x, wz n , y), depending on whether 3 | y or w, respectively, where, in either case, A and B are chosen to be nth-power free and C is cubefree. In both cases, we have n ∤ ABC and |ab| ≥ |z|.

If |z| ≥ 2, then with the notation of Proposition 4.5, we have E A,B,C n,n,3 (a, b, c) ∼ n f where f is a weight 2 newform of level N 0 | 12 and hence a contradiction. We therefore have z = ±1 and we are led to solve 3 k -2 l = ±1 with k ≥ 4. Both equations have no solution for l ≤ 2 and, by reducing modulo 8, we see that the equation 3 k -2 l = -1 has no solution for l ≥ 3 as well. If 3 k -2 l = +1 and l ≥ 3, then k is necessarily even, whereby both 3 k/2 -1 and 3 k/2 + 1 are powers of 2. Hence k < 4 and this is again a contradiction.

We are left, then, to consider equation ( 12) with max {ord 2 (xyw), ord 3 (xyw)} ≤ 3.

A short calculation leads to the families indicated in Theorem 7.1.

7.2.

The case S = {3, 5, 7}. The following result is the main theorem of the paper. As we shall observe, despite the apparently small size of S and its elements, the computations involved here are really approaching the limits of current "off the shelf" technology (though coming refinements in computational tools for modular forms will alleviate this somewhat). Before proving our main theorem, we first state some useful preliminary results starting with a standard factorization lemma. Lemma 7.3. Let x and y be coprime integers and n an odd prime number. If we write φ n (x, y) =

x n + y n x + y , then we have that gcd (x + y, φ n (x, y)) ∈ {1, n} and, moreover,

gcd (x + y, φ n (x, y)) = n ⇔ n | x n + y n ⇔ n | φ n (x, y) ⇔ n | x + y.
Further, n 2 ∤ φ n (x, y) and if ℓ is a prime dividing x n + y n , then either ℓ | x + y or ℓ ≡ 1 (mod n).

Proof. Apart from its very last assertion, this lemma is proved in [10, Lemma 2.1]. Suppose that ℓ is a prime dividing x n + y n . Then, by coprimality, ℓ does not divide y. We may thus find an integer y ′ such that yy ′ ≡ -1 (mod ℓ), whence (xy

′ ) n ≡ 1 (mod ℓ). If xy ′ ≡ 1 (mod ℓ), it follows that xy ′ + yy ′ = y ′ (x + y) ≡ 0 (mod l), so that l | x + y. Otherwise, since n is prime, xy ′ has order n modulo l, so that n | l -1, i.e. l ≡ 1 (mod n).
This lemma is a key tool in the proof of the following result.

Lemma 7.4. Let x, y be coprime nonzero integers and n ≥ 5 be a prime number. Then P (x n + y n ) ≥ 11,

unless |x| = |y| = 1.
Proof. Assume P (x n + y n ) ≤ 7 and |x| = |y|. Then, with the above notation, we have that |φ n (x, y)| > 1, since, if x n + y n = ±(x + y), then necessarily |x| = |y|. It follows that there exists a prime l ∈ {2, 3, 5, 7} such that l | φ n (x, y) and hence, by Lemma 7.3, l | x + y, whereby l = n ∈ {5, 7}. We thus have

x n + y n = ±n(x + y), for n = 5 or 7, which again has no solutions with |x| = |y|. This contradiction completes the proof of the lemma.

The next result will be of use in proving a special case of Theorem 7.2 (see Proposition 7.6).

Proposition 7.5. The only solutions to C 4 -1 = p α q β z n and D 2 -1 = p α z n for C, D and z positive integers with z even, n ≥ 5 prime, and {p, q} ⊂ {3, 5, 7} are with n = 5, C = 7 and D ∈ {15, 17}.

Proof. We first deal with C 4 -1 = p α q β z n . Since z is even, we have that C is odd and by factorization (up to permutation of p and q) that either

C 2 + 1 = 2z n 1 , C 2 + 1 = 2p α z n 1 or C 2 + 1 = 2p α q β z n 1 ,
for some odd integer z 1 . By a classical result of Störmer ([23,p. 168]), the first case holds only for z 1 = C = 1. Similarly in the third case, we deduce that

C 2 -1 = 2 n-1 z n
2 for some nonzero integer z 2 which in turn contradicts Corollary 1.4 of [START_REF] Bennett | Products of consecutive integers[END_REF]. We therefore end up in the situation where

C 2 + 1 = 2p α z n 1 and C 2 -1 = 2 n-1 q β z n 2 , for some positive integer z 2 . By factorization, C ± 1 = 2q β w n 1 and C ∓ 1 = 2 n-2 w n 2
for some positive integers w 1 and w 2 , whereby we have

q β w n 1 -2 n-3 w n 2 = ±1.
We may thus appeal to Theorem 1.1 of [START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] with (in the notation of that paper) S = {2, q} to conclude that n = 5 and w 1 = w 2 = 1, whence C = 7 as claimed.

We now turn our attention to the equation D 2 -1 = p α z n . By factorization, for some positive integers w 1 and w 2 , we have either

w n 1 -2 n-2 p α w n 2 = ±1 or p α w n 1 -2 n-2 w n 2 = ±1.
According to loc. cit. applied to S = {2, p}, the former equation has no such solutions, whereas the only solutions to the latter are with n = 5, p α ∈ {7, 3 2 } and w 1 = w 2 = 1. This gives rise to D ∈ {15, 17}, as claimed.

With those preliminary results in hands, we now turn to the actual proof of Theorem 7.2. Once again, recall that we have to solve [START_REF] Hambrook | Implementation of a Thue-Mahler solver[END_REF] x + y = wz n , where x, y, w are coprime {3, 5, 7}-units with x, w positive, n ≥ 5 prime and z nonzero.

Our first result is concerned with the case y = ±1 in equation ( 13) above.

Proposition 7.6. Let x and w be coprime positive {3, 5, 7}-units, y = ±1 and let n ≥ 5 be a prime number such that x + y = wz n for some positive integer z. Then, y = -1, n = 5, z = 2 and

(x, w) = (7 4 , 3 • 5 2 ) or (3 2 • 5 2 , 7).
Proof. According to Lemma 7.4, we may assume, without loss of generality, that w = 1. Similarly by applying [2, Thm. 1.1] to each subset of {3, 5, 7} of cardinality 2, we may also assume that rad(xw) = 3•5•7. Besides, sieving modulo 2 4 rad(w) shows that we necessarily have y = -1 and that either x is a 4th power and w has two distinct prime factors (in {3, 5, 7}), or that x is a square and w has only one prime factor. We finally conclude using Proposition 7.5.

According to Lemma 7.4 and Proposition 7.6 above, in order to prove Theorem 7.2, it remains to solve each equation of the shape

3 α 5 β + (-1) δ 7 γ = z n , with (α, β) ≡ (0, 0) (mod n) and γ ≡ 0 (mod n) (14) 3 α 7 γ + (-1) δ 5 β = z n , with (α, γ) ≡ (0, 0) (mod n) and β ≡ 0 (mod n) (15) 5 β 7 γ + (-1) δ 3 α = z n , with (β, γ) ≡ (0, 0) (mod n) and α ≡ 0 (mod n) (16) 3 α + (-1) δ 5 β = 7 γ z n , with α, β > 0 and 0 < γ ≤ n -1 (17) 3 α + (-1) δ 7 γ = 5 β z n , with α, γ > 0 and 0 < β ≤ n -1 (18) 5 β + (-1) δ 7 γ = 3 α z n , with β, γ > 0 and 0 < α ≤ n -1 (19)
where α, β and γ are nonnegative integers, n ≥ 5 is prime and δ ∈ {0, 1}.

In the remainder of this section, we prove the following precise result on these equations. Combining it with Proposition 7.6 and results from Sections 5 and 6 completes the proof of Theorem 7.2.

Theorem 7.7. The solutions to equations ( 14) -( 19) in nonnegative integers α, β and γ, prime n ≥ 5 and δ ∈ {0, 1} correspond to the identities

2 5 = 3 • 5 3 -7 3 = 3 4 -7 2 = 5 • 7 -3 = 3 3 + 5 = 5 2 + 7, 2 10 = 3 • 7 3 -5 and 2 7 = 5 3 + 3 = 3 3 • 5 -7.
Suppose that we have a solution to one of equations ( 14) -( 19) in nonnegative integers α, β and γ, prime n ≥ 5 and δ ∈ {0, 1}, and rewrite this in the shape [START_REF] Cremona | Finding all elliptic curves with good reduction outside a given set of primes[END_REF] for suitable choices of A, B, C, a, b and c. Applying Proposition 4.5, we thus have that E ∼ n f for some weight 2 cuspidal newform of level N 0 where, crudely, we have that N 0 | 3 5 • 5 2 • 7 2 . Since 2 | z and hence necessarily 2 | ab, we may apply congruence ( 5) with l = 2 to conclude that In what follows, we will in fact show that this upper bound can, through somewhat refined arguments using various Frey-Hellegouarch curves, local computations and Thue(-Mahler) solvers, be replaced by the assertion that n ∈ {5, 7}, corresponding to the solutions noted in Theorem 7.7. In the case n = 5, an approach via Frey-Hellegouarch curves, while theoretically of value, in practice appears to work poorly. Instead, we will use MAGMA code for solving Thue-Mahler equations due to K. Hambrook [START_REF] Hambrook | Implementation of a Thue-Mahler solver[END_REF]; documentation for this may be found at http://www.math.ubc.ca/~bennett/hambrook-thesis-2011.pdf. The result we deduce by appealing to this code is the following : Proposition 7.8. The solutions to equations ( 14) - [START_REF] Ribet | On modular representations of Gal(Q/Q) arising from modular forms[END_REF] in nonnegative integers α, β, γ and δ ∈ {0, 1}, with n = 5 correspond to the identities Proof. According to the shapes of the equations and the noted restrictions on α, β and γ, it suffices to solve the following Thue-Mahler equations (some of which may be treated locally) This is easily achieved using Hambrook's code and leads to the solutions mentioned.

n ≤ 3 + 2 √ 2 g0(N0) ≤ 3 + 2 √ 2 ( 
It is worth noting, at this point in the proceedings, that, at least as currently implemented, the Thue-Mahler solver we are using has severe difficulties with equations of degree 7 and higher. In particular, we will need to work very carefully in order to avoid its use for the remaining cases under consideration.

We will now deal with each of equations ( 14)-( 19) in turn, assuming n ≥ 7 and that we have a solution satisfying the conditions mentioned. We will make repeated use of Proposition 4.5, explicitly using MAGMA to calculate newforms of all relevant levels N 0 .

The results are as follows. We list in Table 1 the triples (δ 3 , δ 5 , δ 7 ) of interest to us for which the space of weight 2 cuspidal newforms of level ( 20)

N 0 = 3 δ3 • 5 δ5 • 7 δ7
is nontrivial, together with the list of all primes n ≥ 7 for which there exists at least one form f of level N 0 satisfying both ( 5) with l = 2, and the congruences of Proposition 4.5 for all primes 3 ≤ l < 50. The MAGMA code used for this computation (when N 0 < 10000) is available at http://www.math.ubc.ca/~bennett/nn3.m.

For the larger levels N 0 = 3 (δ 3 , δ 5 , δ 7 ) n (0, 0, 2), (0, 2, 1), (1, 0, 1), (1, 1, 0), (1, 2, 0), (1, 2, 1), none (3, 0, 0), (3, 0, 1), (3, 0, 2), (4, 0, 0), (4, 1, 0), (5, 0, 1) (0, 1, 2), (0, 2, 2), (1, 0, 2), (1, 1, 2), 7 (4, 0, 2), (4, 2, 1), (5, 1, 0) (1, 2, 2), (3, 2, 1), (4, 1, 2) 7, 11 (5, 0, 0) 17 (5, 1, 1) 7, 17

Table 1. Triples (δ 3 , δ 5 , δ 7 ) and corresponding values of n

In the next six subsections we deal with each equation in turn. Full details on the computations can be found in the file http://www.math.ubc.ca/~bennett/Last_Equations.pdf 7.2.1. The equation 3 α 5 β + (-1) δ 7 γ = z n . By reducing the equation modulo 8, we see that α and β have the same parity, and that α is odd if and only if we have δ ≡ γ (mod 2). We begin by assuming that α and β are even, and n ≥ 7. If, further, β > 0, we consider the curve

E = E (-1) δ+1 7 γ 0 ,1,1 (3) 
,n,n,2 (7 γ1 , z, (-1) α/2 3 α/2 • 5 β/2 ), where γ = nγ 1 + γ 0 , with 0 ≤ γ 0 ≤ n -1. It has good reduction at 5 and is of the shape

E : Y 2 + XY = X 3 + AX 2 + BX
where A, B ∈ Z with A ≡ 1 (mod 5) and B ≡ 0 (mod 5), whereby a 5 (E) ∈ {±2, ±4}. On the other hand, Proposition 4.3, E ∼ n f where f is a weight-2 newform of level 14. Since there is a unique such newform and it satisfies c 5 = 0, we obtain a contradiction from (5) for l = 5. Assume next that α is even, β = 0 and n = 7. If γ ≥ 2, then we have 3 α ≡ z 7 (mod 49) and, since z ≡ 0 (mod 7), 3 6α ≡ 1 (mod 49). This leads to the conclusion that α ≡ 0 (mod 7) and hence a contradiction. If γ = 1, then we have δ = 0 and the equation to solve is 3 α + 7 = z 7 . However we check that there is no value of α (mod 42) such that (3 α + 7) 6 ≡ 1 (mod 49) and (3 α + 7) 6 ≡ 0 or 1 (mod 43),

and hence obtain a contradiction in this case as well. We therefore may assume that α is even, β = 0 and n ≥ 11, and consider the curve

E = E 1,-3 α 0 ,(-1) δ 7 γ 0 n,n,3 (z, 3 α1 , 7 γ1 ),
where α = nα 1 + α 0 , with 0 < α 0 ≤ n -1 and γ = 3γ 1 + γ 0 , with 0 ≤ γ 0 ≤ 2. Then, by Proposition 4.5, E ∼ n f where f is a weight 2 newform of level N 0 with

N 0 | 3 • 7 2 or 3 3 | N 0 | 3 3 • 7 2 if α ≥ 3 or α = 2 respectively.
Since n ≥ 11, we therefore reach a contradiction upon appealing to Table 1.

Next, suppose that α and β are odd. If n = 7 and γ ≥ 2, we simply note that there is no solution modulo 2 3 • 7 2 • 29 • 43 • 71. If n = 7 and γ = 1, then δ = 1 and modulo 2 3 • 7 2 • 29 • 43 • 113, we have that α ≡ 3 (mod 7) and β ≡ 1 (mod 7). We are therefore led to solve the Thue equation z 7 -3 3 5y 7 = 7 using PARI/GP. This gives rise to a unique solution to our equation, namely 3 3 •5 -7 = 2 7 . If, however, we assume that n ≥ 11, we begin by considering the following (n, n, 3) Frey-Hellegouarch curve

E = E 1,-3 α 0 5 β 0 ,(-1) δ 7 γ 0 n,n,3 (z, 3 α1 5 β1 , 7 γ1 ) where    α = nα 1 + α 0 , 0 ≤ α 0 ≤ n -1 β = nβ 1 + β 0 , 0 ≤ β 0 ≤ n -1 γ = 3γ 1 + γ 0 , 0 ≤ γ 0 ≤ 2.
Then, by Proposition 4.5, E ∼ n f where f has level

N 0 with N 0 | 3 • 5 • 7 2 or N 0 = 3 4 • N 1 , where N 1 | 5 • 7 2 , if α ≥ 3 or α = 1 respectively. According to Table 1, since n ≥ 11, we necessarily have level N 0 = 3 4 • 5 • 7 2 , whence α = 1, β ≡ 1 (mod 2)
, n = 11 and β ≡ 0 (mod 11).

To treat this remaining case, we now consider the following (n, n, n) Frey-Hellegouarch curve (5 β1 , z, 7 γ1 ), where β = 11β 1 + β 0 and γ = 11γ 1 + γ 0 with 0 < β 0 , γ 0 ≤ 10 (recall that β, γ ≡ 0 (mod 11)). According to Proposition 4.1, E arises from a weight-2 newform f of level 210 and f corresponds to an elliptic curve F/Q such that a q (F ) ≡ ±2 (mod 11), for q = 23 and 67.

E = E 3•5 β 0 ,-
This implies that F has good reduction at 23 and 67, or, in other words, that neither 23 nor 67 divides z. We may thus sieve locally at these primes to show that there is no triple (β, δ, γ) (with β odd and δ ≡ γ (mod 2)) such that

3 • 5 β + (-1) δ 7 γ ∈ F × q 11
simultaneously for q = 23 and 67. This leads to the desired contradiction, whereby we may conclude that the only solution to [START_REF] Känel | Modularity and integral points on moduli schemes[END_REF] for n ≥ 7 prime corresponds to 3 

E = E -3 α 0 7 γ 0 ,1,(-1) δ (3),n,n,2
(3 α1 7 γ1 , z, (-1) δ 5 β/2 ), where α = nα 1 + α 0 , γ = nγ 1 + γ 0 , with 0 ≤ α 0 , γ 0 ≤ n -1. Since β > 0, E has good reduction at 5. Moreover, if δ = 0, then it satisfies a 5 (E) = ±4. From Proposition 4.3, E arises modulo n from a weight 2 newform of level 42 (recall that α > 0). But there is a unique newform at level 42 corresponding to an elliptic curve F/Q with a 5 (F ) = -2, a contradiction. It follows that we have δ = 1, which in turn implies γ even. We may thus consider instead

E = E 5 β 0 ,1,1 (3) 
,n,n,2 (5 β1 , z, (-1) (α+γ)/2 3 α/2 7 γ/2 ), where β = nβ 1 + β 0 with 0 < β 0 ≤ n -1. Then, by Proposition 4.3, E arises from a weight 2 newform of level 10. This is an obvious contradiction.

Next, assume that α and β are odd, and n ≥ 7. We consider the elliptic curve E = E A,B,C n,n,3 (a, b, c) with A = 1, B = -3 α0 7 γ0 , C = (-1) δ 5 β0 , a = z, b = 3 α1 7 γ1 and c = 5 β1 , where α = nα 1 + α 0 , γ = nγ 1 + γ 0 with 0 ≤ α 0 , γ 0 ≤ n -1 and β = 3β 1 + β 0 with 0 ≤ β 0 ≤ 2. Then E ∼ n f where f is a weight 2 newform of level, say, N 0 which we may compute using Proposition 4.5. If α ≥ 3, we find that N 0 | 3 • 5 2 • 7 and hence reach a contradiction from consideration of Table 1. Assume therefore that α = 1 and that (A, B, C, a, b, c) does not correspond to the solution 3 + 5 3 = 2 7 . Then, necessarily, n = 7 and N 0 = 3 4 • 5 2 • 7. In particular, we have γ 0 = 0, i.e., γ ≡ 0 (mod 7). We now use local arguments to conclude. Indeed, if γ ≥ 2, then by reducing mod 49, we obtain that β ≡ 0 (mod 7), a contradiction. If, however, γ = 1, then δ = 1 and we check that there is no value of β (odd) such that β ≡ 0 (mod 7) and (3 • 7 -5 β ) (p-1)/7 ≡ 0 or 1 (mod p) holds for p = 29 and 71 simultaneously. This gives the desired contradiction and hence proves that the only solution to [START_REF] Kim | A modular approach to Thue-Mahler equations[END_REF] for n ≥ 7 prime corresponds to 3 + 5 3 = 2 7 . 7.2.3. The equation 5 β 7 γ + (-1) δ 3 α = z n . By reducing modulo 8, we see that α and β have the same parity and that α is odd if and only if we have δ ≡ γ (mod 2). From the preceding two subsections, we may suppose that βγ = 0. If n = 7 and γ ≥ 2, then considering the equation modulo 7 2 , we conclude that α ≡ 0 (mod 7), a contradiction. If, however, n = 7 and γ = 1, we can easily check that there is no solution modulo 2 3 • 7 2 • 29 • 43 • 127 • 379. We may thus suppose that n ≥ 11. Further, if α, β and γ are all even (so that δ = 1), we can consider the elliptic curve

E = E 3 α 0 ,1,1 (3) 
,n,n,2 (3 α1 , z, (-1) γ/2 5 β/2 7 γ/2 ) where α = nα 1 + α 0 with 0 < α 0 ≤ n -1. By Proposition 4.3, it arises at level 6, a contradiction. We may thus suppose that at least one of α, β or γ is odd.

If α ≥ 3, then we consider

E = E 1,(-1) δ+1 3 α 0 ,5 β 0 7 γ 0 n,n,3 (z, 3 α1 , 5 β1 7 γ1 ) where    α = nα 1 + α 0 , 0 < α 0 ≤ n -1 β = 3β 1 + β 0 , 0 ≤ β 0 ≤ 2 γ = 3γ 1 + γ 0 , 0 ≤ γ 0 ≤ 2.
. It follows that the newform f corresponds to an elliptic curve F/Q for which there are unique isogeny classes at level N 0 ∈ {30, 42} and five isogeny classes at level 210. For q ∈ {23, 67, 89, 199}, we compute a q (F ) to show that E has good reduction at q (i.e., q ∤ z) unless, perhaps, if either q = 89 and f corresponds to the isogeny class 210c (in Cremona's notation), or q = 199 and f corresponds to the isogeny class 210d. We finally sieve over α, β and γ (not all even) to show that we do not have 5 β 7 γ + (-1) δ 3 α ∈ (Z/qZ) × 11 and a q (E) ≡ a q (F ) (mod 11), for q = 23, 67 and 89 simultaneously if the isogeny class of F is not 210c and for q = 23, 67 and 199 simultaneously otherwise. Assume now α ∈ {1, 2}. We basically follow the same strategy we used for the case α ≥ 3 applying first an (n, n, 3) and then an (n, n, n) argument, though the details are somewhat simpler. Indeed, we first consider E = E 5 β 0 7 γ 0 ,-1,(-1) δ+1 3 n,n,3

By
(5 β1 7 γ1 , z, 1) or E = E -5 β 0 7 γ 0 ,1,(-1) δ 3 2 n,n,3

(5 β1 7 γ1 , z, 1) where β = nβ 1 + β 0 , 0 ≤ β 0 ≤ n -1 γ = nγ 1 + γ 0 , 0 ≤ γ 0 ≤ n -1 if α = 1 or α = 2 respectively. Then, by Proposition 4.5, E ∼ n f where f has level 3 5 • N 1 , where N 1 | 5 • 7. From appeal to Table 1, we conclude that n = 17 (and β, γ ≡ 0 (mod 17)). We now use an (n, n, n) Frey-Hellegouarch curve argument to deal with the case n = 17. As before, we consider the elliptic curve E = E -5 β 0 7 γ 0 ,1,(-1) δ 3 α 17,17,17

(5 β1 7 γ1 , z, 1) or E = E 5 β 0 7 γ 0 ,-1,(-1) δ+1 3 α 17,17,17

(5 β1 7 γ1 , z, 1) with β 0 , β 1 , γ 0 , γ 1 as above, if γ is even or odd, respectively. Then E arises mod 17 from an elliptic curve F of conductor N 0 ∈ {30, 42, 210} and for q ∈ {103, 137}, we check, by computing a q (E) (mod 17) that E has good reduction at q (i.e., that q ∤ z). For α ∈ {1, 2}, we finally sieve over β and γ to show that 5 β 7 γ + (-1) δ 3 α ∈ (Z/qZ) × 17 and a q (E) ≡ a q (F ) (mod 17),

does not hold for q = 103 and 137 simultaneously. This finishes the proof that equation ( 16) has no solution for n ≥ 7. .

Using Table 1, it then follows that α = 2 and n ∈ {7, 11}. We first consider the (n, n, 3) Frey-Hellegouarch curve E = E 7 γ ,5 β 0 ,3 2 n,n,3

(z, 5 β1 , 1), where β = nβ 1 + β 0 with 0 ≤ β 0 ≤ n -1. By Proposition 4.5, the curve E arises modulo n from a newform f of level N 0 = 3 5 • N 1 , where N 1 | 5 • 7. Hence, using Table 1, we deduce that n ∈ {7, 17} and, in particular, that n = 11. If, however, n = 7, then we use local arguments to get a contradiction. If γ ≥ 2, we check that there is no solution modulo 2 3 • 7 2 • 43. Similarly, if γ = 1, then there is no solution modulo 2 3 • 7 2 • 43 • 127. This shows that equation [START_REF] Murty | Modular forms and effective diophantine approximation[END_REF] has no solution for n ≥ 7 prime. 7.2.5. The equation 3 α + (-1) δ 7 γ = 5 β z n . By reducing mod 2 4 • 5, we conclude that α ≡ 0 (mod 4), γ ≡ 0 (mod 4) and δ = 1. Write α = 2α 0 and γ = 2γ 0 . Then, there exist nonzero integers z 1 , z 2 with z 2 odd such that either 3 α0 -7 γ0 = 2 n-1 5 β z n Adding these equations and recalling that α 0 is even yields either

3 α0/2 2 = 2 n-2 5 β z n 1 + z n 2 or 3 α0/2 2 = 2 n-2 z n 1 + 5 β z n 2 .
If n ≥ 11, we consider the (n, n, 2) Frey-Hellegouarch curve

E = E 1,2 n-2 5 β ,1 (3) 
,n,n,2 (z 2 , z 1 , (-3) α0/2 ) or E = E 5 β ,2 n-2 ,1

(3),n,n,2 (z 2 , z 1 , (-3) α0/2 ) according to whether we are in the first or second case above, respectively. Then, by Proposition 4.3, the curve E arises at level 10, an immediate contradiction. We may therefore assume that n = 7 and sieve over α, β and γ to show that there is no solution modulo 2 4 • 7 18) has no solution for n ≥ 7 prime. 7.2.6. The equation 5 β + (-1) δ 7 γ = 3 α z n . By reducing mod 2 4 • 3, we find that β ≡ 0 (mod 4), γ ≡ 0 (mod 2) and δ = 1. We then consider the (n, n, 2) Frey-Hellegouarch curve E = E 5 β 0 ,-3 α ,1

(3),n,n,2 (5 β1 , z, (-7) γ/2 ), where β = nβ 1 + β 0 with 0 ≤ β 0 ≤ n -1. It has good reduction at 7 and satisfies a 7 (E) = 0. On the other hand, the curve E arises from the (unique) newform f at level 30, which satisfies c 7 (f ) = -4. This gives us the desired contradiction and hence proves that equation [START_REF] Ribet | On modular representations of Gal(Q/Q) arising from modular forms[END_REF] has no solution for n ≥ 7 prime.

Lemma 4 . 2 .

 42 Let i = 1, 2 or 3 and E = E A,B,C (i),n,n,2 (a, b, c).(1) The discriminant ∆(E) of the curve E is given by

4. 3 . 9 )

 39 Signature (n, n, 3). Let us suppose that a, b, c, A, B and C are nonzero integers such that (Aa n + Bb n = Cc 3

Proposition 5 . 3 .

 53 The only primitive solutions to equation[START_REF] Bennett | Products of consecutive integers[END_REF] with S = {3, 5, 7} and with, say, x ≥ |y| > 0 are given by (x, y) = (3, 1), (5, -1), (7, -3), (9, -5), (9, 7), (15, 1), (21, -5),[START_REF] Silverman | The arithmetic of elliptic curves[END_REF][START_REF] Kim | A modular approach to Thue-Mahler equations[END_REF],(25, -21), (25, -9), (35, 1), (49, -45), (49, 15), (63, 1), (105, -5), (135, -35), (147, -3), (175, 21), (175, 81), (189, -125), (189, 7), (343, -243), (405, -5), (625, -49), (675, 1), (729, -245), (1029, -5), (3375, 2401), (3969, -125), (9375, 1029), (15625, -1701), (59535, 1), (688905, -5) and (4782969, 4375).

2 .

 2 If ǫ = +1, then the corresponding equation has no solution modulo 24p unless p = 83 or 89. If p = 83, we find a local obstruction modulo 2 3 • 7 • 13. If p = 89, we write 3 k = 3 β x 3 with x ∈ Z and 0 ≤ β ≤ 2, whereby (X, Y ) = (3 β • 89x, 3 β • 89 2 z) is an integral point on the elliptic curve

Proposition 6 . 3 .

 63 The only primitive solutions to equation (2) with n = 3, S = {3, 5, 7} and, say, x ≥ |y| > 0 are given by (x, y) = (5, 3), (7, 1), (9, -1), (15, -7), (35, -27), (49, 15), (63, 1), (189, -125), (225, -9), (441, -225), (1225, -225), (1875, -147) and (3969, -1225).

2 6 + 3 =

 63 67 and 2 6 -3 = 61.

Theorem 7 . 2 .

 72 The only primitive solutions to equation[START_REF] Bennett | Binomial Thue equations and polynomial powers[END_REF] with S = {3, 5, 7} and x > |y| > 0 are given by (x, y) = (3, 1), (5, -1), (5, 3), (7, -3), (7, 1), (9, -5), (9, -1), (9, 7), (15, -7), (15, 1), (21, -5), (21, 15), (25, -21), (25, -9), (25, 7), (27, 5), (35, -27), (35, -3), (35, 1), (49, -45), (49, 15), (63, 1), (81, -49), (105, -5), (125, 3), (135, -35), (135, -7), (147, -3), (175, 21), (175, 81), (189, -125), (189, 7), (225, -9), (343, -243), (375, -343), (405, -5), (441, -225), (625, -49), (675, 1), (729, -245), (1029, -5), (1225, -225), (1323, -27), (1875, -147), (3375, 2401), (3969, -1225), (3969, -125), (9375, 1029), (10125, -125), (15625, -1701), (50625, -3969), (59535, 1), (540225, -2401), (688905, -5), (4782969, 4375) and (24310125, -10125).

N0+1)/ 12 <

 12 10 18991 , where g 0 (N 0 ) denotes the number of cuspidal weight-2 newforms of level N 0 .

2 5 = 3 •

 53 5 3 -7 3 = 3 4 -7 2 = 5 • 7 -3 = 3 3 + 5 = 5 2 + 7 and 2 10 = 3 • 7 3 -5.

z 5 -

 5 3 a 5 b y 5 = 7 c , with 0 ≤ a, b ≤ 4 and (a, b) = (0, 0) z 5 -3 a 7 c y 5 = 5 b , with 0 ≤ a, c ≤ 4 and (a, c) = (0, 0) z 5 -5 b 7 c y 5 = 3 a , with 0 ≤ b, c ≤ 4 and (b, c) = (0, 0) 7 c z 5 -5 b y 5 = 3 a , with 0 < b, c ≤ 4 3 a z 5 -5 b y 5 = 7 c , with 0 < a, b ≤ 4.

- 5 β 11 ( 5 11 ( 5

 5115115 0 7 γ 0 ,1,(-1) δ 3 α 0 11,11,β1 7 γ1 , z,3 α1 ) or E = E 5 β 0 7 γ 0 ,-1,(-1) δ+1 3 α 0 11,11,β1 7 γ1 , z, 3 α1 ) where    α = 11α 1 + α 0 0 < α 0 ≤ 10, β = 11β 1 + β 0 0 ≤ β 0 ≤ 10 γ = 11γ 1 + γ 0 0 ≤ γ 0 ≤ 10,if γ is even or odd, respectively. Then, by Proposition 4.1, E ∼ n f where f has level N 0 ∈ {30, 42, 210}.

7. 2 . 4 .

 24 The equation 3 α + (-1) δ 5 β = 7 γ z n . Considering the equation 8, we conclude that α and β have the same parity and that α is odd if and only if we have δ = 0. If α and β are odd, then δ = 0 and, since γ > 0, we have 3 α + 5 β ≡ 0 (mod 7) and hence a contradiction. Next, assume that α and β are even and n ≥ 7. The equation to treat is now 3 α -5 β = 7 γ z n .We thus consider the elliptic curveE = E -7 γ ,3 α 0 ,5 β 0 n,n,3 (z, 3 α1 , 5 β1 ) where α = nβ 1 + α 0 , 0 ≤ β 0 ≤ n -1 β = 3β 1 + β 0 , 0 ≤ γ 0 ≤ 2 .By Proposition 4.5, we have E ∼ n f where f has level N 0 = 3 k • 5 δ5 • 7 with δ 5 ∈ {0, 2} and α ≡ 3 (mod n) 1 if α ≥ 3 and α ≡ 3 (mod n)

1 3 α0 + 7 γ0 = 2z n 2 or 3 α0 - 7 γ0 = 2 n-1 z n 1 3 α0 + 7 γ0 = 2 • 5 β z n 2 .

 1723721722 

  4 • 5 2 • 7 = 14175 and N 0 = 3 4 • 5 • 7 2 = 19845, we have first used Wiese's MAGMA function Decomposition (from his package ArtinAlgebras available on his homepage) to compute the characteristic polynomials of the first few Fourier coefficients. The output can be found in http://www.math.ubc.ca/~bennett/14175.m and in http://www.math.ubc.ca/~bennett/19845.m, respectively.

  3 • 5 -7 = 2 7 . 7.2.2. The equation 3 α 7 γ + (-1) δ 5 β = z n . By reducing modulo 8, we see that α and β necessarily have the same parity, and that α is odd precisely when we have δ ≡ γ (mod 2). Assume first that α and β are even, and n ≥ 7. Let us consider

  Proposition 4.5, we have E ∼ n f where f has level N 0 | 3 • 5 2 • 7 2 ; from Table 1, we necessarily have n = 11. We now use an (n, n, n) Frey-Hellegouarch curve argument to treat this remaining case. Consider either the elliptic curve

	E = E

  2 • 29 • 43 • 71 • 113 • 127 • 211 • 337 • 421. This shows that equation (
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