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SUMS OF TWO S-UNITS VIA FREY-HELLEGOUARCH CURVES

MICHAEL A. BENNETT AND NICOLAS BILLEREY

Abstract. In this paper, we develop a new method for finding all perfect
powers which can be expressed as the sum of two rational S-units, where
S is a finite set of primes. Our approach is based upon the modularity of
Galois representations and, for the most part, does not require lower bounds
for linear forms in logarithms. Its main virtue is that it enables to carry out
such a program explicitly, at least for certain small sets of primes S; we do so
for S = {2, 3} and S = {3, 5, 7}.

1. Introduction

If S = {p1, p2, . . . , pk} is a finite set of primes, we define the set of S-units to be
those integers of the shape ±pα1

1 pα2

2 · · · pαk

k , with exponents αi nonnegative integers.
The arithmetic of such sets has been frequently studied due to its connections to
a wide variety of problems in Number Theory and Arithmetic Geometry. In the
latter direction, equations of the shape

(1) x+ y = z2,

where x and y are S-units for certain specific sets S, arise naturally when one wishes
to make effective a theorem of Shafarevich on the finiteness of isomorphism classes
of elliptic curves over a number field K with good reduction outside a given finite
set of primes. By way of a simple example, if we wish to find all elliptic curves
E/Q with nontrivial rational 2-torsion and good reduction outside {p1, p2, . . . , pk},
we are led to consider curves E of the shape

E : y2 = x3 + ax2 + bx,

where a and b are rational integers satisfying

b2(a2 − 4b) = ±2α0pα1

1 · · · pαk

k ,

for nonnegative integers αi. Writing |b| = 2β0pβ1

1 · · · pβk

k , we thus seek to solve
equation (1), with z = a and S = {2, p1, p2, . . . , pk}.

An algorithm for computing all solutions to equations of the shape (1), over Q,
can be found in Chapter 7 of de Weger [25], where, for instance, one can find a com-
plete characterization of the solutions to equation (1) in case S = {2, 3, 5, 7}. This
algorithm combines lower bounds for linear forms in complex and p-adic logarithms
with lattice basis reduction for p-adic lattices.
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More generally, for a given set of primes S, we may consider equations of the
shape

(2) x+ y = zn,

with n ≥ 2 an integer, x and y S-units, and z a nonzero integer. We will call
such a quadruple (x, y, z, n) a primitive solution of (2) if gcd(x, y) is nth-power
free. Such equations are the main topic of discussion in Chapter 9 of Shorey and
Tijdeman [20], due to their connections to the problem of characterizing perfect
powers in nondegenerate binary recurrence sequences of algebraic numbers. If we
write y = y0y

n
1 in equation (2), with y0 nth-power free (whereby there are at most

2n|S| choices for y0), then it follows from the theory of Thue-Mahler equations that,
for a fixed value of n ≥ 3, the set of primitive solutions (x, y, z, n) of (2) is finite (see
[20, Thm. 7.2]). A stronger statement still is the following (essentially Theorem 9.2
of [20]) :

Theorem 1.1. There are only finitely many coprime S-units x, y and w for which
there exist integers n ≥ 2 and z 6= 0 such that x+ y = wzn.

The aim of this paper is to illustrate the use of Frey-Hellegouarch curves in
solving equations like (1) and, more generally, (2). Specifically, we will apply such an
approach to provide a new proof of Theorem 1.1 that a priori avoids the use of lower
bounds for linear forms in logarithms, instead combining Frey-Hellegouarch curves,
modularity and level-lowering, with the aforementioned theorem of Shafarevich.
In fairness, it must be mentioned, that effective versions of the latter result have
typically depended fundamentally on linear forms in logarithms; for recent papers
along these lines, see the work of Fuchs, von Känel and Wüstholz [12] and von
Känel [14]. The benefit of our approach is it enables us to, in Section 7, explicitly
solve equation (2) for a pair of sets S with cardinality |S| ≥ 2. To the best of our
knowledge, this is the first time this has been carried out. Indeed, it is unclear
whether the classical approach to Theorem 1.1 via only lower bounds for linear
forms in logarithms can be made practical with current technology, in any nontrivial
situations.

The outline of our paper is as follows. Section 2 introduces our basic notation.
In Section 3, we show how to obtain various finiteness results currently proved with
techniques from Diophantine approximation, via Frey-Hellegouarch curves over Q.
Philosophically, this bears a strong resemblance to recent work of von Känel [14]
and of Murty and Pasten [17]. Section 4 contains explicit details of the connections
between Frey-Hellegouarch curves and modular forms. In Sections 5 and 6, we carry
out such a “modular” approach quite explicitly for exponents n = 2 and n = 3
respectively. As an illustration of our methods, we completely solve (2) for S =
{2, 3, 5, 7} and n ∈ {2, 3} (hence recovering de Weger’s aforementioned result),
and also for S = {2, 3, p} and n ∈ {2, 3}, for every prime p < 100. It should be
emphasized that this is not a “serious” application of our method, but merely meant
as an illustration of a partial converse of the connection between solving equations
of the shape (2) and computing elliptic curves. The reader may wish to omit these
sections at first (and, for that matter, subsequent) readings. A more interesting
result along these lines is due to Kim [15], where the connection between more
general cubic Thue-Mahler equation and Shafarevich’s theorem is mapped out.

Section 7 contains, as previously mentioned, the main result of the paper, namely
an explicit solution of equation (2) for the sets S = {2, 3} and {3, 5, 7}. The
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techniques we employ to prove these results, besides the aforementioned use of
Frey-Hellegouarch curves and their associated modular forms, are local methods and
appeal to computer algebra packages for solving Thue and Thue-Mahler equations;
for the last of these, we rely extensively upon the computational number theory
packages MAGMA [5], PARI [18] and SAGE [22].

We thank Rafael von Känel and Benjamin Matschke for pointing out to us a
missing solution in a previous version of Proposition 5.4.

2. Notation

In what follows, we will let p be a prime number and m a nonzero integer. We
denote by rad(m) the radical of |m|, i.e. the product of distinct primes dividing m,
and by ordp(m) the largest nonnegative integer k such that pk divides m. We write
radp(m) for the prime-to-p part of the radical of |m|, that is, the largest divisor of
rad(m) that is relatively prime to p.

We will begin by noting some basic results on modular forms and connections
between them and elliptic curves. Suppose that the q-expansion

(3) f = q +
∑

i≥2

ciq
i

defines a weight 2, level N0 (cuspidal) newform, with coefficients ci generating a
number field K/Q. Further, let E/Q be an elliptic curve of conductor N and n a
rational prime. If l is a prime satisfying l ∤ N , we define

al(E) = l + 1−#E(Fl).

We say that E arises modulo n from the newform f and write E ∼n f if there
exists a prime ideal N | n of K such that, given any prime l 6= n, we have either

(4) al(E) ≡ cl (mod N), if l ∤ nNN0

or

(5) l + 1 ≡ ±cl (mod N), if l ∤ nN0 and ordl(N) = 1.

3. Finiteness results via modularity and level-lowering

Throughout this section, we will let S denote a finite set of primes and a a
positive integer. The second part of the following lemma is a classical and easy
application of the theory of linear forms in logarithms (see Corollary 1.2 of [20]).
We here give a complete proof of the result below using instead Frey-Hellegouarch
curves and Shafarevich’s theorem (Theorem IX.6.1 of [21]).

Lemma 3.1. There are only finitely many S-units x, y, w with gcd(x, y) ≤ a for
which there exists a nonzero integer z such that x+ y = wz2. In particular, if x, y
are S-units with gcd(x, y) ≤ a such that x+ y is again a S-unit, then max{|x|, |y|}
is bounded by a constant depending on S and a.

Proof. Let x, y and w be S-units and let z 6= 0 be an integer such that x+y = wz2.
Consider the elliptic curve

E : Y 2 = X3 + 2wzX2 + ywX

with discriminant

∆(E) = 26x2y2w3.
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It follows that E has good reduction outside S ∪ {2}. By Shafarevich’s theorem,
there are only finitely many isomorphism classes of rational elliptic curves having
good reduction outside a finite set of primes. This forces

j(E) = j(x, y) = 26 · (4x+ y)3

y2x

to take only finitely many values when x and y range over all S-units. But then,
since j(x, y) = j(x/y, 1), the quotient x/y also takes finitely many different values
and therefore max{|x|, |y|} is bounded whenever gcd(x, y) ≤ a. �

We next prove a version of Theorem 9.1 of [20] through appeal to (various)
Frey-Hellegouarch curves and level-lowering.

Theorem 3.2. Let x, y and w be S-units with gcd(x, y) ≤ a. Let n ≥ 2 and |z| > 1
be integers. If x + y = wzn, then n is bounded by a constant depending only on S
and a.

Proof. Assume z 6= ±1. If z is an S-unit, then, by the previous lemma, max{|x|, |y|}
and thus n is bounded by a constant depending only on S and a. Therefore, one
may assume that z is not a S-unit and, in particular, we may choose a prime q 6∈ S
dividing z. Define an elliptic curve E/Q as follows. If q 6= 2, then consider

E : Y 2 = X(X − x)(X + y)

whose discriminant and c4-coefficient are given by

∆(E) = 24(xywzn)2 and c4(E) = 24(w2z2n − xy).

If however q = 2, we take

E : Y 2 + 3xXY − x2yY = X3

with discriminant and c4-coefficient given by

∆(E) = −33x8y3wzn and c4(E) = 32x3(9wzn − y).

In both cases, E has multiplicative reduction at q with ordq(∆(E)) divisible by n.
Let us then further assume that n ≥ 7, n 6∈ S and that the mod n representation
attached to E is absolutely irreducible. By classical bounds on conductors (see [7]
for instance), modularity of elliptic curves over Q ([6]) and Ribet’s level lowering
theorem ([19]), the elliptic curve E arises modulo n from a weight 2 newform

f(z) =
∑

m≥1 cme2iπmz of (trivial Nebentypus and) level N0 | 28 · 35 ·
∏

p∈S
p6=2,3

p2 such

that N0 is coprime to q. Therefore, N0 is bounded by a constant depending only
on S and there exists a prime idealN above n in the ring of integers of the coefficient
field K of f such that

cq ≡ ±(q + 1) (mod N).

By Deligne’s bounds, cq ± (q + 1) is a nonzero algebraic integer in K whose Galois
conjugates are all less than (1+

√
q)2 in absolute value and whose norm is divisible

by n. Therefore we have n ≤ (1 +
√
q)2[K:Q]. Since [K : Q] is bounded by the

dimension of the space of weight-2 cuspforms of levelN0, it follows that n is bounded
from above by a constant depending only on S, as desired. �
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Combining these results with the finiteness of the number of solutions to Thue-
Mahler equations (see, for instance, Theorem 7.1 of [20]) allows us to prove the
following.

Theorem 3.3. There are only finitely many S-units x, y, w with gcd(x, y) ≤ a for
which there exist integers n ≥ 2 and z 6= 0 such that x+ y = wzn.

Proof. By Lemma 3.1, the equation x + y = ±w has only finitely many solutions
in S-units x, y and w, with gcd(x, y) ≤ a. Further, if x, y and w are S-units with
gcd(x, y) ≤ a such that there exist integers n ≥ 2 and z with |z| > 1 satisfying x+
y = wzn, then, by the previous theorem, n is bounded by a constant depending
only on S and a. But, for a fixed value of n ≥ 2, the finiteness of solutions to
equation x + y = wzn in S-units x, y, w with gcd(x, y) ≤ a and integer z follows
from Lemma 3.1 and from the finiteness of the set of solutions to Thue-Mahler
equations for n = 2 and n ≥ 3 respectively. �

Given a primitive solution (x, y, z, n) of (2), let us denote by d the gcd of x and y.
Then d divides zn and, without loss of generality, we may write zn/d = wz′n where
z′ is a nonzero integer and w is a nth-power free positive S-unit. If x′ = x/d
and y′ = y/d, then one has

(6) x′ + y′ = wz′n.

Conversely, let x′, y′, w be pairwise coprime S-units with w positive satisfying the
above equation and let w′ be a positive S-unit such that ww′ = rad(w)n. Put x =
w′x′, y = w′y′ and z = rad(w)z′. Then, (x, y, z, n) is a primitive solution of (2).

Therefore, all the primitive solutions of equation (2) can be deduced from the
finite set of S-units satisfying the condition of Theorem 3.3 with a = 1. Moreover,
combining this remark with the previous results, we have the following :

Corollary 3.4. For a fixed value of n ≥ 2, there are only finitely many triples
(x, y, z) such that x + y = zn with z nonzero integer, x, y S-units and gcd(x, y)
nth-power free. Moreover, there are only finitely many primitive solutions to equa-
tion (2) if and only if 2 6∈ S.

Proof. According to the discussion above, the first part of the corollary is a direct
consequence of Theorem 3.3 (with a = 1). If, however, 2 ∈ S, then (2n−1, 2n−1, 2, n)
is a primitive solution to (2) for any n ≥ 2.

Conversely, if 2 6∈ S, consider a primitive solution (x, y, z, n) to (2). Dividing the
equation by gcd(x, y) leads, as explained earlier, to an equation of the shape x′+y′ =
wz′n where x′, y′, w are coprime S-units and z′ | z. By assumption, x′, y′, w are
odd and therefore z′ is even. In particular, we have |z′| > 1 and by Theorem 3.2,
n is bounded independently of x, y and z. The desired finiteness result now follows
from the first part of the corollary. �

In the proof of Lemma 3.1 we have appealed to (n, n, 2)-Frey-Hellegouarch curves
and, for Theorem 3.2, to (n, n, n) and (n, n, 3)-Frey-Hellegouarch curves. The main
goal of this paper is to make the statements of this section completely explicit in a
number of situations. For this purpose, we will have use of refined information on
Frey-Hellegouarch curves of the above signatures.
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4. Background on Frey-Hellegouarch curves and modular forms

We recall some (by now) classical but useful results on Frey-Hellegouarch curves
associated with generalized Fermat equations of signature (n, n, n), (n, n, 2) and
(n, n, 3), and the newforms from which they arise.

4.1. Signature (n, n, n). Let A,B and C be nth-power free pairwise coprime
nonzero integers and let a, b and c be pairwise coprime nonzero integers such that

(7) Aan +Bbn = Ccn.

We make the additional simplifying assumptions (which are not without loss of
generality, but will be satisfied in the cases of interest to us) that

Aan ≡ −1 (mod 4) and Bbn ≡ 0 (mod 16).

Define an elliptic curve EA,B,C
n,n,n (a, b, c) via

EA,B,C
n,n,n (a, b, c) : Y 2 +XY = X3 +

Bbn −Aan − 1

4
X2 − AB(ab)n

16
X.

We summarize the properties of EA,B,C
n,n,n (a, b, c) that will be useful to us in the

following result (see Kraus [16]).

Proposition 4.1. If n ≥ 5 is prime and n ∤ ABC, we have that

E = EA,B,C
n,n,n (a, b, c) ∼n f,

for f a weight 2 cuspidal newform of level

N0 =

{

2 rad2(ABC) if 0 ≤ ord2(B) ≤ 3 or ord2(B) ≥ 5
rad2(ABC) if ord2(B) = 4.

Further, if l is prime with l ∤ ABCabc, then

al(E) ≡ l + 1 (mod 4).

4.2. Signature (n, n, 2). Next let a, b, c, A,B and C be nonzero integers such that

(8) Aan +Bbn = Cc2,

with aA, bB and cC pairwise coprime, C squarefree and n ≥ 7 prime. Without loss
of generality, we may suppose that A and B are nth-power free and that we are in
one of the following situations :

(1) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4);

(2) ab ≡ 1 (mod 2) and either ord2(C) = 1 or ord2(B) = 1;

(3) ab ≡ 1 (mod 2), ord2(B) = 2 and c ≡ −bB/4 (mod 4);

(4) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4);

(5) ord2(Bbn) ≥ 6 and c ≡ C (mod 4).

In cases (1) and (2), we will consider the curve

EA,B,C
(1),n,n,2(a, b, c) : Y 2 = X3 + 2cCX2 +BCbnX.

In cases (3) and (4), we will instead consider

EA,B,C
(2),n,n,2(a, b, c) : Y 2 = X3 + cCX2 +

BCbn

4
X,
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and in case (5),

EA,B,C
(3),n,n,2(a, b, c) : Y 2 +XY = X3 +

cC − 1

4
X2 +

BCbn

64
X.

These are all elliptic curves defined over Q.
The following lemma summarizes some useful facts about these curves. Apart

from its (easy-to-check) assertion (2) and up to some slight differences of notation,
this is Lemma 2.1 of [3].

Lemma 4.2. Let i = 1, 2 or 3 and E = EA,B,C
(i),n,n,2(a, b, c).

(1) The discriminant ∆(E) of the curve E is given by

∆(E) = 2δiC3B2A(ab2)n, where δi =











6 if i = 1

0 if i = 2

−12 if i = 3

.

(2) The j-invariant j(E) of the curve E is given by

j(E) = 26
(4Aan +Bbn)3

Aan(Bbn)2
.

(3) The conductor N(E) of the curve E is given by

N(E) = 2αrad2(C)2rad2(abAB),

where

α =



































































5 if i = 1, case (1)

8 if i = 1, case (2) and ord2(C) = 1

7 if i = 1, case (2) and ord2(B) = 1

2 if i = 2, case (3), ord2(B) = 2 and b ≡ −BC/4 (mod 4)

3 if i = 2, case (3), ord2(B) = 2 and b ≡ BC/4 (mod 4)

5 if i = 2, case (4) and ord2(B) = 3

3 if i = 2, case (4) and ord2(B) ∈ {4, 5}
0 if i = 3, case (5) and ord2(Bbn) = 6

1 if i = 3, case (5) and ord2(Bbn) ≥ 7.

In particular, E has multiplicative reduction at each odd prime p dividing
abAB. Also, E has multiplicative reduction at 2 if ord2(Bbn) ≥ 7.

(4) The curve E has a Q-rational point of order 2.

For the purposes of our applications, we will have need of an analog of Proposition
4.1, essentially Lemma 3.3 of [3].

Proposition 4.3. If n ≥ 7 is prime and ab 6= ±1, we have, for each i ∈ {1, 2, 3},
that

E = EA,B,C
(i),n,n,2(a, b, c) ∼n f,

for f a weight 2 cuspidal newform of level N0 = 2α
′

rad2(C)2rad2(AB) where

α′ =

{

1 if ab ≡ 0 (mod 2) and AB ≡ 1 (mod 2)
α otherwise,

where α is as defined in Lemma 4.2.
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4.3. Signature (n, n, 3). Let us suppose that a, b, c, A,B and C are nonzero inte-
gers such that

(9) Aan +Bbn = Cc3

with n ≥ 5 prime. Assume Aa, Bb, and Cc are pairwise coprime, and, without loss
of generality, that Aa 6≡ 0 (mod 3) and Bbn 6≡ 2 (mod 3). Further, suppose that C
is cubefree and that A and B are nth-power free. We consider the elliptic curve

EA,B,C
n,n,3 (a, b, c) : Y 2 + 3CcXY + C2BbnY = X3.

With the above assumptions, we have the following result (Lemma 2.1 of [4]).

Lemma 4.4. Let E = EA,B,C
n,n,3 (a, b, c).

(1) The discriminant ∆(E) of the curve E is given by

∆(E) = 33AB3C8(ab3)n.

(2) The j-invariant of E is given by

j(E) = 33
Cc3(9Aan +Bbn)3

AB3(ab3)n
.

(3) The conductor N(E) of the curve E is

N(E) = 3αrad3(ABab)rad3(C)2

where

α =















































2 if 9 | (2 + C2Bbn − 3Cc),

3 if 3 ‖ (2 + C2Bbn − 3Cc),

4 if ord3(Bbn) = 1,

3 if ord3(Bbn) = 2,

0 if ord3(Bbn) = 3,

1 if ord3(Bbn) > 3,

5 if 3 | C.

In particular, E has split multiplicative reduction at each prime p 6= 3 divid-
ing Bb, split multiplicative reduction at each prime dividing Aa congruent
to 1, 4, 5, 7, 16, 17 or 20 modulo 21, and non-split multiplicative reduction
at all other primes dividing Aa, except 3. Also, E has split multiplicative
reduction at 3 if ord3(Bbn) > 3, and good reduction if ord3(Bbn) = 3.

(4) The curve E has a Q-rational point of order 3.

In what follows, we will apply Frey-Hellegouarch curves of signature (n, n, 3)
more frequently than other signatures; the following result, essentially Proposition
4.2 of [4] (though it is worth noting that the value Nn(E) as define in Lemma 3.4
of that paper is actually stated incorrectly for the cases where n | ABC), will be of
particular use to us.

Proposition 4.5. If n ≥ 5 is prime, ab 6= ±1 and EA,B,C
n,n,3 (a, b, c) does not corre-

spond to the identities

1 · 25 + 27 · (−1)5 = 5 · 13 or 1 · 27 + 3 · (−1)7 = 1 · 53,
then we have that

E = EA,B,C
n,n,3 (a, b, c) ∼n f,



SUMS OF TWO S-UNITS VIA FREY-HELLEGOUARCH CURVES 9

for f =
∑

m≥1 cmqm a weight 2 cuspidal newform of level

N0 = 3α
′

rad3(AB)rad3(C)2,

where α′ = α with α as defined in Lemma 4.4 unless ord3(Bbn) ≥ 3 in which case
we have

α′ =

{

0 if ord3(B) = 3,
1 otherwise.

More precisely, if l is a prime, coprime to nN0, then n divides NormK/Q(cl − al)
where K is the number field generated by the Fourier coefficients of f and al ∈ Sl,
with

Sl = {x : |x| < 2
√
l, x ≡ l + 1 (mod 3)} ∪ {l + 1},

if l ≡ 1, 4, 5, 7, 16, 17, 20 (mod 21), and

Sl = {x : |x| < 2
√
l, x ≡ l + 1 (mod 3)} ∪ {−l− 1, l+ 1},

otherwise.

5. The case n = 2

In this section, we consider equation (1) (as treated by de Weger in [25] and [26]),
via an (n, n, 2) Frey-Hellegouarch curve approach. According to the discussion of
Section 3, the corresponding equations to treat are of the shape

(10) x+ y = wz2

where x, y and w are pairwise coprime S-units. Define a = b = 1, c = z, A = x,
B = y and C = w. Then we have Aan +Bbn = Cc2 and may assume, without loss
of generality, that we are in one of the situations (1)-(5) of §4.2. Consider the asso-
ciated elliptic curve E/Q of Lemma 4.2. It has good reduction outside S′ = S∪{2}.
Therefore, if we know representatives F/Q of all (the finitely many) isomorphism
classes of rational elliptic curves (with a nontrivial two-torsion subgroup) having
good reduction outside S′, all that remains to do to solve (10) is to check for an
equality

j(E) = j(F ), where j(E) = 26 · (4x+ y)3

y2x

and j(F ) denote the j-invariants of E and F respectively. Computing such repre-
sentatives is a classical but challenging problem that has only been achieved for a
rather restrictive list of sets, including {2, 3, 5, 7}, {2, 3, 11}, {2, 13}, {2, 17}, {2, 19}
and {2, 23} (see [9]).
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Nevertheless, the precise information on the conductor N(E) of E provided by
Lemma 4.2, namely N(E) = 2αrad2(w)

2rad2(xy) where

α =



































































5 if xyw ≡ 1 (mod 2) and yw ≡ −1 (mod 4)

8 if ord2(w) = 1

7 if ord2(y) = 1

2 if ord2(y) = 2 and z ≡ w ≡ −y/4 (mod 4)

3 if ord2(y) = 2 and z ≡ −w ≡ −y/4 (mod 4)

5 if ord2(y) = 3 and z ≡ w (mod 4)

3 if ord2(y) ∈ {4, 5} and z ≡ w

0 if ord2(y) = 6 and z ≡ w (mod 4)

1 if ord2(y) ≥ 7 and z ≡ w (mod 4),

allows us to sometimes show, for some specific sets S, that we have N(E) ≤ 350000
except for some precisely identified quadruples (x, y, w, z). In that situation, we
can therefore appeal, via the SAGE package database_cremona_ellcurve ([22],
[8]), to Cremona’s tables which, at the time of writing (Spring 2015), contain rep-
resentatives for all rational elliptic curves of conductor less than 350000.

By way of example, consider S = {2, 3, 5, 7} or S = {2, 3, p} with p prime,
11 ≤ p < 100. We stress the fact that, for most of these latter sets, we presently do
not know a complete list of representatives of the isomorphism classes of rational
elliptic curves having good reduction outside S. Nevertheless, the strategy outlined
above does apply and this allows us to easily recover de Weger’s result mentioned in
the Introduction and to solve equations that remained unsolved in a recent paper by
Terai [24] (see Corollary 5.5). We carry out the details in the next two subsections;
the SAGE code used for our computations is available at

http://www.math.ubc.ca/~bennett/Sum_Of_Two_S-units.pdf.

5.1. The case S = {2, 3, 5, 7}. Specializing the approach above to the case S =
{2, 3, 5, 7} considered by de Weger, we note that a priori we must consider conduc-
tors of the shape

N(E) = 2α · 3δ3 · 5δ5 · 7δ7 ,
where δi = ordi(N(E)) ≤ 2, i = 3, 5, 7, and α = ord2(N(E)) ∈ {0, 1, 2, 3, 5, 7, 8}.
However, we have the following easy result.

Lemma 5.1. In each case N(E) ≤ 350000. Further, if (δ3, δ5, δ7) ∈ {0, 2}, then
either

(x, y, w, z) ∈ {(−1, 8, 7,−1), (−1, 64, 7, 3), (1, 4, 5,−1), (−1, 16, 15,−1),

(1, 2, 3,±1), (−1, 4, 3,−1), (−1, 2, 1,±1), (1, 8, 1,−3), (1, 1, 2,±1)},
or (δ3, δ5, δ7) ∈ {(0, 0, 0), (0, 0, 2), (2, 2, 0)} and α = 1.

Proof. If δ3, δ5, δ7 ∈ {0, 2}, we have a solution to an equation of the shape

2k + ǫ = wz2,

where k is nonnegative, ǫ = ±1 and rad(w) | 2 · 3 · 5 · 7. The solutions to this
equation for k ≤ 6 correspond to those listed in the lemma. Moreover, if k ≥ 7,
none of these equations has a solution modulo 840 unless we have w = 1, 7 or 15,
that is (δ3, δ5, δ7) ∈ {(0, 0, 0), (0, 0, 2), (2, 2, 0)}.
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Similarly, it is easy to check that N(E) ≤ 350000, unless we have

α = 8 and (δ3, δ5, δ7) = (2, 2, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2),

α = 7 and (δ3, δ5, δ7) = (2, 2, 2), (1, 2, 2),

or

α = 5 and (δ3, δ5, δ7) = (2, 2, 2).

Of these, only the cases

(α, δ3, δ5, δ7) = (8, 2, 2, 1), (8, 2, 1, 2), (8, 1, 2, 2), (7, 1, 2, 2)

may correspond to solutions to (10), namely to equations of the shape

7k ± 1 = 2 · 3 · 5z2, 5k ± 1 = 2 · 3 · 7z2, 3k ± 1 = 2 · 5 · 7z2, 3k ± 2 = 5 · 7z2,
and 2·3k±1 = 5·7z2. Each of these equations, however, is insoluble modulo 840. �

From Lemma 5.1 and the above discussion, we may thus appeal to Cremona’s
SAGE package to reproduce de Weger’s results (with a slightly faster search pro-
vided by the restrictions on the exponents given in the above lemma). In partic-
ular, if S = {2, 3, 5, 7}, as noted in [25, Thm. 7.2], there are precisely 388 solu-
tions (x, y, z) to (1) with gcd(x, y) squarefree and x ≥ |y| > 0 and z > 0. We list
these solutions in the file http://www.math.ubc.ca/~bennett/2-3-5-7.pdf.

As an obvious byproduct, we also obtain a complete list of solutions to (1)
with S = {2, 3} and S = {3, 5, 7}. As we will consider these sets again in Section 7,
we state these results here.

Proposition 5.2. The only primitive solutions to equation (1) with S = {2, 3} and
with, say, x ≥ |y| > 0 are given by

(x, y) = (2,−1), (2, 2), (3,−2), (3, 1), (4,−3), (6,−2), (6, 3), (8, 1), (9,−8), (12,−3),
(16, 9), (18,−2), (24, 1), (27,−2), (48, 1), (81,−32), (288, 1) and (486,−2).

Proposition 5.3. The only primitive solutions to equation (1) with S = {3, 5, 7}
and with, say, x ≥ |y| > 0 are given by

(x, y) = (3, 1), (5,−1), (7,−3), (9,−5), (9, 7), (15, 1), (21,−5), (21, 15), (25,−21),
(25,−9), (35, 1), (49,−45), (49, 15), (63, 1), (105,−5), (135,−35), (147,−3), (175, 21),
(175, 81), (189,−125), (189, 7), (343,−243), (405,−5), (625,−49), (675, 1),
(729,−245), (1029,−5), (3375, 2401), (3969,−125), (9375, 1029), (15625,−1701),
(59535, 1), (688905,−5) and (4782969, 4375).

5.2. The case S = {2, 3, p}. We now turn our attention to the case S = {2, 3, p}
where p is a prime in the range 11 ≤ p < 100. Once again, we must a priori
consider conductors of the shape

N(E) = 2α · 3δ3 · pδp ,
where δi = ordi(N(E)) ≤ 2, i = 3, p, and α = ord2(N(E)) ∈ {0, 1, 2, 3, 5, 7, 8};
many of these conductors exceed the limits of the current Cremona database. How-
ever, we have the following result.

Proposition 5.4. In each case N(E) ≤ 350000, unless (x, y, w, z) corresponds to
one of the following equations

34+1 = 2 ·41, 2 ·33− 1 = 53, 310− 1 = 2 ·61 ·222, 34+2 = 83, 34− 2 = 79,

35+1 = 61 · 22, 23 · 32+1 = 73, 23 · 32− 1 = 71, 34+23 = 89, 34− 23 = 73.
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Proof. It is easy to check that we have N(E) ≤ 350000 unless we are in one of the
following situations :

(α, δ3, δp) (8, 2, 2) (7, 2, 2) (8, 1, 2) (7, 1, 2) (8, 0, 2)
p ≥ 13 ≥ 19 ≥ 23 ≥ 31 ≥ 37

(α, δ3, δp) (5, 2, 2) (7, 0, 2) (5, 1, 2) (3, 2, 2)
p ≥ 37 ≥ 53 ≥ 61 ≥ 71

Of these, only the cases (α, δ3, δp) ∈ {(8, 1, 2), (7, 1, 2), (5, 1, 2)} may actually cor-
respond to our equations. We are therefore led to solve the following equations,
where ǫ = ±1 and k is a positive integer :

3k + ǫ = 2pz2, for p ≥ 23,

2 · 3k + ǫ = pz2 and 3k + 2ǫ = pz2, for p ≥ 31

and

3k + ǫ = pz2, 23 · 3k + ǫ = pz2 and 3k + 23ǫ = pz2, for p ≥ 61.

We deal with each of these in turn. Considering first the equation 3k+ǫ = 2pz2, we
readily check that it has no solution modulo 8p for odd values of k and 23 ≤ p < 100.
Assume therefore that k is even. If moreover ǫ = −1, then by factorization, we end
up with an equation of the shape 3m± 1 = z′2 or 3m± 1 = 2z′2 for some integer z′.
According to [3, Thm. 1.1], this leads to a unique solution to our equation, namely
310 − 1 = 2 · 61 · 222.

Finally, if k is even and ǫ = +1, the equation 3k + 1 = 2pz2 has no solution
modulo 24p unless p = 29, 41, 53 or 89. However, for p = 29, 53 and 89, it has no
solution modulo pq where q = 43, 313 and 23 respectively. In the remaining case,
namely p = 41, write 3k = 3βx3 with 0 ≤ β ≤ 2 and x ∈ Z. Then, (X,Y ) =
(2 · 3β · 41x, 223β · 412z) is an integral point on the elliptic curve

Y 2 = X3 + 23 · 33β · 413.
Computing its integral points using the aforementioned SAGE command thus leads
to the unique solution 34 + 1 = 2 · 41.

We now turn our attention to the equation 2 ·3k + ǫ = pz2. We easily check that
for p in the range 31 ≤ p < 100, this equation has no solution modulo 24p unless
we have

(ǫ, p) = (1, 31), (1, 43), (1, 79), (−1, 53) or (−1, 89).

For p = 31, 43, 79 and 89, the corresponding equation has no solution modulo pq
where q = 13, 7, 13 and 23 respectively. For the remaining case, that is (ǫ, p) =
(−1, 53), reducing modulo 53, we find that k ≡ 0 (mod 3). Writing k = 3k0,
(X,Y ) = (2 · 3k0 · 53, 2 · 532z) is thus an integral point on the elliptic curve

Y 2 = X3 − 22 · 533.
As before, we compute its integral points on SAGE and deduce the unique solu-
tion 2 · 33 − 1 = 53.

Consider now equation 3k +2ǫ = pz2 for p in the range 31 ≤ p ≤ 100. We check
that there is no solution modulo 24p unless we have

(ǫ, p) = (1, 53), (1, 59), (1, 83), (−1, 31), (−1, 79) and (−1, 97).

For p = 53, 59, 31 and 97, we however have that the corresponding equation has no
solution modulo pq where q = 2887, 523, 13 and 7 respectively. It remains to deal
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with the cases (ǫ, p) = (1, 83) and (−1, 79). In the latter case, we find that k ≡
1 (mod 3) by reducing modulo 79. Writing k = 3k0+1, (X,Y ) = (3k0+1·79, 31·792z)
is necessarily an integral point on the elliptic curve

Y 2 = X3 − 2 · 32 · 793.
This again leads to a unique solution, namely 34 − 2 = 79. In the former case,
that is (ǫ, p) = (1, 83), write 3k = 3βx3 with 0 ≤ β ≤ 2 and x ∈ Z. Then,
(X,Y ) = (3β · 83x, 3β · 832z) is an integral point on the elliptic curve

Y 2 = X3 + 2 · 32β · 833.
Computing its integral points using the command IntegralPoints in MAGMA
([5]) leads to a unique solution which is 34 + 2 = 83. We note here that the
corresponding routine in SAGE has marked difficulty with this equation.

We now consider equation 3k + ǫ = pz2. If ǫ = +1, then we have no solu-
tion modulo 24p unless p = 61, 67 or 79. For p = 67 or 79, however, we have
that the corresponding equation has no solution modulo pq where q = 23 or 2341
respectively. If p = 61, write 3k = 3βx3 with 0 ≤ β ≤ 2 and x ∈ Z. Then,
(X,Y ) = (3β · 61x, 3β · 612z) is an integral point on the elliptic curve

Y 2 = X3 + 32β · 613.
Computing its integral points using SAGE leads to the unique solution 35 + 1 =
61 · 22. If now ǫ = −1, then reducing 3k − 1 = pz2 modulo 8 shows that k is
necessarily even. Write k = 2k0 and 3k0 = 3βx3 with 0 ≤ β ≤ 2 and x ∈ Z. Then,
for some divisor z1 of z, either (X,Y ) = (2·3βx, 22·3βz1) or (X,Y ) = (2·3βx, 2·3βz1)
is an integral point on one of the elliptic curves

Y 2 = X3 ± 23 · 32β .
However none of their integral points (which we have already computed) corre-
sponds to a solution of our equation.

Let us now consider the equation 23 · 3k + ǫ = pz2. If ǫ = +1, then the corre-
sponding equation has no solution modulo 24p unless p = 73 or 97. Moreover in
the former case, we have k ≡ 2 (mod 3). If p = 97, we check that 23 · 3k +1 = 97z2

has no solution modulo 13 · 97. Assume thus that p = 73 and write k = 3k0 + 2.
Then (X,Y ) = (2 · 32+k0 · 73, 32 · 732z) is an integral point on the elliptic curve

Y 2 = X3 + 34 · 733.
We therefore find that there is only one solution corresponding to 23 · 32 + 1 = 73.
Similarly, if ǫ = −1, then the corresponding equation has no solution modulo 24p
unless p = 71. Write 3k = 3βx3 with x ∈ Z and 0 ≤ β ≤ 2. Then, (X,Y ) =
(2 · 3β · 71x, 3β · 712z) is an integral point on the elliptic curve

Y 2 = X3 − 32β · 713.
This gives rise to the unique solution 23 · 32 − 1 = 71.

We finally deal with the last equation, namely 3k + 23ǫ = pz2. If ǫ = +1, then
the corresponding equation has no solution modulo 24p unless p = 83 or 89. If
p = 83, we find a local obstruction modulo 23 · 7 · 13. If p = 89, we write 3k = 3βx3

with x ∈ Z and 0 ≤ β ≤ 2, whereby (X,Y ) = (3β · 89x, 3β · 892z) is an integral
point on the elliptic curve

Y 2 = X3 + 23 · 32β · 893.
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We therefore conclude that there is only one solution corresponding to 34+23 = 89.
Similarly, if ǫ = −1, then the corresponding equation has no solution modulo 24p
unless p = 67 or p = 73. Moreover, in that latter case, we have k ≡ 1 (mod 3) and
it is easy to check that 3k − 23 = 67z2 has no solution modulo 23 · 67. Assume
therefore that p = 73 and write k = 3k0 + 1. Then (X,Y ) = (3k0+1 · 73, 3 · 732z) is
an integral point on the elliptic curve

Y 2 = X3 − 2332 · 733.

This gives rise to the unique solution 34 − 23 = 73, which completes the proof of
the proposition.

�

Utilizing Proposition 5.4, we can again appeal to Cremona’s SAGE package to
compute primitive solutions to equation (1). For each set S = {2, 3, p}, we have tab-
ulated these solutions in the file http://www.math.ubc.ca/~bennett/2-3-p.pdf.
By quick examination of this table for p = 23 and p = 47, we immediately deduce
the following result about equations that remained unsolved in Proposition 3.3 of
Terai [24] (but have been recently solved via rather different methods by Deng [11]).

Proposition 5.5. The only solutions to x2 + 23m = 12n and x2 + 47m = 24n are
(x,m, n) = (±11, 1, 2) and (x,m, n) = (±23, 1, 2) respectively.

6. The case n = 3

We now deal with equation (2) when n = 3 using a (p, p, 3) Frey-Hellegouarch
curve approach. The corresponding equations to treat are of the shape

(11) x+ y = wz3

where x, y and w are pairwise coprime S-units. We may assume, without loss of
generality, that w is cubefree and positive and that we have x 6≡ 0 (mod 3) and
y 6≡ 2 (mod 3). With the notation of §4.3, we attach to such a solution the elliptic
curve E = Ex,y,w

n,n,3 (1, 1, z) :

E : Y 2 + 3wzXY + w2yY = X3.

As in Section 5, all that remains to do to solve equation (11) is to check for an
equality

j(E) = j(F ), where j(E) = 33
(x + y)(9x+ y)3

xy3

and j(F ) denote the j-invariants of E and F respectively, with F ranging over all
representatives of the isomorphism classes of elliptic having good reduction out-
side S ∪ {3} (and a nontrivial 3-torsion subgroup). To circumvent the difficulty of
computing representatives and make this approach work for a broader list of sets S
(including some for which we do not know a complete list of such representatives),
we also make use of the precise formula for the conductor of E given by Lemma 4.4,
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namely N(E) = 3αrad3(xy)(rad3(w))
2 where

α =















































2 if w2y − 3wz ≡ −2 (mod 9)

3 if w2y − 3wz ≡ 1 or 4 (mod 9)

4 if ord3(y) = 1

3 if ord3(y) = 2

0 if ord3(y) = 3

1 if ord3(y) > 3

5 if 3 | w.

As in the previous section, we now apply this approach to the sets S = {2, 3, 5, 7}
and S = {2, 3, p} with p prime, 11 ≤ p ≤ 100.

6.1. The case S = {2, 3, 5, 7}. Specializing to S = {2, 3, 5, 7}, we a priori need to
consider all conductors of the shape

N(E) = 2δ2 · 3α · 5δ5 · 7δ7

with δi(N) = ordi ∈ {0, 1, 2}, i = 2, 5, 7 and α = ord3(N) ∈ {0, 1, 2, 3, 4, 5}.
However, we have, as before, the following result.

Lemma 6.1. In each case N(E) < 350000.

Proof. It is easy to check that we have the desired inequality for N(E), unless

(α, δ2, δ5, δ7) ∈ {(5, 1, 2, 2), (5, 2, 2, 2), (4, 2, 2, 2)}.

Among these possibilities, only the case (α, δ2, δ5, δ7) = (5, 1, 2, 2) may correspond
to solutions. Since each of the equations

2k ± 1 = 3δ35δ57δ7z3, with each δi ∈ {1, 2}

is insoluble modulo 840, we obtain the stated result. �

As explained previously, we can therefore appeal to Cremona’s table of elliptic
curves to solve equation (11) and thus (2) with n = 3 and S = {2, 3, 5, 7}. It turns
out that there are exactly 207 triples (x, y, z) such that x + y = z3 with x and y
{2, 3, 5, 7}-units, with gcd(x, y) cubefree and, say, x ≥ |y| > 0, and z a positive inte-
ger. They are listed in the file http://www.math.ubc.ca/~bennett/2-3-5-7.pdf.
From there we easily extract the latter solutions to this equation for S = {2, 3}
and S = {3, 5, 7}. We list them here for later use.

Proposition 6.2. The only primitive solutions to equation (2) with n = 3, S =
{2, 3} and, say, x ≥ |y| > 0 are given by

(x, y) = (2,−1), (3,−2), (4,−3), (4, 4), (6, 2), (9,−8), (9,−1),
(12,−4), (18, 9), (24, 3), (36,−9) and (128,−3).

Proposition 6.3. The only primitive solutions to equation (2) with n = 3, S =
{3, 5, 7} and, say, x ≥ |y| > 0 are given by

(x, y) = (5, 3), (7, 1), (9,−1), (15,−7), (35,−27), (49, 15), (63, 1), (189,−125),
(225,−9), (441,−225), (1225,−225), (1875,−147) and (3969,−1225).
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6.2. The case S = {2, 3, p}. We now turn our attention to the case S = {2, 3, p}
where 11 ≤ p < 100 is prime. Once again, we a priori need to consider all conduc-
tors of the shape

N(E) = 2δ2 · 3α · pδp

with δi = ordi(N) ∈ {0, 1, 2}, i = 2, p and α = ord3(N) ∈ {0, 1, 2, 3, 4, 5}. However,
we have the following result, the proof of which, it being quite similar to that of
Proposition 5.4, we omit for the sake of concision.

Proposition 6.4. We have N(E) ≤ 350000 unless (x, y, w, z) corresponds to a one
of the following equations

27 + 1 = 3 · 43, 3 · 24 − 1 = 47, 3 · 25 + 1 = 97,

26 + 3 = 67 and 26 − 3 = 61.

Combining this proposition with Cremona’s tables of elliptic curves then allows
us to compute all the solutions to (2) with n = 3, S = {2, 3, p} and p as above. We
list them in the file http://www.math.ubc.ca/~bennett/2-3-p.pdf.

7. The general equation

In this last section, we completely solve equation (2) for two specific sets of
primes, namely S = {2, 3} and S = {3, 5, 7}, using a variety of Frey-Hellegouarch
curves, level-lowering and heavy computations involving modular forms and Thue-
Mahler equations. It is only through careful combination of a variety of Frey-
Hellegouarch curves, in conjunction with local arguments, that we are able to reduce
these problems to a feasible collection of Thue-Mahler equations (in our case, all of
degree 5). This is, in essence, the main feature of our approach that distinguishes
it from one purely reliant upon lower bounds for linear forms in logarithms. This
latter method is, in our opinion, at least with current technology, impractical for
explicitly solving equation (2) for any set S with at least two elements.

7.1. The case S = {2, 3}. We prove the following result.

Theorem 7.1. The only primitive solutions to equation (2) with S = {2, 3} and,
say, x ≥ |y| > 0 and z > 0 are given by the following infinite families

(x, y, z, n) = (2,−1, 1, n), (3,−2, 1, n), (4,−3, 1, n), (9,−8, 1, n), (2n−1, 2n−1, 2, n),
(3 · 2n−2, 2n−2, 2, n), (3 · 2n−1,−2n−1, 2, n), (2 · 3n−1, 3n−1, 3, n),
(22 · 3n−1,−3n−1, 3, n), (23 · 3n−2, 3n−2, 3, n), all with n ≥ 2,
(x, y, z, n) = (32 · 2n−3,−2n−3, 2, n) for n ≥ 3

and by

(x, y, z, n) = (16, 9, 5, 2), (18,−2, 4, 2), (24, 1, 5, 2), (27,−2, 5, 2), (81,−32, 7, 2),
(48, 1, 7, 2), (128,−3, 5, 3), (288, 1, 17, 2) and (486,−2, 22, 2).

The cases where n ≤ 4 were covered in the previous two sections. We may
therefore assume, without loss of generality, that n ≥ 5 is prime. The corresponding
equation to treat is

(12) x+ y = wzn

with x, y and w coprime {2, 3}-units and w nth-power free.
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Assume first that ord2(xyw) ≥ 4. Since precisely one of x, y and wz is even, we
may suppose, without loss of generality, that x ≡ −1 (mod 4) and that

max {ord2(y), ord2(w)} ≥ 4.

We write (Aan, Bbn) = (x, y) or (x,−wzn) if y or w is even, respectively, and set
Ccn = Aan + Bbn, for A,B and C nth-power free integers. With the notation
of §4.1, considering the elliptic curve E = EA,B,C

n,n,n (a, b, c), we thus have that n fails
to divide ABC and ord2(ABC) ≥ 4, and hence, in the notation of Proposition 4.1,
E ∼n f where f is a weight 2 newform of level N0 | 6. The resulting contradiction
implies that necessarily ord2(xyw) ≤ 3.

Assume next that ord3(xyw) ≥ 4. Without loss of generality, we may suppose
x 6≡ 0 (mod 3), y 6≡ 2 (mod 3) and that

max {ord3(y), ord3(w)} ≥ 4.

We define

(Aan, Bbn, Cc3) = (−wzn, y,−x) or (−x,wzn, y),

depending on whether 3 | y or w, respectively, where, in either case, A and B are
chosen to be nth-power free and C is cubefree. In both cases, we have n ∤ ABC
and |ab| ≥ |z|.

If |z| ≥ 2, then with the notation of Proposition 4.5, we have EA,B,C
n,n,3 (a, b, c) ∼n f

where f is a weight 2 newform of level N0 | 12 and hence a contradiction. We
therefore have z = ±1 and we are led to solve 3k − 2l = ±1 with k ≥ 4. Both
equations have no solution for l ≤ 2 and, by reducing modulo 8, we see that the
equation 3k − 2l = −1 has no solution for l ≥ 3 as well. If 3k − 2l = +1 and l ≥ 3,
then k is necessarily even, whereby both 3k/2 − 1 and 3k/2 + 1 are powers of 2.
Hence k < 4 and this is again a contradiction.

We are left, then, to consider equation (12) with

max {ord2(xyw), ord3(xyw)} ≤ 3.

A short calculation leads to the families indicated in Theorem 7.1.

7.2. The case S = {3, 5, 7}. The following result is the main theorem of the paper.
As we shall observe, despite the apparently small size of S and its elements, the
computations involved here are really approaching the limits of current “off the
shelf” technology (though coming refinements in computational tools for modular
forms will alleviate this somewhat).

Theorem 7.2. The only primitive solutions to equation (2) with S = {3, 5, 7} and
x > |y| > 0 are given by

(x, y) = (3, 1), (5,−1), (5, 3), (7,−3), (7, 1), (9,−5), (9,−1), (9, 7), (15,−7), (15, 1),
(21,−5), (21, 15), (25,−21), (25,−9), (25, 7), (27, 5), (35,−27), (35,−3), (35, 1),
(49,−45), (49, 15), (63, 1), (81,−49), (105,−5), (125, 3), (135,−35), (135,−7),
(147,−3), (175, 21), (175, 81), (189,−125), (189, 7), (225,−9), (343,−243),
(375,−343), (405,−5), (441,−225), (625,−49), (675, 1), (729,−245), (1029,−5),
(1225,−225), (1323,−27), (1875,−147), (3375, 2401), (3969,−1225), (3969,−125),
(9375, 1029), (10125,−125), (15625,−1701), (50625,−3969), (59535, 1),
(540225,−2401), (688905,−5), (4782969, 4375) and (24310125,−10125).

Before proving our main theorem, we first state some useful preliminary results
starting with a standard factorization lemma.
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Lemma 7.3. Let x and y be coprime integers and n an odd prime number. If we
write

φn(x, y) =
xn + yn

x+ y
,

then we have that

gcd (x+ y, φn(x, y)) ∈ {1, n}
and, moreover,

gcd (x+ y, φn(x, y)) = n ⇔ n | xn + yn ⇔ n | φn(x, y) ⇔ n | x+ y.

Further, n2 ∤ φn(x, y) and if ℓ is a prime dividing xn + yn, then either ℓ | x+ y or
ℓ ≡ 1 (mod n).

Proof. Apart from its very last assertion, this lemma is proved in [10, Lemma 2.1].
Suppose that ℓ is a prime dividing xn + yn. Then, by coprimality, ℓ does not
divide y. We may thus find an integer y′ such that yy′ ≡ −1 (mod ℓ), whence
(xy′)n ≡ 1 (mod ℓ). If xy′ ≡ 1 (mod ℓ), it follows that

xy′ + yy′ = y′(x+ y) ≡ 0 (mod l),

so that l | x + y. Otherwise, since n is prime, xy′ has order n modulo l, so that
n | l− 1, i.e. l ≡ 1 (mod n). �

This lemma is a key tool in the proof of the following result.

Lemma 7.4. Let x, y be coprime nonzero integers and n ≥ 5 be a prime number.
Then

P (xn + yn) ≥ 11,

unless |x| = |y| = 1.

Proof. Assume P (xn + yn) ≤ 7 and |x| 6= |y|. Then, with the above notation, we
have that |φn(x, y)| > 1, since, if xn + yn = ±(x+ y), then necessarily |x| = |y|. It
follows that there exists a prime l ∈ {2, 3, 5, 7} such that l | φn(x, y) and hence, by
Lemma 7.3, l | x+ y, whereby l = n ∈ {5, 7}. We thus have

xn + yn = ±n(x+ y), for n = 5 or 7,

which again has no solutions with |x| 6= |y|. This contradiction completes the proof
of the lemma. �

The next result will be of use in proving a special case of Theorem 7.2 (see
Proposition 7.6).

Proposition 7.5. The only solutions to C4 − 1 = pαqβzn and D2 − 1 = pαzn for
C,D and z positive integers with z even, n ≥ 5 prime, and {p, q} ⊂ {3, 5, 7} are
with

n = 5, C = 7 and D ∈ {15, 17}.

Proof. We first deal with C4 − 1 = pαqβzn. Since z is even, we have that C is odd
and by factorization (up to permutation of p and q) that either

C2 + 1 = 2zn1 , C
2 + 1 = 2pαzn1 or C2 + 1 = 2pαqβzn1 ,

for some odd integer z1. By a classical result of Störmer ([23, p. 168]), the first
case holds only for z1 = C = 1. Similarly in the third case, we deduce that
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C2−1 = 2n−1zn2 for some nonzero integer z2 which in turn contradicts Corollary 1.4
of [1]. We therefore end up in the situation where

C2 + 1 = 2pαzn1 and C2 − 1 = 2n−1qβzn2 ,

for some positive integer z2. By factorization, C ± 1 = 2qβwn
1 and C ∓ 1 = 2n−2wn

2

for some positive integers w1 and w2, whereby we have

qβwn
1 − 2n−3wn

2 = ±1.

We may thus appeal to Theorem 1.1 of [2] with (in the notation of that paper)
S = {2, q} to conclude that n = 5 and w1 = w2 = 1, whence C = 7 as claimed.

We now turn our attention to the equation D2 − 1 = pαzn. By factorization, for
some positive integers w1 and w2, we have either

wn
1 − 2n−2pαwn

2 = ±1 or pαwn
1 − 2n−2wn

2 = ±1.

According to loc. cit. applied to S = {2, p}, the former equation has no such
solutions, whereas the only solutions to the latter are with n = 5, pα ∈ {7, 32} and
w1 = w2 = 1. This gives rise to D ∈ {15, 17}, as claimed. �

With those preliminary results in hands, we now turn to the actual proof of
Theorem 7.2. Once again, recall that we have to solve

(13) x+ y = wzn,

where x, y, w are coprime {3, 5, 7}-units with x,w positive, n ≥ 5 prime and z
nonzero.

Our first result is concerned with the case y = ±1 in equation (13) above.

Proposition 7.6. Let x and w be coprime positive {3, 5, 7}-units, y = ±1 and let
n ≥ 5 be a prime number such that x+ y = wzn for some positive integer z. Then,
y = −1, n = 5, z = 2 and

(x,w) = (74, 3 · 52) or (32 · 52, 7).

Proof. According to Lemma 7.4, we may assume, without loss of generality, that
w 6= 1. Similarly by applying [2, Thm. 1.1] to each subset of {3, 5, 7} of cardinality 2,
we may also assume that rad(xw) = 3·5·7. Besides, sieving modulo 24rad(w) shows
that we necessarily have y = −1 and that either x is a 4th power and w has two
distinct prime factors (in {3, 5, 7}), or that x is a square and w has only one prime
factor. We finally conclude using Proposition 7.5. �

According to Lemma 7.4 and Proposition 7.6 above, in order to prove Theo-
rem 7.2, it remains to solve each equation of the shape

3α5β + (−1)δ7γ = zn, with (α, β) 6≡ (0, 0) (mod n) and γ 6≡ 0 (mod n)(14)

3α7γ + (−1)δ5β = zn, with (α, γ) 6≡ (0, 0) (mod n) and β 6≡ 0 (mod n)(15)

5β7γ + (−1)δ3α = zn, with (β, γ) 6≡ (0, 0) (mod n) and α 6≡ 0 (mod n)(16)

3α + (−1)δ5β = 7γzn, with α, β > 0 and 0 < γ ≤ n− 1(17)

3α + (−1)δ7γ = 5βzn, with α, γ > 0 and 0 < β ≤ n− 1(18)

5β + (−1)δ7γ = 3αzn, with β, γ > 0 and 0 < α ≤ n− 1(19)

where α, β and γ are nonnegative integers, n ≥ 5 is prime and δ ∈ {0, 1}.
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In the remainder of this section, we prove the following precise result on these
equations. Combining it with Proposition 7.6 and results from Sections 5 and 6
completes the proof of Theorem 7.2.

Theorem 7.7. The solutions to equations (14) – (19) in nonnegative integers α, β
and γ, prime n ≥ 5 and δ ∈ {0, 1} correspond to the identities

25 = 3 · 53 − 73 = 34 − 72 = 5 · 7− 3 = 33 + 5 = 52 + 7,
210 = 3 · 73 − 5 and 27 = 53 + 3 = 33 · 5− 7.

Suppose that we have a solution to one of equations (14) – (19) in nonnegative
integers α, β and γ, prime n ≥ 5 and δ ∈ {0, 1}, and rewrite this in the shape (9)
for suitable choices of A,B,C, a, b and c. Applying Proposition 4.5, we thus have
that E ∼n f for some weight 2 cuspidal newform of level N0 where, crudely, we
have that N0 | 35 · 52 · 72. Since 2 | z and hence necessarily 2 | ab, we may apply
congruence (5) with l = 2 to conclude that

n ≤
(

3 + 2
√
2
)g0(N0)

≤
(

3 + 2
√
2
)(N0+1)/12

< 1018991,

where g0(N0) denotes the number of cuspidal weight-2 newforms of level N0.
In what follows, we will in fact show that this upper bound can, through some-

what refined arguments using various Frey-Hellegouarch curves, local computations
and Thue(-Mahler) solvers, be replaced by the assertion that n ∈ {5, 7}, corre-
sponding to the solutions noted in Theorem 7.7. In the case n = 5, an approach via
Frey-Hellegouarch curves, while theoretically of value, in practice appears to work
poorly. Instead, we will use MAGMA code for solving Thue-Mahler equations due
to K. Hambrook [13]; documentation for this may be found at

http://www.math.ubc.ca/~bennett/hambrook-thesis-2011.pdf.

The result we deduce by appealing to this code is the following :

Proposition 7.8. The solutions to equations (14) – (19) in nonnegative integers
α, β, γ and δ ∈ {0, 1}, with n = 5 correspond to the identities

25 = 3 · 53 − 73 = 34 − 72 = 5 · 7− 3 = 33 + 5 = 52 + 7 and 210 = 3 · 73 − 5.

Proof. According to the shapes of the equations and the noted restrictions on α, β
and γ, it suffices to solve the following Thue-Mahler equations (some of which may
be treated locally)

z5 − 3a5by5 = 7c, with 0 ≤ a, b ≤ 4 and (a, b) 6= (0, 0)

z5 − 3a7cy5 = 5b, with 0 ≤ a, c ≤ 4 and (a, c) 6= (0, 0)

z5 − 5b7cy5 = 3a, with 0 ≤ b, c ≤ 4 and (b, c) 6= (0, 0)

7cz5 − 5by5 = 3a, with 0 < b, c ≤ 4

3az5 − 5by5 = 7c, with 0 < a, b ≤ 4.

This is easily achieved using Hambrook’s code and leads to the solutions mentioned.
�
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It is worth noting, at this point in the proceedings, that, at least as currently
implemented, the Thue-Mahler solver we are using has severe difficulties with equa-
tions of degree 7 and higher. In particular, we will need to work very carefully in
order to avoid its use for the remaining cases under consideration.

We will now deal with each of equations (14)–(19) in turn, assuming n ≥ 7
and that we have a solution satisfying the conditions mentioned. We will make
repeated use of Proposition 4.5, explicitly using MAGMA to calculate newforms of
all relevant levels N0.

The results are as follows. We list in Table 1 the triples (δ3, δ5, δ7) of interest to
us for which the space of weight 2 cuspidal newforms of level

(20) N0 = 3δ3 · 5δ5 · 7δ7

is nontrivial, together with the list of all primes n ≥ 7 for which there exists at least
one form f of level N0 satisfying both (5) with l = 2, and the congruences of Propo-
sition 4.5 for all primes 3 ≤ l < 50. The MAGMA code used for this computation
(when N0 < 10000) is available at http://www.math.ubc.ca/~bennett/nn3.m.

For the larger levels N0 = 34 · 52 · 7 = 14175 and N0 = 34 · 5 · 72 = 19845,
we have first used Wiese’s MAGMA function Decomposition (from his package
ArtinAlgebras available on his homepage) to compute the characteristic polyno-
mials of the first few Fourier coefficients. The output can be found in

http://www.math.ubc.ca/~bennett/14175.m

and in
http://www.math.ubc.ca/~bennett/19845.m,

respectively.

(δ3, δ5, δ7) n
(0, 0, 2), (0, 2, 1), (1, 0, 1), (1, 1, 0), (1, 2, 0), (1, 2, 1), none
(3, 0, 0), (3, 0, 1), (3, 0, 2), (4, 0, 0), (4, 1, 0), (5, 0, 1)

(0, 1, 2), (0, 2, 2), (1, 0, 2), (1, 1, 2), 7
(4, 0, 2), (4, 2, 1), (5, 1, 0)
(1, 2, 2), (3, 2, 1), (4, 1, 2) 7, 11

(5, 0, 0) 17
(5, 1, 1) 7, 17

Table 1. Triples (δ3, δ5, δ7) and corresponding values of n

In the next six subsections we deal with each equation in turn. Full details on
the computations can be found in the file

http://www.math.ubc.ca/~bennett/Last_Equations.pdf

7.2.1. The equation 3α5β + (−1)δ7γ = zn. By reducing the equation modulo 8, we
see that α and β have the same parity, and that α is odd if and only if we have
δ ≡ γ (mod 2). We begin by assuming that α and β are even, and n ≥ 7. If,
further, β > 0, we consider the curve

E = E
(−1)δ+17γ0 ,1,1
(3),n,n,2 (7γ1 , z, (−1)α/23α/2 · 5β/2),

where γ = nγ1 + γ0, with 0 ≤ γ0 ≤ n− 1. It has good reduction at 5 and is of the
shape

E : Y 2 +XY = X3 +AX2 +BX
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where A,B ∈ Z with A ≡ 1 (mod 5) and B 6≡ 0 (mod 5), whereby a5(E) ∈
{±2,±4}. On the other hand, Proposition 4.3, E ∼n f where f is a weight-2
newform of level 14. Since there is a unique such newform and it satisfies c5 = 0,
we obtain a contradiction from (5) for l = 5. Assume next that α is even, β = 0
and n = 7. If γ ≥ 2, then we have 3α ≡ z7 (mod 49) and, since z 6≡ 0 (mod 7),
36α ≡ 1 (mod 49). This leads to the conclusion that α ≡ 0 (mod 7) and hence a
contradiction. If γ = 1, then we have δ = 0 and the equation to solve is 3α+7 = z7.
However we check that there is no value of α (mod 42) such that

(3α + 7)6 ≡ 1 (mod 49) and (3α + 7)6 ≡ 0 or 1 (mod 43),

and hence obtain a contradiction in this case as well. We therefore may assume
that α is even, β = 0 and n ≥ 11, and consider the curve

E = E
1,−3α0 ,(−1)δ7γ0

n,n,3 (z, 3α1, 7γ1),

where α = nα1 + α0, with 0 < α0 ≤ n − 1 and γ = 3γ1 + γ0, with 0 ≤ γ0 ≤ 2.
Then, by Proposition 4.5, E ∼n f where f is a weight 2 newform of level N0 with
N0 | 3 · 72 or 33 | N0 | 33 · 72 if α ≥ 3 or α = 2 respectively. Since n ≥ 11, we
therefore reach a contradiction upon appealing to Table 1.

Next, suppose that α and β are odd. If n = 7 and γ ≥ 2, we simply note that
there is no solution modulo 23 · 72 · 29 · 43 · 71. If n = 7 and γ = 1, then δ = 1 and
modulo 23 · 72 · 29 · 43 · 113, we have that α ≡ 3 (mod 7) and β ≡ 1 (mod 7). We
are therefore led to solve the Thue equation

z7 − 335y7 = 7

using PARI/GP. This gives rise to a unique solution to our equation, namely 33 ·5−
7 = 27. If, however, we assume that n ≥ 11, we begin by considering the following
(n, n, 3) Frey-Hellegouarch curve

E = E
1,−3α05β0 ,(−1)δ7γ0

n,n,3 (z, 3α15β1 , 7γ1)

where






α = nα1 + α0, 0 ≤ α0 ≤ n− 1
β = nβ1 + β0, 0 ≤ β0 ≤ n− 1
γ = 3γ1 + γ0, 0 ≤ γ0 ≤ 2.

Then, by Proposition 4.5, E ∼n f where f has level N0 with N0 | 3 · 5 · 72 or
N0 = 34 ·N1, where N1 | 5 ·72, if α ≥ 3 or α = 1 respectively. According to Table 1,
since n ≥ 11, we necessarily have level N0 = 34 · 5 · 72, whence

α = 1, β ≡ 1 (mod 2), n = 11 and β 6≡ 0 (mod 11).

To treat this remaining case, we now consider the following (n, n, n) Frey-Hellegouarch
curve

E = E
3·5β0 ,−1,(−1)δ+17γ0

11,11,11 (5β1 , z, 7γ1),

where β = 11β1 + β0 and γ = 11γ1 + γ0 with 0 < β0, γ0 ≤ 10 (recall that β, γ 6≡
0 (mod 11)). According to Proposition 4.1, E arises from a weight-2 newform f of
level 210 and f corresponds to an elliptic curve F/Q such that

aq(F ) 6≡ ±2 (mod 11), for q = 23 and 67.
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This implies that F has good reduction at 23 and 67, or, in other words, that
neither 23 nor 67 divides z. We may thus sieve locally at these primes to show that
there is no triple (β, δ, γ) (with β odd and δ ≡ γ (mod 2)) such that

3 · 5β + (−1)δ7γ ∈
(

F×
q

)11

simultaneously for q = 23 and 67. This leads to the desired contradiction, whereby
we may conclude that the only solution to (14) for n ≥ 7 prime corresponds to
33 · 5− 7 = 27.

7.2.2. The equation 3α7γ + (−1)δ5β = zn. By reducing modulo 8, we see that α
and β necessarily have the same parity, and that α is odd precisely when we have
δ ≡ γ (mod 2). Assume first that α and β are even, and n ≥ 7. Let us consider

E = E
−3α07γ0 ,1,(−1)δ

(3),n,n,2 (3α17γ1 , z, (−1)δ5β/2),

where α = nα1 + α0, γ = nγ1 + γ0, with 0 ≤ α0, γ0 ≤ n − 1. Since β > 0, E
has good reduction at 5. Moreover, if δ = 0, then it satisfies a5(E) = ±4. From
Proposition 4.3, E arises modulo n from a weight 2 newform of level 42 (recall that
α > 0). But there is a unique newform at level 42 corresponding to an elliptic curve
F/Q with a5(F ) = −2, a contradiction. It follows that we have δ = 1, which in
turn implies γ even. We may thus consider instead

E = E5β0 ,1,1
(3),n,n,2(5

β1 , z, (−1)(α+γ)/23α/27γ/2),

where β = nβ1 + β0 with 0 < β0 ≤ n− 1. Then, by Proposition 4.3, E arises from
a weight 2 newform of level 10. This is an obvious contradiction.

Next, assume that α and β are odd, and n ≥ 7. We consider the elliptic curve

E = EA,B,C
n,n,3 (a, b, c) with

A = 1, B = −3α07γ0, C = (−1)δ5β0 , a = z, b = 3α17γ1 and c = 5β1 ,

where α = nα1 + α0, γ = nγ1 + γ0 with 0 ≤ α0, γ0 ≤ n− 1 and β = 3β1 + β0 with
0 ≤ β0 ≤ 2. Then E ∼n f where f is a weight 2 newform of level, say, N0 which
we may compute using Proposition 4.5. If α ≥ 3, we find that N0 | 3 · 52 · 7 and
hence reach a contradiction from consideration of Table 1. Assume therefore that
α = 1 and that (A,B,C, a, b, c) does not correspond to the solution 3 + 53 = 27.
Then, necessarily, n = 7 and N0 = 34 · 52 · 7. In particular, we have γ0 6= 0, i.e.,
γ 6≡ 0 (mod 7). We now use local arguments to conclude. Indeed, if γ ≥ 2, then
by reducing mod 49, we obtain that β ≡ 0 (mod 7), a contradiction. If, however,
γ = 1, then δ = 1 and we check that there is no value of β (odd) such that
β 6≡ 0 (mod 7) and

(3 · 7− 5β)(p−1)/7 ≡ 0 or 1 (mod p)

holds for p = 29 and 71 simultaneously.
This gives the desired contradiction and hence proves that the only solution

to (15) for n ≥ 7 prime corresponds to 3 + 53 = 27.

7.2.3. The equation 5β7γ + (−1)δ3α = zn. By reducing modulo 8, we see that α
and β have the same parity and that α is odd if and only if we have δ ≡ γ (mod 2).
From the preceding two subsections, we may suppose that βγ 6= 0. If n = 7 and
γ ≥ 2, then considering the equation modulo 72, we conclude that α ≡ 0 (mod 7),
a contradiction. If, however, n = 7 and γ = 1, we can easily check that there is
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no solution modulo 23 · 72 · 29 · 43 · 127 · 379. We may thus suppose that n ≥ 11.
Further, if α, β and γ are all even (so that δ = 1), we can consider the elliptic curve

E = E3α0 ,1,1
(3),n,n,2(3

α1 , z, (−1)γ/25β/27γ/2)

where α = nα1 + α0 with 0 < α0 ≤ n− 1. By Proposition 4.3, it arises at level 6,
a contradiction. We may thus suppose that at least one of α, β or γ is odd.

If α ≥ 3, then we consider

E = E
1,(−1)δ+13α0 ,5β07γ0

n,n,3 (z, 3α1 , 5β17γ1)

where






α = nα1 + α0, 0 < α0 ≤ n− 1
β = 3β1 + β0, 0 ≤ β0 ≤ 2
γ = 3γ1 + γ0, 0 ≤ γ0 ≤ 2.

.

By Proposition 4.5, we have E ∼n f where f has level N0 | 3 · 52 · 72; from Table 1,
we necessarily have n = 11.

We now use an (n, n, n) Frey-Hellegouarch curve argument to treat this remain-
ing case. Consider either the elliptic curve

E = E
−5β07γ0 ,1,(−1)δ3α0

11,11,11 (5β17γ1, z, 3α1)

or

E = E
5β07γ0 ,−1,(−1)δ+13α0

11,11,11 (5β17γ1 , z, 3α1)

where






α = 11α1 + α0 0 < α0 ≤ 10,
β = 11β1 + β0 0 ≤ β0 ≤ 10
γ = 11γ1 + γ0 0 ≤ γ0 ≤ 10,

if γ is even or odd, respectively. Then, by Proposition 4.1, E ∼n f where f has
level N0 ∈ {30, 42, 210}. It follows that the newform f corresponds to an elliptic
curve F/Q for which there are unique isogeny classes at level N0 ∈ {30, 42} and five
isogeny classes at level 210. For q ∈ {23, 67, 89, 199}, we compute aq(F ) to show
that E has good reduction at q (i.e., q ∤ z) unless, perhaps, if either q = 89 and
f corresponds to the isogeny class 210c (in Cremona’s notation), or q = 199 and
f corresponds to the isogeny class 210d. We finally sieve over α, β and γ (not all
even) to show that we do not have

5β7γ + (−1)δ3α ∈
(

(Z/qZ)×
)11

and aq(E) ≡ aq(F ) (mod 11),

for q = 23, 67 and 89 simultaneously if the isogeny class of F is not 210c and for
q = 23, 67 and 199 simultaneously otherwise.

Assume now α ∈ {1, 2}. We basically follow the same strategy we used for the
case α ≥ 3 applying first an (n, n, 3) and then an (n, n, n) argument, though the
details are somewhat simpler. Indeed, we first consider

E = E
5β07γ0 ,−1,(−1)δ+13
n,n,3 (5β17γ1 , z, 1)

or

E = E
−5β07γ0 ,1,(−1)δ32

n,n,3 (5β17γ1 , z, 1)

where
{

β = nβ1 + β0, 0 ≤ β0 ≤ n− 1
γ = nγ1 + γ0, 0 ≤ γ0 ≤ n− 1
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if α = 1 or α = 2 respectively. Then, by Proposition 4.5, E ∼n f where f has level
35 · N1, where N1 | 5 · 7. From appeal to Table 1, we conclude that n = 17 (and
β, γ 6≡ 0 (mod 17)).

We now use an (n, n, n) Frey-Hellegouarch curve argument to deal with the case
n = 17. As before, we consider the elliptic curve

E = E
−5β07γ0 ,1,(−1)δ3α

17,17,17 (5β17γ1 , z, 1)

or

E = E
5β07γ0 ,−1,(−1)δ+13α

17,17,17 (5β17γ1 , z, 1)

with β0, β1, γ0, γ1 as above, if γ is even or odd, respectively. Then E arises mod
17 from an elliptic curve F of conductor N0 ∈ {30, 42, 210} and for q ∈ {103, 137},
we check, by computing aq(E) (mod 17) that E has good reduction at q (i.e., that
q ∤ z). For α ∈ {1, 2}, we finally sieve over β and γ to show that

5β7γ + (−1)δ3α ∈
(

(Z/qZ)×
)17

and aq(E) ≡ aq(F ) (mod 17),

does not hold for q = 103 and 137 simultaneously. This finishes the proof that
equation (16) has no solution for n ≥ 7.

7.2.4. The equation 3α+(−1)δ5β = 7γzn. Considering the equation 8, we conclude
that α and β have the same parity and that α is odd if and only if we have δ = 0.
If α and β are odd, then δ = 0 and, since γ > 0, we have 3α + 5β ≡ 0 (mod 7)
and hence a contradiction. Next, assume that α and β are even and n ≥ 7. The
equation to treat is now

3α − 5β = 7γzn.

We thus consider the elliptic curve

E = E−7γ ,3α0 ,5β0

n,n,3 (z, 3α1 , 5β1)

where
{

α = nβ1 + α0, 0 ≤ β0 ≤ n− 1
β = 3β1 + β0, 0 ≤ γ0 ≤ 2

.

By Proposition 4.5, we have E ∼n f where f has level N0 = 3k · 5δ5 · 7 with
δ5 ∈ {0, 2} and

k =







3 if α = 2
0 if α ≡ 3 (mod n)
1 if α ≥ 3 and α 6≡ 3 (mod n)

.

Using Table 1, it then follows that α = 2 and n ∈ {7, 11}. We first consider the
(n, n, 3) Frey-Hellegouarch curve

E = E7γ ,5β0 ,32

n,n,3 (z, 5β1, 1),

where β = nβ1 + β0 with 0 ≤ β0 ≤ n − 1. By Proposition 4.5, the curve E arises
modulo n from a newform f of level N0 = 35 · N1, where N1 | 5 · 7. Hence, using
Table 1, we deduce that n ∈ {7, 17} and, in particular, that n 6= 11.

If, however, n = 7, then we use local arguments to get a contradiction. If γ ≥ 2,
we check that there is no solution modulo 23 · 72 · 43. Similarly, if γ = 1, then there
is no solution modulo 23 ·72 ·43 ·127. This shows that equation (17) has no solution
for n ≥ 7 prime.
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7.2.5. The equation 3α + (−1)δ7γ = 5βzn. By reducing mod 24 · 5, we conclude
that α ≡ 0 (mod 4), γ ≡ 0 (mod 4) and δ = 1. Write α = 2α0 and γ = 2γ0. Then,
there exist nonzero integers z1, z2 with z2 odd such that either

{

3α0 − 7γ0 = 2n−15βzn1
3α0 + 7γ0 = 2zn2

or

{

3α0 − 7γ0 = 2n−1zn1
3α0 + 7γ0 = 2 · 5βzn2

.

Adding these equations and recalling that α0 is even yields either
(

3α0/2
)2

= 2n−25βzn1 + zn2 or
(

3α0/2
)2

= 2n−2zn1 + 5βzn2 .

If n ≥ 11, we consider the (n, n, 2) Frey-Hellegouarch curve

E = E1,2n−25β ,1
(3),n,n,2 (z2, z1, (−3)α0/2) or E = E5β ,2n−2,1

(3),n,n,2 (z2, z1, (−3)α0/2)

according to whether we are in the first or second case above, respectively. Then,
by Proposition 4.3, the curve E arises at level 10, an immediate contradiction. We
may therefore assume that n = 7 and sieve over α, β and γ to show that there is
no solution modulo 24 · 72 · 29 · 43 · 71 · 113 · 127 · 211 · 337 · 421. This shows that
equation (18) has no solution for n ≥ 7 prime.

7.2.6. The equation 5β + (−1)δ7γ = 3αzn. By reducing mod 24 · 3, we find that
β ≡ 0 (mod 4), γ ≡ 0 (mod 2) and δ = 1. We then consider the (n, n, 2) Frey-
Hellegouarch curve

E = E5β0 ,−3α,1
(3),n,n,2 (5β1 , z, (−7)γ/2),

where β = nβ1 + β0 with 0 ≤ β0 ≤ n− 1. It has good reduction at 7 and satisfies
a7(E) = 0. On the other hand, the curve E arises from the (unique) newform f
at level 30, which satisfies c7(f) = −4. This gives us the desired contradiction and
hence proves that equation (19) has no solution for n ≥ 7 prime.
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