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MILNOR K-THEORY AND THE GRADED REPRESENTATION RING

Let F be a field, let G = Gal( F /F ) be its absolute Galois group, and let R(G, k) be the representation ring of G over a suitable field k. In this preprint we construct a ring homomorphism from the mod 2 Milnor K-theory k * (F ) to the graded ring gr R(G, k) associated to Grothendieck's γ-filtration.

We study this map in particular cases, as well as a related map involving the W -group G of F , rather than G. The latter is an isomorphism in all cases considered.

Naturally this echoes the Milnor conjecture (now a theorem), which states that k * (F ) is isomorphic to the mod 2 cohomology of the absolute Galois group G, and to the graded Witt ring gr W (F ).

The machinery developed to obtain the above results seems to have independent interest in algebraic topology. We are led to construct an analog of the classical Chern character, which does not involve complex vector bundles and Chern classes but rather real vector bundles and Stiefel-Whitney classes. Thus we show the existence of a ring homomorphism whose source is the graded ring associated to the corresponding K-theory ring KO(X) of the topological space X, again with respect to the γ-filtration, and whose target is a certain subquotient of H * (X, F 2 ).

In order to define this subquotient, we introduce a collection of distinguished Steenrod operations. They are related to Stiefel-Whitney classes by combinatorial identities.

Introduction

The Milnor conjecture ( [START_REF]Algebraic K-theory and quadratic forms[END_REF]), now a theorem by Voevodsky ([Voe03b] and [START_REF] Voevodsky | Motivic cohomology with Z/2-coefficients[END_REF]), is the statement that a certain map

h F : k * (F ) -→ H * (F, F 2 )
is an isomorphism. Here we have written k * (F ) for mod 2 Milnor K-theory, and H * (F, F 2 ) for the Galois cohomology of F (that is, the cohomology of its absolute Galois group). However, the conjecture has a second part, proved by Orlov, Vishik and Voevodsky ([OVV07]), according to which there is also an isomorphism

s : k * (F ) -→ gr W (F ) ,
where W (F ) is the Witt ring of F , and where gr W (F ) denotes the graded ring associated to the filtration by powers of the fundamental ideal I. In his original paper Milnor relates these two statements by means of a commutative square:

k n (F ) s ----→ gr n W (F ) = I n /I n+1 hF     w 2 n-1 H n (F, F 2 ) × ℓ(-1) t-n -------→ H 2 n-1 (F, F 2 ) .
Here ℓ(-1) is a certain distinguished element in Galois cohomology, and the bottom map is multiplication by ℓ(-1) t-n where t = 2 n-1 ; the map denoted by w 2 n-1 is (an algebraic variant of) a Stiefel-Whitney class. This shows for example that, whenever h F is injective and ℓ(-1) is not a zero divisor, then s is also injective (see Theorem 4.1 and Remark 4.2 in [START_REF]Algebraic K-theory and quadratic forms[END_REF]). The map w 2 n-1 is a priori not part of a ring homomorphisms from gr W (F ) into the cohomology ring. However, one may at least put (writing |x| for the degree of x):

I F = {x ∈ H * (F, F 2 ) : ℓ(-1) 2 |x|-1 -|x| x = 0} .
It is clear that I F is an ideal in H * (F, F 2 ), and thus one gets a commutative square of maps of rings:

k * (F ) s ----→ gr W (F ) hF    
H * (F, F 2 ) ----→ H * (F, F 2 )/I F . Motivated by this, and with a view towards an application in field theory, the first question we address in the paper is one in algebraic topology: given a topological space X, is there always an ideal I X within the cohomology H * (X, F 2 ) which generalizes the ideal I F in the case of fields? Before we state the (positive) answer, we need to present another crucial player in this game, which is to replace the Witt ring. Namely, we shall consider the K-theory of real vector bundles over X, written KO(X), and the so-called γ-filtration: this is defined via a general construction, due to Grothendieck, which applies to any λ-ring (see [START_REF] Atiyah | Group representations, λ-rings and the J-homomorphism[END_REF], [START_REF] Fulton | Fundamental Principles of Mathematical Sciences[END_REF]). Our result, involving the associated graded ring gr KO(X) with respect to this filtration, is the following.

Theorem 1.1 -There is a collection of Steenrod operations θ n , for n ≥ 1, each of degree 2 n-1 -n, with the following properties. For any topological space X, let W * (X) be the subring of H * (X, F 2 ) generated by the Stiefel-Whitney classes of real vector bundles over X. If we put I X = {x ∈ W * (X) : θ |x| x = 0} , then I X is an ideal in W * (X).

Moreover, there is an explicit map of graded rings ω : gr KO(X) -→ W * (X)/I X .

In the text, this consists of Corollary 2.8 and Theorem 3.6; in Lemma 4.5, we eventually prove that I X is indeed a generalization of I F .

Remark 1.2. It was brought to our attention after this paper had been completed that the operations θ n were considered in a different context in the work [START_REF] Benson | Séries de compositions de modules instables et injectivité de la cohomologie du groupe Z/2[END_REF] by Benson and Franjou; they were also considered by Kuhn in [START_REF] Nicholas | Generic representations of the finite general linear groups and the Steenrod algebra[END_REF], and by Adams in [START_REF] Adams | Two theorems of J. Lannes, the selected works of J. Frank Adams[END_REF]. Even our use of the letter θ, almost agreeing with Kuhn's use of Θ, is coincidental.

We think of the map ω as a analog of the classical Chern character. It is worth pointing out that its construction involves, in degree n, the map w 2 n-1 as above.

To give a flavour of the operations θ n , let us indicate that θ 1 = θ 2 = 1, θ 3 = Sq 1 , θ 4 = Sq 3 Sq 1 + Sq 4 , θ 5 = Sq 7 Sq 3 Sq 1 + Sq 8 Sq 2 Sq 1 , θ 6 = Sq 15 Sq 7 Sq 3 Sq 1 + Sq 16 Sq 6 Sq 3 Sq 1 + Sq 16 Sq 7 Sq 3 + Sq 16 Sq 8 Sq 2 , and θ 7 = Sq 31 Sq 15 Sq 7 Sq 3 Sq 1 + Sq 32 Sq 14 Sq 7 Sq 3 Sq 1 + Sq 32 Sq 15 Sq 7 Sq 2 Sq 1 + Sq 32 Sq 16 Sq 6 Sq 2 Sq 1 + Sq 32 Sq 16 Sq 8 Sq 1 .

We will compute the ideal in many cases, mostly for classifying spaces of finite groups. We also treat the universal case of the space (BO ∞ ) N , which produces relations in I X for any space X easily. In all of our examples we have W * (X) = H * (X, F 2 ) (as is often the case with familiar spaces).

This Theorem finds the following purely algebraic applications. An important example of λ-ring is given by the representation ring R(G, k) of the finite group G over the field k. One may go through Grothendieck's construction of the γ-filtration in this case, and consider again the graded ring gr R(G, k). Few results are available about these, and the reason may be that the early investigations of the γ-filtration on a λ-ring K were strongly focused on K ⊗ Q; indeed under some conditions one has an isomorphism K ⊗ Q ∼ = gr K ⊗ Q, one of the highlights of the theory (for example see Theorem III 3.5 in [START_REF] Fulton | Fundamental Principles of Mathematical Sciences[END_REF]). By contrast, each graded piece gr n R(G, k) is torsion when G is finite (n ≥ 1), so that the ring gr R(G, k)⊗ Q is not interesting.

After giving some elementary calculations, namely in the case when G is cyclic and k is either algebraically closed or k = R, we achieve the computation of gr R(G, k) ⊗ F 2 when G is an elementary abelian 2-group. This relies heavily on the map ω, and indeed we are not aware of any other approach. More precisely, we use the map R(G, R) -→ KO(BG) , obtained by associating to any representation r : G → O n the vector bundle whose classifying map is Br : BG → BO n ; this is a homomorphism of λ-rings, so it is compatible with the γ-filtration and induces a homomorphism between the associated graded rings. Combined with ω, this yields a useful map gr R(G, R) → W * (BG)/I BG . When G is elementary abelian, it is an isomorphism, though this is far from being always true.

Based on this, one can tackle many groups of small size, by considering their elementary abelian subgroups, and in this fashion we compute gr R(D 4 , k) ⊗ F 2 , where D 4 is the dihedral group of order 8. We would like to emphasize that our computations show, contrary to a common belief, that the γ-filtration is reasonably well-behaved.

As our final topic, we return to Milnor's conjecture and propose a variant. The following Theorem gave its name to this paper. Recall that the W -group of a field is a certain quotient G of the Galois group G (see [START_REF] Mináč | Witt rings and Galois groups[END_REF] and §4.2 below), which is frequently much easier to study.

Theorem 1.3 -Let F be any field, and let k be any field of characteristic different from 2. Let F be the separable closure of F , and let G = Gal( F /F ) be the absolute Galois group of F . Then there is a map

ζ : k * (F ) -→ gr R(G, k) ⊗ F 2 .
If the characteristic of F is not 2, and if k possesses an embedding into R, then there is a commutative square

k * (F ) ζ ----→ gr R(G, k) ⊗ F 2 hF     ω H * (F ) ----→ H * (F )/I F .
If we call G the W -group of F , then there is a map

ζ : k * (F ) -→ (gr R(G, k) ⊗ F 2 ) dec .
And if k possesses an embedding into R, then there is a commutative square

k * (F ) ζ ----→ (gr R(G, k) ⊗ F 2 ) dec hF     ω H * (G) dec ----→ H * (G) dec /I G .
Here we use the notation A * dec for the decomposable part of the graded algebra A * , that is, the subalgebra generated by elements of degree 1. For example one has famously

H * (G, F 2 ) = H * (G, F 2 ) dec .
The proof of this Theorem relies on an understanding of the rings gr R(D 4 , k) and gr R(Z/4, k). The reason behind this is that D 4 and Z/4 play a special role as small quotients of the W -group (for more on this and generally for an exploration of small p-quotients of the absolute Galois group, see [START_REF] Efrat | On the descending central series of absolute Galois groups[END_REF]).

Moreover, the computations we perform with gr R(G, k) throughout the article are useful for studying the map ζ on examples. We end up proving that the map

k * (F ) ζ --→ (gr R(G, R) ⊗ F 2 ) dec
is an isomorphism when F is a finite field, or a local field, or a real-closed field, or a global field, or when ℓ(-1) is not a zero divisor in H * (F, F 2 ), and in several other cases. There is no example yet for which this map is not an isomorphism. (This would also hold with k = Q instead of k = R, and we shall argue that there is essentially no other interesting choice for k).

The paper is organized as follows. In Section 2, we present the operations θ n and use them to define the ideal I X . In Section 3, we construct the "character" ω; we also use our new machinery in order to compute the ring gr R(G, k) for several examples of finite groups G. Finally in Section 4, we return to Milnor K-theory and define the map ζ.

Acknowledgements. The first-named author would like to thank the Pacific Institute for Mathematical Sciences at Vancouver for its warm welcome during the year 2010-2011, and the Centre National de la Recherche Scientifique in France for the financial support that made this visit possible.

Both authors thank Sunil Chebolu and Marcus Zibrowius for stimulating discussions, Vincent Franjou for bringing the paper [START_REF] Benson | Séries de compositions de modules instables et injectivité de la cohomologie du groupe Z/2[END_REF] to our attention, and Paul Goerss, Parimala and Burt Totaro for encouraging words.

The canonical ideal

In this section we prove that the mod 2 cohomology of any topological space possesses a canonical subquotient. The latter will be the target of a map from the graded K-theory ring, as described in the next section. Proofs are mainly combinatorial.

The real topological K-theory of the topological space X will be denoted by KO(X). This is the Grothendieck ring of real vector bundles over X, which is different from the ring that is sometimes called the "representable K-theory" of X and defined by

KO(X) = [X, Z × BO] .
While KO(X) and KO(X) agree when X is a finite CW-complex for example, there are cases, such as X = BG for a finite group G, for which these two rings are not isomorphic. We shall briefly mention KO(X) in the course of the proof of Lemma 3.9, while most of the paper deals with KO(X). Also note that our results never refer to Atiyah's definition of the "real K-theory", which is designed for spaces with involutions.

The mod 2 cohomology X we write H * (X).

2.1. The operations θ n . Given a class t ∈ H 1 (X) = [X, RP ∞ ], one can consider the corresponding line bundle L over X. The first Stiefel-Whitney class of L, essentially by definition, is w 1 (L) = t. Our first objective is to study an analogous relationship between line bundles and Stiefel-Whitney classes, as follows.

Theorem 2.1 -For each n ≥ 1, there is a Steenrod operation θ n with the following property. Given a space X and classes t 1 , t 2 , . . . , t n ∈ H 1 (X), let L i be the line bundle corresponding to t i . Let ρ denote the virtual vector bundle over X defined by

ρ = (L 1 -1)(L 2 -1) • • • (L n -1)
, where 1 stands for the trivial line bundle. Then the Stiefel-Whitney class w i (ρ) is zero for 1 ≤ i < 2 n-1 , while

w 2 n-1 (ρ) = θ n (t 1 t 2 • • • t n ) .
Example 2.2 -As w 1 (L -1) = w 1 (L) = t we see that we may take the identity operation for θ 1 . A quick calculation shows that the second Stiefel-Whitney class of (L 1 -1)(L 2 -1) is t 1 t 2 , so we may again take the identity for θ 2 . On the other hand, the fourth Stiefel-Whitney class of

(L 1 -1)(L 2 -1)(L 3 -1) is t 2 1 t 2 t 3 + t 1 t 2 2 t 3 + t 1 t 2 t 2 3 = Sq 1 (t 1 t 2 t 3
) , so that Sq 1 can be taken for θ 3 .

The proof of Theorem 2.1 will occupy the rest of this section. We start with a couple of lemmas.

Lemma 2.3 -Let ρ ∈ KO(X), and let i be the least positive integer so that w i (ρ) = 0. Then i is a power of two. This is well-known, and follows from Wu's formula (see [START_REF] Milnor | Characteristic classes[END_REF]).

Lemma 2.4 -Let ρ ∈ KO(X), and suppose that we may write ρ = E + -E -, where E + and E -are vector bundles of the same rank. Suppose also that w i (ρ) = 0 for 1 ≤ i < 2 n-1 . Then for any line bundle L, we have w i (ρ(L -1)) = 0 for 1 ≤ i < 2 n . Proof. From the previous lemma, it is enough to prove that w i (ρ(L -1)) = 0 for 1 ≤ i ≤ 2 n-1 .

Here and elsewhere we shall use the total Stiefel-Whitney class, which is the homomorphism w

T : KO(X) → 1 + T H * (X)[[T ]] defined by w T (ρ) = 1 + w 1 (ρ)T + w 2 (ρ)T 2 + • • • .
For example, when ρ is as in the statement of the Lemma, we have w T (ρ) = w T (E + )w T (E -) -1 , and from this we see that the hypotheses imply that (*)

w i (E + ) = w i (E -) for 1 ≤ i < 2 n-1 .
We are interested in the Stiefel-Whitney classes of ρ(L -1) = (LE + + E -) -(LE -+ E + ), and thus we wish to prove that (**)

w i (LE + + E -) = w i (LE -+ E + ) ,
for 1 ≤ i ≤ 2 n-1 . Now, the Stiefel-Whitney classes of LE + + E -are given by evaluating certain universal polynomials, using the classes of L, E + and E -; moreover, these polynomials depend only on the rank of the vector bundles involved.

As a result, it is clear from (*) that in degrees less than 2 n-1 , we would obtain the same result using LE -+ E + instead. In other words, equation (**) holds for 1 ≤ i < 2 n-1 , and the only non-trivial calculation happens for i = 2 n-1 . In this degree, we have

w 2 n-1 (LE + + E -) = w 2 n-1 (LE + ) + w 2 n-1 (E -) + R ± ,
where the last term is

R ± = p+q=2 n-1 w p (LE + )w q (E -) .
In this sum the indices p and q are positive; arguing as above, we see that

R ± = R ∓ ,
where R ∓ is defined by exchanging E + and E -, that is

w 2 n-1 (LE -+ E + ) = w 2 n-1 (LE -) + w 2 n-1 (E + ) + R ∓ .
The Lemma will be proved if we can establish that w 2 n-1 (LE

+ ) + w 2 n-1 (E -) = w 2 n-1 (LE -) + w 2 n-1 (E + ). Let a = w 1 (L).
Then the 2 n-1 -st Stiefel-Whitney class of LE ± is given by

w 2 n-1 (LE ± ) = a 2 n-1 + w 2 n-1 (E ± ) + P (a, w 1 (E ± ), . . . , w 2 n-1 -1 (E ± )) ,
where P is a polynomial. So, using (*) again, we see indeed that w 2 n-1 (LE + ) + w 2 n-1 (E -) is left unchanged when E + and E -are exchanged. This concludes the proof.

This Lemma gives us at once the easy part of Theorem 2.1: namely, proving that w i (ρ) = 0 for 1 ≤ i < 2 n-1 is now achieved with a routine induction.

To go further, let us write σ k for the k-th symmetric function in L 1 , . . . , L n , computed in the ring KO(X). We also write σ 0 = 1, the trivial line bundle, and we understand that σ k = 0 for k > n. Put

E even = k even σ k and E odd = k odd σ k .
The virtual bundle ρ as in the statement of the Theorem is then ρ = (-1) n (E even -E odd ) .

We have already established that w i (E even ) = w i (E odd ) for 1 ≤ i < 2 n-1 . Note that E even and E odd both have rank 2 n-1 , and that E even contains a copy of the trivial line bundle σ 0 ; as a result, we finally have w 2 n-1 (ρ) = w 2 n-1 (E odd ).

We can make this quite explicit. Indeed, if we put

m k = 1≤i1<i2<•••<i k ≤n (t i1 + t i2 + • • • + t i k ) ,
then it is readily seen that

w 2 n-1 (E odd ) = k odd m k .
The following Lemma gives an expansion of the right hand side. It is crucial to the proof of the Theorem, and indeed can be considered to lie at the core of the paper.

Lemma 2.5 -In the polynomial ring F 2 [t 1 , . . . , t n ], one has the following identity:

k odd m k = 2 r 1 +•••+2 rn =2 n-1 t 2 r 1 1 t 2 r 2 2 • • • t 2 rn n .
For example for n = 3 this gives

t 1 t 2 t 3 (t 1 + t 2 + t 3 ) = t 2 1 t 2 t 3 + t 1 t 2 2 t 3 + t 1 t 2 t 2 3 .
Proof. Let P denote the polynomial on the right hand side, given as a sum. We write P (t 1 ← t i ) for P (t i , t 2 , t 3 , . . . , t n ). Consider a fixed term of the sum defining P (t 1 ← t i ). If r 1 = r i , then the sum will contain another term with r 1 and r i swapped; but this will be the same term because t 1 = t i now, so they will cancel. The only terms remaining, for r 1 = r i , will add up to

2 r2 + • • • + 2 rn = 2 n-1 r i ≥ 1 t 2 r 2 2 • • • t 2 rn n .
The reason for r i ≥ 1 is that 2 ri has really absorbed

2 r1 + 2 ri = 2 • 2 ri = 2 ri+1 .
However, here is an elementary observation: 2 n-1 -1 cannot be written as the sum of n -2 powers of 2. It follows that the condition r i ≥ 1 is in fact automatically satisfied (otherwise 2 ri = 1 and we have written 1 + 2 r2 + • • • + 2 rn = 2 n-1 which is impossible). Erase the condition r i ≥ 1 in the sum above: the result now blatently is independent of i. So P (t 1 ← t i ) = P (t 1 ← t j ), for any pair of indices i, j.

In particular, we see that

P (t 1 ← t i + t j ) = P (t 1 ← t i ) + P (t 1 ← t j ) = 0 .
As a result the polynomial P is divisible by (t 1 + t i + t j ). Of course the variable t 1 can be replaced by any other, and likewise we see that P is divisible by

(t i + t j + t k )
for any triple (i, j, k). It is also easy to continue, for example

P (t 1 ← t i1 + t i2 + t i3 + t i4 ) = P (t 1 ← t i1 + t i2 ) + P (t 1 ← t i3 + t i4 ) = 0 + 0 = 0 , so P is divisible by (t 1 + t i1 + t i2 + t i3 + t i4 ).
Pursuing the calculations in this fashion, we see that P is divisible by all the terms of m k as long as k is odd. These terms are coprime in the ring F 2 [t 1 , . . . , t n ], so P is divisible by their product, and a comparison of the degrees gives the result.

We can finally describe θ n . We are going to rely on Milnor's description of the dual A * of the Steenrod algebra, see [START_REF] Milnor | The Steenrod algebra and its dual[END_REF]. Recall that (1) A * is polynomial on variables ξ i in degree 2 i -1.

(2) For any space X, there is a map of rings

λ * : H * (X) → H * (X) ⊗ A * ,
such that, for any Steenrod operation θ and element x ∈ H * X, we can recover θx by evaluating λ * (x) at θ.

(3) For X = BZ/2, whose cohomology is

F[t], one has λ * (t) = t 2 i ⊗ ξ i .
This allows the computation of λ

* (t 1 • • • t n ) in our situation. If we define Sq(i 1 , i 2 , . . . , i k ) to be the Steenrod operation dual to ξ i1 1 • • • ξ i k k , we may put θ n = Sq(i 1 , . . . , i k )
where the sum runs over all the elements which have degree 2 n-1 -n. We have then θ n (t 1 • • • t n ) = P , where P is again the right-hand side in the identity of Lemma 2.5. This Lemma thus asserts that

θ n (t 1 • • • t n ) = w 2 n-1 (ρ) ,
which concludes the proof of Theorem 2.1.

Remark 2.6. (a) The reader may compute θ n easily using the free computer algebra system Sage, simply by entering The operations θ n are not uniquely defined by the requirement that they satisfy Theorem 2.1. However with the above definition, the operations coincide, as announced in the Introduction, with those considered by Benson and Franjou in [START_REF] Benson | Séries de compositions de modules instables et injectivité de la cohomologie du groupe Z/2[END_REF], by Kuhn in [START_REF] Nicholas | Generic representations of the finite general linear groups and the Steenrod algebra[END_REF], and by Adams in [START_REF] Adams | Two theorems of J. Lannes, the selected works of J. Frank Adams[END_REF]. Furthermore, we want to point out the following alternative description. The Steenrod algebra A is a Hopf algebra, and is equipped with an antipode c : A → A. It turns out that

θ n = c(Sq 2 n-1 -n ) , see §7, Corollary 6 in [Mil58].
2.2. The ideal. Given any graded algebra A * , we write A * dec for the subalgebra generated by the elements of degree 1.

Proposition 2.7 -For any topological space X, let us put

I dec = {x ∈ H * (X) dec : θ |x| (x) = 0} . Then I dec is an ideal in H * (X) dec .
Here |x| is the degree of x.

Proof. Let n = |x|, and assume that θ n (x) = 0. It is enough to prove that, for y of degree 1, we have θ n+1 (xy) = 0.

The element x is a sum of products of n elements of degree 1, and by applying Theorem 2.1 several times, we see that there exists some virtual vector bundle ρ over X such that θ n (x) = w 2 n-1 (ρ), while w i (ρ) = 0 for 1 ≤ i < 2 n-1 . Here we rely on the observation that, if ρ 1 and ρ 2 are vector bundles such that the Stiefel-Whitney classes of both ρ 1 and ρ 2 vanish in degrees less than 2 n-1 , then the same can be said of the sum ρ 1 +ρ 2 , and moreover w 2 n-1 (ρ 1 +ρ 2 ) = w 2 n-1 (ρ 1 )+w 2 n-1 (ρ 2 ).

Our assumption on x implies thus that w 2 n-1 (ρ) = 0, so that, by Lemma 2.3, we have actually

w i (ρ) = 0 for 1 ≤ i < 2 n .
A similar reasoning with xy shows that θ n+1 (xy) = w 2 n (ρ(L -1)), where L is the line bundle defined by y. Lemma 2.4 guarantees that this Stiefel-Whitney class vanishes, thus establishing the Proposition.

We can make a stronger statement using the "splitting principle". This classical result states that, given a finite number of vector bundles E 1 , . . . , E k over X, one can find a space Y with a map p : Y → X, such that

(1) the map p * :

H * (X) → H * (Y ) is injective, and
(2) each of E 1 , . . . , E k splits as a sum of line bundles, when pulled-back over Y . In particular, the classes p * (w i (E j )) all belong to H * (Y ) dec . From this we obtain the following.

Corollary 2.8 -Let W * (X) denote the subring of H * (X) generated by Stiefel-Whitney classes. Put

I X = {x ∈ W * (X) : θ |x| (x) = 0} . Then I X is an ideal in W * (X).
The canonical subquotient W * (X)/I X of H * (X) will be one of our chief interests in the rest of the paper. The following Lemma states some of its easy but useful properties.

Lemma 2.9 -Let f : Y → X be any map. Then

(1) We have

f * (W * (X)) ⊂ f * (W * (Y )) and f * (I X ) ⊂ f * (I Y ), so that there is an induced map f ♯ : W * (X)/I X → W * (Y )/I Y . (2) If f * is injective, so is f ♯ .
Proof. Property (1) is obvious given the naturality of both Stiefel-Whitney classes and Steenrod operations. We turn to (2). Suppose that f ♯ (x) = 0, so that f * (x) ∈ I Y . By definition, this means that θ n (f * (x)) = 0, where n is the degree of x. However, we have then f * (θ n (x)) = 0 so that θ n (x) = 0 by injectivity of f * , and we see that

x ∈ I X .
In what follows we shall be particularly interested in the case X = BG, the classifying space of the group G. In this situation we will use notation such as H * (G), W * (G) and I G . Here is a first example.

Proposition 2.10 -Let G = (Z/2) r be elementary abelian of rank r. Then the cohomology ring

H * (G) = W * (G) = F 2 [t 1 , . . . , t r ]
is polynomial, and the ideal I G is generated by the elements t 2 i t j + t i t 2 j , for 1 ≤ i, j ≤ r. Of course the statement about H * (G) is classical. We point out that an equivalent formulation of the Proposition is that I G is generated as an ideal by the kernel of Sq 1 = θ 3 viewed as a map

H 3 (G) → H 4 (G). Proof. We have Sq 1 (t 2 i t j + t i t 2 j ) = t 2 i t 2 j + t 2 i t 2 j = 0 , so certainly t 2 i t j + t i t 2 j ∈ I G , as θ 3 = Sq 1 .
Let J be the ideal generated by these elements, and let us prove that I G = J. We have a succession of surjective maps

F 2 [t 1 , . . . , t r ] -→ H * (G)/J -→ H * (G)/I G .
Fix an interger n. It is clear that any two monomials in H n (G) are equal modulo J as soon as they are written with the same "alphabet", ie if they involve exactly the same variables. In order to exploit this, for any non-empty subset S of {1, 2, . . . , r} of cardinality ≤ n we pick a monomial x S ∈ H n (G) which involves the variables t i for i ∈ S and no other; we also arrange so that only one variable is raised to a power greater than 1. Concretely, if S = {i 1 , . . . , i s }, we may take x S = t n-s+1 i1 t i2 • • • t is . We have observed that the elements x S , for such subsets S, generate H n (G)/J, and we shall prove now that they are linearly independent even in H n (G)/I G . It will follow that these elements form a basis of both H n (G)/J and H n (G)/I G , and this being true for all n, we are compelled to conclude that I G = J.

Examining the definitions, we see that we must establish that the elements θ n (x S ) are linearly independent in H 2 n-1 (G). So let us assume that we are given a zero linear combination, say

(*) S λ S θ n (x S ) = 0 .
Fix a T , and let us prove that λ T = 0. The identity (*) takes place in a polynomial ring, so it is possible for us to set t i = 0 for i ∈ T . From Lemma 2.5, we see that x S and θ n (x S ) are written in the same "alphabet", and so the new identity we obtain only involves those subsets S such that S ⊂ T . What is more, the element θ n (x T ) is the only one whose monomials involve all the variables t i for i ∈ T . It is thus clear that we have λ T θ n (x T ) = 0.

It remains to prove that θ n (x T ) = 0. From the construction of x T , we know that there is some variable, say t j , which appears in x T to the power one. Now set t i = 1 for i ∈ T if i = j (while maintaining t i = 0 for i ∈ T ), and let us prove that θ n (x T ) is non-zero even then. Indeed, from the factorized expression for θ n (x T ) appearing in Lemma 2.5, we know that this element is a product of terms of the form

m k = (t i1 + • • • + t i k )
where k is odd, the indices i 1 , . . . , i k are in T , and at most one of them is j. If there is no such index, then m k = 1 after the variables have been set to one; if there is such an index, then m k = t j . As a result θ n (x T ) is a power of t j , and in particular it is not zero. It follows that λ T = 0 and the proof is complete.

Remark 2.11. This Proposition can also be deduced from Proposition 5.10 in [START_REF] Nicholas | Generic representations of the finite general linear groups and the Steenrod algebra[END_REF].

The universal example of BO N

∞ . We will now compute the "universal" ideal I N := I BO N ∞ for the space BO N ∞ to be described next. This will give relations in the cohomology of any space.

Consider first the classifying space BO n of the n-th compact orthogonal group O n ; its cohomology is

H * (BO n ) = F 2 [w 1 , w 2 , . . . , w n ] .
There are inclusions maps O n → O n+1 , inducing maps BO n → BO n+1 , and we take BO ∞ to be the colimit of this diagram. We have thus

H * (BO ∞ ) = lim H * (BO n ) = F 2 [w 1 , w 2 , w 3 , . . .] .
Here we think of w i as a generalized Stiefel-Whitney class, and indeed Corollary 2.8 applies with W * (BO ∞ ) = H * (BO ∞ ), as we readily see.

Next, take an integer N and consider the cartesian product BO N ∞ = (BO ∞ ) N . This space has projection maps p i : BO N ∞ → BO ∞ , and we write w j (p i ) for the class p * i (w j ). The cohomology of BO N ∞ is polynomial in all the classes w j (p i ),

for 1 ≤ i ≤ N and j ≥ 1. In particular H * (BO N ∞ ) = W * (BO N ∞ )
(in the same generalized sense as above).

Given any space X and vector bundles E 1 , E 2 , . . . , E N over X, we have classifying maps f i : X → BO ∞ , which we may combine into a map X → BO N ∞ . The Stiefel-Whitney classes of the bundle E i are pulled back from the classes w j (p i ), so the relations in I N will yield relations in I X .

Let us now state the result. It is somehow easier to give a presentation for H * (BO N ∞ )/I N . Proposition 2.12 -The ring H * (BO N ∞ )/I N is generated by the classes w 2 j (p i ), for 1 ≤ i ≤ N and j ≥ 0. These are subject to the relations

(*) w 2 j 1 (p i1 ) • • • w 2 js (p is ) = w 2 k 1 (p ℓ1 ) • • • w 2 k t (p ℓt )
whenever the two sides of (*) have the same degree and involve exactly the same variables. Moreover, for any integer n, let the binary expansion of n be

n = k≥0 a k 2 k . Then the class w n (p i ) is given in H * (BO N ∞ )/I N by (**) w n (p i ) = k≥0 w 2 k (p i ) a k .
In other words, the ideal I N is generated by the relations (*) and (**). It follows that, for any vector bundle E over any space X whatsoever, we will always have such relations as w 5 (E) = w 1 (E)w 4 (E) modulo I X (relation of type (**)); and if F is any other vector bundle over X, the relation w 1 (E)w 2 (F ) 2 = w 1 (E) 3 w 2 (F ) modulo I X always holds (relation of type (*)).

Let us also state a general consequence.

Corollary 2.13 -Let X be a space such that W * (X) is generated by finitely many Stiefel-Whitney classes. Then there exists a constant C such that

dim F2 W n (X)/I X ≤ C
for all n ≥ 0.

Proof of the Corollary. By the Proposition, there are no more monomials in the Stiefel-Whitney classes in a given degree than ways of picking a subset of the set of variables.

We turn to the proof of the Proposition. We provide details for the case N = 1 only, for the general case simply involves more complicated notation. Note that the cohomology of BO ∞ agrees with that of BO m in degrees < m, and it will be technically easier to work with such a space BO m with m large enough. So for the duration of this proof, the symbol ∞ will stand for a conveniently large integer.

The group O ∞ has a distinguished elementary abelian subgroup T = (Z/2) ∞ , given by the diagonal matrices with entries ±1. Moreover the map

H * (BO ∞ ) -→ H * T = F 2 [t 1 , . . . , t ∞ ]
is injective, and sends w i to the i-th symmetric function in the variables t 1 , . . . , t ∞ . From Lemma 2.9, the ideal I N is the kernel of the map H * (BO ∞ ) → H * (T )/I T .

The ring H * (T )/I T is given by Proposition 2.10. We see that in degree n, it has a basis in bijection with the non-empty subsets of {1, 2, . . . , ∞} of cardinality ≤ n. Given such a subset I, we write t I,n for the corresponding element. Note that the multiplication is given by the rule t I,n t J,m = t I∪J,n+m .

We also put

t i,n = #I=i t I,n .
In this notation, the image of w i is t i,i . We need to work out the product of w i and w j , and this is a priori given by

t i,i t j,j =   #I=i t I,i     #J=j t J,j   = #I=i, #J=j t I∪J,i+j = k≥1 #K=k α i,j,k t K,i+j .
This equality defines the number α i,j,k , which is clearly the number of ways of writing a set with k elements as a union I ∪ J, where I has i elements and J has j elements. Luckily, we are considering α i,j,k mod 2, and the formula above can be drastically simplified.

Lemma 2.14 -Given i and j, there is one and only one integer k such that α i,j,k is odd. Moreover k is given by the following recipe. Writing the binary expansions

i = s≥0 a s 2 s and j = s≥0 b s 2 s , then k is given by k = s≥0 max(a s , b s )2 s .
This number will be written i or j.

We point out that the notation i or j is very common in computer science; it reminds the reader that a given "bit" of i or j is set to 1 when the corresponding bit of i is 1 or the corresponding bit of j is 1. The operation i, j → i or j is commutative and associative.

Proof of Lemma 2.14. For any integer n whose binary expansion is n = s≥0 a s 2 s , we note supp(n) = {s : a s = 0} , and call it the support of n. The number i or j is characterized as the only integer whose support is supp(i) ∪ supp(j).

Elementary combinatorics reveal that, when max(i, j) ≤ k ≤ i + j, the number α i,j,k is given by

α i,j,k = k i i k -j = k j j k -i = k! (k -i)!(k -j)!(i + j -k)! .
(For other values of k, we have α i,j,k = 0 trivially.) Now we rely on an elementary observation, which dates back to Kummer (see [START_REF] Ernst | Contributions to number theory[END_REF], pp 507-508):

n m is odd ⇐⇒ supp(m) ⊂ supp(n) .
It appears that α i,j,k is odd precisely when the following two conditions are satisfied:

(a) supp(j) ⊂ supp(k), (b) supp(k -j) ⊂ supp(i). Note that whenever (a) holds, we have supp(k -j) = supp(k) supp(j). From this it is clear that (a) and (b) together are equivalent to the condition supp(k) = supp(i) ∪ supp(j).

We now see that the following relation holds in H * T /I T : t i,i t j,j = t i or j,i+j .

If follows that

w i1 w i2 • • • w i k = t i1 or i2 or ••• or i k , i1+i2+•••+i k , and that w i1 w i2 • • • w i k = w j1 w j2 • • • w j ℓ whenever i 1 + • • • + i k = j 1 + • • • + j ℓ and i 1 or • • • or i k = j 1 or • • • or j ℓ . In particular, we have w 2 j 1 • • • w 2 js = w 2 k 1 • • • w 2 k t
whenever the degrees on both sides are equal and {2 j1 , . . . , 2 js } = {2 k1 , . . . , 2 kt } .

That is, the relations (*) hold. The relations (**) are equally clear at this point.

Let J be the ideal generated by (*) and (**). To finish the proof, we need to show that H * (BO N ∞ )/J injects into H * (T )/I T . However, this is obvious, and follows from the fact that the elements t i,n for different values of i are linearly independent.

Graded K-theory & Graded representation rings

We start this section by recalling the definition of the γ-filtration on a general λring. Next we consider, as first examples, the representation rings of some finite groups. Then we prove the existence of a "character", that is a ring homomorphism, between the graded ring associated to the K-theory of real vector bundles over a topological space, and the subquotient of its cohomology defined in the previous section.

3.1. Grothendieck's construction. Let us give some recollections about the γfiltration, which is due to Grothendieck. Details may be found in [START_REF] Fulton | Fundamental Principles of Mathematical Sciences[END_REF], [START_REF] Atiyah | Group representations, λ-rings and the J-homomorphism[END_REF].

The general setting is that of a λ-ring K with augmentation ε : K → Z (in older terminology, λ-rings were called "special λ-rings"). So for each n ≥ 0 there is a map λ n : K → K, such that for each x ∈ K one has λ 0 (x) = 1, λ 1 (x) = x, and all the identities presented in the references above. The kernel of ε is denoted I and called the augmentation ideal.

The γ-operations are then defined by

γ n (x) = λ n (x + n -1) ,
for x ∈ K. For n ≥ 1, let Γ n be the abelian subgroup of K generated by all elements of the form

γ k1 (x 1 )γ k2 (x 2 ) • • • γ ks (x s ) with k i ≥ n ,
where each x i belongs to I. One checks that each Γ n is an ideal in K, that Γ n+1 ⊂ Γ n , and that Γ 1 = I. Writing Γ 0 for K itself, one can then consider the associated graded ring

gr K = Γ 0 /Γ 1 ⊕ Γ 1 /Γ 2 ⊕ Γ 2 /Γ 3 ⊕ • • • , where Γ 0 /Γ 1 = K/I ∼ = Z.
Now for x ∈ K and i ≥ 1 we write c i (x) for the class of γ i (x -ε(x)) in Γ i /Γ i+1 . The properties of the operations λ i on K imply the simple statement that those classes c i (x) satisfy all the familiar axioms of Chern classes; and indeed we shall call them the algebraic Chern classes. This may be the place to point out that, in spite of the many references to algebraic topology in this paper, we will never mention the topological Chern classes, and a notation such as c i (x) is always understood in the graded ring associated to a λ-ring.

The typical example of λ-ring for us will be the K-theory of real vector bundles over a topological space on the one hand, and the representation ring R(G, k) of a finite group G over a field k on the other hand. When k = R, we note that a real representation of G defines a real vector bundle over the classifying space BG, thus yielding a map of λ-rings R(G, R) -→ KO(BG) , which in turn induces a map gr R(G, R) -→ gr KO(BG) .

Elementary examples.

It is our intention to advertise the rings gr R(G, k), and encourage further investigations by our readers. Computations with these have a cohomological flavour, although the results are interestingly different. Let us start with a couple of general statements.

Lemma 3.1 -Let G be a finite group. Then the group gr 1 R(G, k) is isomorphic to the group of 1-dimensional representations of G over k, under the tensor product operation. Moreover the isomorphism is given by the first Chern class.

Proof. This follows from Theorem 1.7, Chapter III, in [START_REF] Fulton | Fundamental Principles of Mathematical Sciences[END_REF].

Lemma 3.2 -Let G be finite, and assume that the characteristic of k is 0. Then for n ≥ 1, the group gr n R(G, k) is torsion. More precisely, if the order of G is |G|, then gr n R(G, k) is killed by |G| n .

Thus the ring gr R(G, k) ⊗ Q is isomorphic to Q concentrated in degree 0. The early investigations of the Grothendieck filtration focused on gr K ⊗Q (in particular in the case when K = KO(X), the K-theory of an algebraic variety), which the Lemma shows is not interesting for K = gr R(G, k). This may account for the lack of attention paid to these rings so far. We shall give several examples showing that gr R(G, k) is far from trivial.

Proof. We make use of the Adams operations Ψ k , which are defined in any λ-ring. When χ is the character of a representation, then Ψ k χ(g) = χ(g k ), for g ∈ G. So for k = |G|, we see that Ψ |G| χ = χ(1) (copies of the trivial representation). In particular Ψ |G| χ depends only on the degree of χ, and so Ψ |G| x = 0 for x ∈ I, the augumentation ideal. A fortiori, the operation Ψ |G| is zero on Γ n . However, we have for n ≥ 1 and x ∈ Γ n the relation

Ψ k x = k n x mod Γ n+1 ,
see Proposition III, 3.1 in [START_REF] Fulton | Fundamental Principles of Mathematical Sciences[END_REF]. The result follows.

Corollary 3.3 -Let the number of irreducible representations of the finite group G over k be c + 1. Then for n ≥ 1 the group Γ n is isomorphic to Z c as an abelian group, and consequently the group gr n R(G, k) is generated by c elements.

Proof. The group R(G, k) is isomorphic to Z c+1 , so the result is certainly true for Γ 1 = I. Moreover, the fact that Γ n /Γ n+1 is torsion indicates that Γ n+1 has the same rank as Γ n .

Let us start giving concrete calculations.

Proposition 3.4 -Suppose G = C N is cyclic of order N , and assume that k is algebraically closed, of characteristic prime to N . Then

gr R(G, k) = Z[c 1 (ρ)] (N c 1 (ρ)) ,
for some 1-dimensional representation ρ.

In particular for each n ≥ 1 we have gr n R(G, k) = Z/N , generated by c 1 (ρ) n . Thus the graded representation ring in this case is abstractly isomorphic to the ring H 2 * (G, Z).

Proof. The irreducible representations are 1, ρ, ρ 2 , . . . , ρ n-1 . We have c 1 (ρ k ) = kc 1 (ρ) (Lemma 3.1). From the definitions, we see that gr R(G, k) is thus generated by c 1 (ρ), and from the relation ρ N = 1 we see that N c 1 (ρ) = 0. We need to show that there are no further relations. So we consider an integer d such that dc 1 (ρ) n = 0, and we will show that N divides d. This will show that gr n R(G, k) is no smaller than Z/N .

It is an easy general fact that, when all the irreducible representations of G are 1-dimensional, then Γ n = I n , the n-th power of the augmentation ideal. Now, we have R(G, k) = Z[ρ]/(ρ N -1), and it is easy to see that I is the ideal generated by ρ -1, so that I n is generated by (ρ -1) n .

Write x = c 1 (ρ) = ρ -1 for simplicity. The relation dx n = 0 in Γ n /Γ n+1 lifts to dx n = P (x)x n+1 in R(G, k) for a polynomial P , and in turn we may write this in the form

dx n = P (x)x n+1 + Q(x)[(1 + x) N -1] in Z[x].
If n > 1 then we may look at the terms of degree 1 on each side, and deduce that Q(0) = 0. So we may divide the equation by x and obtain a similar one with n replaced by n -1. So we go all the way down to n = 1. In this case

dx = P (x)x 2 + Q(x)[(1 + x) N -1] ,
and by looking at the terms of degree 1 we see that d = Q(0)N , which was what we wanted. Now let us see how changing the field k affects the results.

Proposition 3.5 -Let G = C N be cyclic of order N , and let

k = R. Then (1) If N is odd, one has gr R(G, R) ⊗ F 2 = F 2 , concentrated in degree 0. (2) If N = 2m with m odd, then gr R(G, R) ⊗ F 2 = F 2 [c 1 (ε)] ,
for some 1-dimensional representation ε.

(

) If N = 2m with m even, then gr R(G, R) ⊗ F 2 = F 2 [c 1 (ε), c 2 (r)] (c 1 (ε) 2 ) , 3 
where ε is 1-dimensional, and r is 2-dimensional.

Proof. The case (1) follows from Lemma 3.2. Assume N = 2m. The case m = 1 was already considered in the previous Proposition, since R(C 2 , R) = R(C 2 , C), so we assume m > 1.

In this proof we work with characters rather than representations. The irreducible characters of G over C are 1, ρ, ρ 2 , . . . , ρ N -1 as above. Put r k = ρ k + ρ -k and ε = ρ m ; in particular r 0 = 2 (two copies of the trivial character) and r m = 2ε. The group G has m + 1 irreducible real characters, namely r k for 1 ≤ k ≤ m -1, together with ε and the trivial character. When talking about the characters r k the indices will always be understood modulo N .

The relation c 1 (r) = c 1 (det(r)) always holds (it follows from the axioms for Chern classes). Thus we see that c 1 (r k ) = 0. Moreover one checks immediately that r k r ℓ = r k+ℓ + r k-ℓ .

We have

c 2 (r k+ℓ + r k-ℓ ) = c 2 (r k+ℓ )+ c 2 (r k-ℓ ), while c 2 (r k r ℓ ) = 2(c 2 (r k )+ c 2 (r ℓ )) = 0 (since we have tensored with F 2 ). We draw c 2 (r k+ℓ ) = c 2 (r k-ℓ ) .
For ℓ = 1 this shows that c 2 (r k ) depends only on the parity of k; for k even we thus have c 2 (r k ) = c 2 (r 0 ) = 0, while for k odd we have c 2 (r k ) = c 2 (r 1 ). Now, we use the relation εr 1 = r m+1 , which upon comparison of the second Chern classes gives

(*) c 2 (r 1 ) + c 1 (ε) 2 = c 2 (r m+1 ) .
Here we need to distinguish between cases (2) and (3). If m is odd, then m + 1 is even and c 2 (r m+1 ) = 0, so that equation (*) shows that c 2 (r 1 ) = c 1 (ε) 2 . In this case we see that gr R(G, R) ⊗ F 2 is generated by c 1 (ε). To show that there are no relations, consider the subgroup C 2 ⊂ C N and the restriction map

gr R(C N , R) ⊗ F 2 -→ gr R(C 2 , R) ⊗ F 2 = F 2 [c 1 (ε)] .
The equality on the right-hand side is the case m = 1 already considered. It is clear that the restriction map sends ε to ε (in obvious notation), and so also c 1 (ε) to c 1 (ε). The result follows. Now consider the case when m is even, so m + 1 is odd and equation (*) reads c 1 (ε) 2 = 0. We see that gr R(G, R) ⊗ F 2 is generated by c 1 (ε) and c 2 (r 1 ), subject to c 1 (ε) 2 = 0, and we need to show that there are no further relations. We claim that c 2 (r 1 ) n = 0 for all n, and that c 1 (ε)c 2 (r 1 ) n = 0 for all n, which will suffice. To prove the claim we consider the map

gr R(G, R) -→ gr R(G, C) = Z[c 1 (ρ)] (N c 1 (ρ)) ,
the equality coming from the previous Proposition. The complexification map sends r 1 to ρ + ρ -1 and ε to ρ m ; so it sends c 1 (ε) to mc 1 (ρ) and c 2 (r 1 ) to -c 1 (ρ) 2 . From this it is immediate that c 2 (r 1 ) n is not zero in gr 2n R(G, R) ⊗ F 2 , while for c 1 (ε)c 2 (r 1 ) n we see that it is not zero at least in gr 2n+1 R(G, R); tensoring with F 2 will not hurt, though, for the relation

ε 2 = 1 yields 2c 1 (ε) = 0, so that gr 2n+1 R(G, R) is 2-torsion anyway.
We see that over the field of real numbers, the ring gr R(G, R) seems to be related to H * (G, F 2 ), rather than H 2 * (G, Z). This connection will be strengthened by the "character" which we will now define.

3.3. The character. We think of the following map as a mod 2 version of the Chern character.

Theorem 3.6 -For any topological space X, there is a map of rings ω : gr KO(X) -→ W * (X)/I X .

Moreover ω(c i (ρ)) = w i (ρ).

The proof will occupy the rest of this section. Throughout, we write Γ n for the n-th stage in the γ-filtration of the λ-ring KO(X).

Lemma 3.7 -The application

w 2 n-1 : Γ n -→ H 2 n-1 (X)
vanishes on Γ n+1 . Thus it induces a map

gr n KO(X) -→ H 2 n-1 (X) ,
and this map is a homomorphism.

Proof. First, consider a class in Γ n+1 of the form

ρ = (L 1 -1) • • • (L n+1 -1) ,
where each L i is a line bundle. Then w 2 n-1 (ρ) = 0 by Theorem 2.1 (applied for n + 1).

In general, we appeal again to the splitting principle. An element ρ ∈ Γ n+1 may be written as a sum of elements of the form

γ k1 (E 1 -ε(E 1 )) • • • γ ks (E s -ε(E s ))
with k i ≥ n + 1. However we may find a space Y and a map Y → X such that all the vector bundles E i involved in the expression of ρ split as sums of line bundles when pulled-back to Y ; and moreover it may be arranged that the induced map H * (X) → H * (Y ) is injective.

To avoid multiple subscripts, let us work with a single vector bundle E, splittting up as a sum

E = L 1 + • • • + L ε(E) over Y . Then γ k (E -ε(E)) is the k-th symmetric function in the elements L i -1 = γ 1 (L i -1).
From this and the particular case just studied, it follows easily that w 2 n-1 (ρ) = 0 ∈ H 2 n-1 (Y ), and so this class is also zero in H 2 n-1 (X).

That w 2 n-1 is a homomorphism is already true on Γ n , and follows from the fact that all the elements in this group have vanishing Stiefel-Whitney classes in degrees less than 2 n-1 .

To understand the map just defined, it is sufficient to indicate its effect on product of Chern classes: indeed Γ n /Γ n+1 is generated by those, by definition.

Lemma 3.8 -When k i = n, we have

w 2 n-1 (c k1 (E 1 ) • • • c ks (E s )) = θ n (w k1 (E 1 ) • • • w ks (E s )) .
Proof. Again we start with the case when each E i is a line bundle. In this case c k (E i ) = 0 for k > 1, while c 1 (E i ) = E i -1; so it suffices to show that

w 2 n-1 ((E 1 -1) • • • (E n -1)) = θ n (w 1 (E 1 ) • • • w 1 (E n )) ,
which is the statement of Theorem 2.1. Unsurprisingly, the general case follows from the splitting principle. Since Chern classes and Stiefel-Whitney classes behave in the same way when a vector bundle splits as a sum, the argument is easy, and will be omitted.

The proof of the Theorem is now easy. Given an element ρ ∈ Γ n /Γ n+1 , the class w 2 n-1 (ρ) is well-defined by Lemma 3.7 , and is of the form θ n (x) for x ∈ W n (X). So we may set ω(ρ) = x ∈ W n (X)/I X . Lemma 3.8 proves both that ω is a homomorphism of rings, and that its values on Chern classes are as announced in the Theorem. This concludes the proof.

As a by-product of the proof, we have the following result. Part (1) is probably well-known, but it is just as easy (and more convenient for our readers) to establish it directly. Part (2) should be compared with Corollary 3.3. Lemma 3.9 -Let G be a finite group.

(1) The ring W * (G) is generated by Stiefel-Whitney classes of real representations of G.

(2) There exists a constant C such that

dim F2 W n (G)/I G ≤ C for all n ≥ 0.
Proof. There are maps

R(G, R) -→ KO(BG) -→ KO(BG) ,
and the Stiefel-Whitney class w i (as a map) can be factored through KO(BG). Now we use Atiyah and Segal's completion Theorem (see [START_REF] Atiyah | Equivariant K-theory and completion[END_REF], Theorem 7.1), which states that the above diagram induces an identification of KO(BG) with the I-adic completion of R(G, R), where I is the augmentation ideal. Under this identification, we see that any element ρ ∈ KO(BG) may be approximated by a virtual representation r up to an element in a high power of I. Since I n ⊂ Γ n , we know from Lemma 3.7 that by taking n large enough we can insure that w i (ρ) = w i (r) in a convenient range. This proves (1). Property (2) follows from (1) and Corollary 2.13 applied to BG, keeping in mind that G only has finitely many real representations up to isomorphism.

3.4. Applications. Our applications will use the natural map gr R(G, R) -→ gr KO(BG) , which, when composed with the character ω, induces the map

gr R(G, R) ⊗ F 2 -→ W * (G)/I G .
We will still denote this map by ω.

Example 3.10 -We start with a few examples for which the source and target of ω can be computed separately with relative ease (yet they are relevant to our applications to Milnor K-theory). The notation is as in Proposition 3.5. Let G = C N be a cyclic group. The cohomology ring H * (G, F 2 ) is well-known, and admits the same description as gr R(G, R) ⊗ F 2 as in Proposition 3.5, except that Chern classes are to be replaced with Stiefel-Whitney classes. In particular

W * (G) = H * (G).
When N is odd, the map ω is an isomorphism for uninteresting reasons (both rings being trivial). When N = 2m with m odd, we have

H * (G, F 2 ) ∼ = H * (C 2 , F 2 ), induced by the inclusion C 2 ⊂ C N ; it follows from Proposition 2.10 that I G = (0). As a result ω : gr R(G, R) ⊗ F 2 → H * (G) is again an isomorphism.
When N = 2m with m even however, we shall see that ω is not an isomorphism, even though gr R(G, R) ⊗ F 2 and H * (G) are abstractly isomorphic. Let us compute I G first. We have Sq 1 (w 2 (r 1 )) = w 1 (r 1 )w 2 (r 1 ) by Wu's formula, and w 1 (r 1 ) = w 1 (det(r 1 )) = 0; as a result Sq 1 w 1 (ε)w 2 (r 1 ) = 0, and w 1 (ε)w 2 (r 1 ) ∈ I G . In fact I G is generated by this element. Indeed consider the two maps

H * (G)/(w 1 (ε)w 2 (r 1 )) -→ H * (G)/I G -→ H * (C 2 ) = F 2 [w 1 (ε)] .
The first one is surjective, and we need to see that it is an isomorphism. This is trivially the case in odd degrees, both groups being zero; in degree 2n, the group H 2n (G)/(w 1 (ε)w 2 (r 1 )) is generated by w 2 (r 1 ) n . The second map is the restriction map induced by the inclusion C 2 ⊂ G, so it sends w 2 (r 1 ) n to w 1 (ε) 2n . Thus w 2 (r 1 ) n = 0 in H * (G)/I G , and our computation of I G is complete.

The map

ω : gr R(G, R) ⊗ F 2 -→ H * (G)/I G has the form F 2 [c 1 (ε), c 2 (r 1 )] (c 1 (ε) 2 ) -→ F 2 [w 1 (ε), w 2 (r 1 )] (w 1 (ε) 2 , w 1 (ε)w 2 (r 1 )) ,
with c 1 (ε) → w 1 (ε) and c 2 (r 1 ) → w 2 (r 1 ), so its kernel is generated by c 1 (ε)c 2 (r 1 ).

The character ω will help us compute the graded representation ring of elementary abelian 2-groups.

Proposition 3.11 -Let G = (Z/2) r . Over any field k of characteristic different from 2, there are 1-dimensional representations ε 1 , . . . , ε r such that the graded representation ring is

gr R(G, k) ⊗ F 2 = F 2 [c 1 (ε 1 ), . . . , c 1 (ε r )] (c 1 (ε i ) 2 c 1 (ε j ) + c 1 (ε i )c 1 (ε j ) 2 ) for 1 ≤ i, j ≤ r.
Proof. The representation ring R(G, k) is the same over any field of characteristic = 2, so we may as well take k = R. We have R(G) = Z[ε 1 , . . . , ε r ]/(ε 2 i -1), where each ε i has dimension 1, so the graded representation ring is generated by the classes c 1 (ε i ).

Let

x i = ε i -1. The relation ε 2 i = 1 shows that x 2 i = -2x i , so that x 2 i x j = x i x 2 j = -2x i x j . Given that c 1 (ε i ) is the image of x i in Γ 1 /Γ 2 , we certainly have the relation c 1 (ε i ) 2 c 1 (ε j ) = c 1 (ε i )c 1 (ε j ) 2 .
To prove that there are no more relations, we use the character ω, which maps the graded representation ring into H * (G)/I G . The latter is presented in Proposition 2.10, and we have c 1 (ε i ) → w 1 (ε i ) = t i in the notation of that Proposition. It is immediate that ω is an isomorphism, and the proof is complete.

There seems to be no elementary way (that is, not relying on the character) to prove this Proposition.

The example of elementary abelian groups is useful when studying larger groups, as we now show with the example of the dihedral group. Before stating the result, let us fix some notation. We write D 4 for the dihedral group of order 8. The representation ring R(D 4 , k) is the same over any field of characteristic = 2: there is a unique irreducible representation of dimension 2 which we call ∆, and four irreducible representation of dimension 1, say r 1 , r 2 , and r 3 = r 1 r 2 = λ 2 (∆), together with the trivial one. The cohomology ring is given by

H * (D 4 ) = F 2 [w 1 (r 1 ), w 1 (r 2 ), w 2 (∆)] (w 1 (r 1 )w 1 (r 2 )) = W * (D 4 ) .
(Here the representations are taken over R of course.)

Proposition 3.12 -Over any field k of characteristic = 2, the graded representation ring of the dihedral group is given by

gr R(D 4 , k) ⊗ F 2 = F 2 [c 1 (r 1 ), c 1 (r 2 ), c 2 (∆)] (c 1 (r 1 )c 1 (r 2 ), c 1 (r 1 )c 2 (∆) + c 1 (r 2 )c 2 (∆))
.

On the other hand, the ideal I D4 is generated by w 1 (r 1 )w 2 (∆) and w 1 (r 2 )w 2 (∆). The kernel of the character ω is generated by c 1 (r 1 )c 2 (∆) and c 1 (r 2 )c 2 (∆).

Proof. First we show that the relations stated actually hold in the graded representation ring. The class c 2 (∆) is the image of γ 2 (∆ -2) in Γ 2 /Γ 3 . By definition we have

γ 2 (∆ -2) = λ 2 (∆ -1) = 1 -λ 1 (∆) + λ 2 (∆) = 1 -∆ + r 1 r 2 .
On the other hand c 1 (r i ) is the image of γ 1 (r i -1) = r i -1. We compute, using the relation

r i ∆ = ∆, that γ 2 (∆ -2)γ 1 (r i -1) = r 1 + r 2 -r 1 r 2 -1 = -(r 1 -1)(r 2 -1) = -γ 1 (r 1 -1)γ 1 (r 2 -1) .
Thus we see that γ 1 (r 1 -1)γ 1 (r 2 -1) ∈ Γ 3 , so c 1 (r 1 )c 1 (r 2 ) = 0. On the other hand, we also observe that γ 2 (∆ -2)γ 1 (r i -1) has the same expression for i = 1 and i = 2, so that c 1 (r 1 )c 2 (∆) = c 1 (r 2 )c 2 (∆), as announced.

To show that there are no further relations, we study the restrictions to various subgroups. First, there are two copies of C 2 × C 2 in D 4 , and the restriction map has the form

gr R(D 4 , k) ⊗ F 2 -→ gr R(C 2 × C 2 , k) ⊗ F 2 = F 2 [a, b] (a 2 b + ab 2 ) ,
where the equality comes from the previous Proposition. For one copy of C 2 × C 2 , with a judicious choice of coordinates, we have c 1 (r 1 ) → a + b, c 1 (r 2 ) → 0, and c 2 (∆) → ab. What is more, using a different subgroup, we obtain a restriction map with the roles of r 1 and r 2 exchanged. This is already enough to see that the elements c 1 (r 1 ) 2n , c 1 (r 2 ) 2n and ∆ n are linearly independent in

gr 2n R(D 4 , k) ⊗ F 2 .
There is also a copy of C 4 in D 4 , and this time the restriction map looks like

gr R(D 4 , k) ⊗ F 2 -→ gr R(C 4 , k) ⊗ F 2 = F 2 [x, y] (x 2 ) ,
where the equality was proved in Example 3.10. Under this map we have c 1 (r 1 ) → x, c 1 (r 2 ) → x, and c 2 (∆) → y. The three restriction maps combined allow us to see that c 1 (r 1 ) 2n+1 , c 1 (r 2 ) 2n+1 , and c 1 (r 1 )∆ n are linearly independent in gr 2n+1 R(D 4 , k). It follows that the relations are precisely as stated.

To compute the ideal I D4 , we use Wu's formula again, which gives Sq 1 w 2 (∆) = w 1 (∆)w 2 (∆) = w 1 (r 1 r 2 )w 2 (∆) = (w 1 (r 1 ) + w 1 (r 2 ))w 2 (∆). As a result Sq 1 (w 1 (r 1 )w 2 (∆)) = w 1 (r 1 ) 2 w 2 (∆) + w 1 (r 1 ) 2 w 2 (∆) + w 1 (r 1 )w 1 (r 2 )w 2 (∆) = 0 .

It follows that w 1 (r 1 )w 2 (∆) ∈ I D4 , and likewise for w 1 (r 2 )w 2 (∆). To show that there are no further generators needed for I D4 , we study the restrictions to the above subgroups. This is left to the reader. Let G be profinite. A representation of G over k, by convention, means a finite-dimensional k-vector space with an action of G which factors through a quotient G/U where U is open. Such a U is closed and of finite index, so that G/U is finite. It follows that the category of representations of G is semi-simple.

The Grothendieck group of this category is what we call R(G, k). As an abelian group, it is free with a basis given by the irreducible representations. The maps R(G/U, k) → R(G, k) are thus injective, when U is as above, and it follows easily that R(G, k) = colim U R(G/U, k) . The colimit is taken over a directed set, since U ∩ V is open when U and V are; so we can think of it essentially as a union. It is clear that R(G, k) is a λ-ring.

The "line elements" in R(G, k), as in [START_REF] Fulton | Fundamental Principles of Mathematical Sciences[END_REF], are the 1-dimensional representations, which form the group Hom(G, k × ) where continuous homomorphisms are meant (using the discrete topology of k × ). Lemma 3.1 applies to profinite groups with the same proof.

The cohomology group H i (G, F 2 ) can be identified with lim U H i (G/U, F 2 ) where again U runs among the normal, open subgroups of G. It follows that the Steenrod algebra acts on H * (G, F 2 ).

Finally, we define W * (G) to be the subring of H * (G, F 2 ) generated by the Stiefel-Whitney classes of representations of G, where "representation" is understood in the above sense. By Lemma 3.9, (1), this coincides with the definition of W * (G) = W * (BG) when G is finite.

The ideal I G in W * (G) can now be defined exactly as before.

4.2. Milnor K-theory and the graded representation ring. Let us briefly recall the definition of mod 2 Milnor K-theory (using the notation which is classically employed for Milnor K-theory itself). Let F be any field. First one defines k 1 (F ) to be the F 2 -vector space F × /(F × ) 2 , written additively, and the letter ℓ is used to denote the identity ℓ : F × /(F × ) 2 -→ k 1 (F ) , so that ℓ(ab) = ℓ(a)+ℓ(b). Then one considers the tensor algebra T * (k 1 (F )), and the ideal M generated by the Matsumoto relations, that is ℓ(a)ℓ(b) = 0 whenever a+b = 1. The algebra k * (F ) = T * (k 1 (F ))/M , which is commutative, is the mod 2 Milnor K-theory of F . Theorem 4.1 -Let F be any field, and let k be any field of characteristic different from 2. Let F be the separable closure of F , and let G = Gal( F /F ) be the absolute Galois group of F . Then there is a natural map

ζ : k * (F ) -→ gr R(G, k) ⊗ F 2 .
If the characteristic of F is not 2, and if k possesses an embedding into R, then there is a commutative square

k * (F ) ζ ----→ gr R(G, k) ⊗ F 2 hF     ω H * (G) ----→ H * (G)/I G .
Here the map h F is the one originally defined by Milnor. This map is an isomorphism, as the Milnor conjecture, now a theorem by Voevodsky, states. In particular H * (G) is generated by 1-dimensional classes, and thus by Stiefel-Whitney classes, so that H * (G) = W * (G). In any case it is trivially the case that h F takes its values in W * (G), even without assuming knowledge of the Voevodsky theorem.

Proof. We begin by defining a map ζ : Since Hom(G, k × ) is none other than the group of 1-dimensional representations of G over k, under the tensor product operation, we see from Lemma 3.1 that we may in fact define a map

F × /(F × ) 2 -→ Hom(G, k × ) . If a ∈ F × ,
ζ : k 1 (F ) -→ gr 1 R(G, k) ⊗ F 2 by ζ = c 1 • ζ • ℓ -1 (here c 1 is the first Chern class).
This extends to a map T * (k 1 (F )) → gr R(G, k) ⊗ F 2 , and to factor it into a map on k * (F ) we need to show that the elements ℓ(a)ℓ(b) are sent to 0 when a+b = 1. Let us use an elementary result from Galois theory: when a + b = 1, and when a and b are linearly independent in F × /(F × ) 2 (over F 2 ), then the fields F [ √ a] and F [ √ b] are both contained in a field E such that E/F is Galois with Gal(E/F ) = D 4 , the dihedral group of order 8. Moreover, the homomorphisms ζ(a) and ζ(b) factor through D 4 , and as representations of this group they correspond to r 1 and r 2 in the notation of Proposition 3.12. However this very Proposition states that

c 1 (r 1 )c 1 (r 2 ) = 0 = ζ(ℓ(a))ζ(ℓ(b)) .
We also need to take care of the case a = b = 0 in the vector space F × /(F × ) 2 . Again, elementary Galois theory tells us that in this situation, the field Of course one may wonder whether the map ζ is an isomorphism, just like h F is, and for what choices of k. During the course of the proof we have seen that there will be a non-trivial kernel when k contains √ -1 (in some cases, compare the examples below), so we will focus our attention on other fields. In general, the question is a hard one, and we will study a certain variant which lends itself to computation more easily. Assume that F has characteristic = 2. Following [START_REF] Mináč | Witt rings and Galois groups[END_REF], let F q be the quadratic closure of F (the compositum within F of all finite extensions of F whose degree is a power of 2).

F [ √ a] is contained in a field E such that E/F is
Let Q = Gal(F q /F ), which is a quotient of G = Gal( F /F ). Then define G = Q/Q 4 [Q 2 , Q] .
This group is called the W -group of F because of its relation with the Witt ring. We are interested in G because it is much easier to deal with than G itself; for example when F × /(F × ) 2 is finite then G is also finite. However, the cohomological information of F is preserved, since

H * (G) = H * (G) dec .
(See [AKM99], Theorem 3.14.) We then think of the following Theorem as an amendment to Theorem 4.1.

Theorem 4.2 -Let F and k be fields of characteristic different from 2, and let G be the W -group of F . Then there is a natural map

ζ : k * (F ) -→ (gr R(G, k) ⊗ F 2 ) dec .
If k possesses an embedding into R, then there is a commutative square

k * (F ) ζ ----→ (gr R(G, k) ⊗ F 2 ) dec hF     ω H * (G) dec ----→ H * (G) dec /I G .
Proof. Since the extension of F corresponding to G contains all the extensions with Galois group D 4 , Z/4 or Z/2 ([MS96], Corollary 2.18), the same proof works mutatis mutandis.

We are already capable of proving that there are very few possibilities for k: Proof. The map ζ is an isomorphism in degree 1 by choice of k, as already alluded to (cf Lemma 3.1). The target of this map is generated by elements of degree 1 by definition, so ζ is surjective.

In degree 2, we consider the commutative square of Theorem 4.2. The map h F is injective (in degree 2 this is a theorem of Merkurjev's, which is used in the general proof of Voevodsky-Rost). The map H 2 (G) dec → H 2 (G) dec /I G is also injective, since θ 2 is the identity. It follows that ζ is injective in degree 2.

4.3.

Examples. We fix the choice k = R for definiteness. We shall give a collection of examples of fields F , assumed to be of characteristic = 2, for which the map ζ : k * (F ) -→ (gr R(G, R) ⊗ F 2 ) dec is an isomorphism. In each case this will follow either directly from Lemma 4.4 or from the fact that the W -group G is a finite group whose graded representation ring we have been able to compute. Note that there is yet no example of field F such that ζ is not an isomorphism. 4.3.1. F finite. In this case the group G is Z/4, so that both the Galois cohomology and the Milnor K-theory of F are concentrated in degrees ≤ 2; the same can thus be said of (gr R(G, R) ⊗ F 2 ) dec , from the surjectivity statement in Lemma 4.4. The same Lemma shows that ζ is an isomorphism. This is consistent with Proposition 3.5. ---→ v (gr R(G v , R) ⊗ F 2 ) dec Here the direct sums extend over all the real completions F v of the field F , while G v is the W -group of F v , and ζ v has an obvious meaning. The vertical map on the left is an isomorphism in degrees ≥ 3 by Tate (see [START_REF]Algebraic K-theory and quadratic forms[END_REF], Appendix), and the maps ζ v are isomorphisms by the real case already considered, so ζ is injective, as well as surjective, in those degrees. Finally ζ is an isomorphism in all degrees in this case, too. 4.3.5. Some C-fields. When F is a C-field of level 1, the W -group G is i∈I Z/4, where I is a (possibly infinite) basis of F × /(F × ) 2 . When I has order n, then the ring H * (G) dec is an exterior algebra on n generators in degree 1, so it is concentrated in degrees ≤ n. For n ≤ 2, it follows that ζ is an isomorphism. For n = 3, a computer calculation which we will not reproduce here shows that ζ is again an isomorphism. It remains an open problem to compute the graded representation ring of (Z/4) n , and the character ω is of no help here: one can check that I (Z/4) n = H ≥3 ((Z/4) n ). 4.3.6. Any field whose W -group is D 4 . This is the case of the field F = R((u))((v)) for example. From Proposition 3.12, it follows that ζ is an isomorphism. 4.3.7. Any field with a universal W -group. Given any set I, there is a universal Wgroup which we will write here G I . When F is a field such that F × /(F × ) 2 has a basis in bijection with I, then its W -group G is a quotient of G I . It may happen that G = G I (see [START_REF] Gao | Milnor's conjecture and Galois theory. I, Algebraic Ktheory[END_REF] for examples). In this case, from the fact that H 2 (G I ) = 0, we see that the Galois cohomology is concentrated in degrees ≤ 1, so ζ is certainly an isomorphism. 4.3.8. Any field for which ℓ(-1) is not a zero divisor. To treat this case, we begin by establishing a simple formula for the action of the operations θ n in the case of Galois cohomology. The formula was anticipated in the Introduction.

Lemma 4.5 -Let G be the absolute Galois group of a field F , and let x ∈ H n (G). Then θ n (x) = ℓ(-1) 2 n-1 -n x.

Proof. Since H * (G) is generated by elements of degree 1, it is enough to prove this for x = t 1 t 2 • • • t n with t i ∈ H 1 (G). In this case the value of θ n (t 1 • • • t n ) is given by Lemma 2.5. However, in Galois cohomology one has t 2 = ℓ(-1)t for any t of degree 1. It follows that there exists a constant c n , depending only on n, such that θ n (x) = c n ℓ(-1) 2 n-1 -n x for any x of this form (namely, c n is the number of terms in the sum appearing in the statement of Lemma 2.5, reduced mod 2).

It remains to see that c n = 0. Indeed if it were 0, then one would have θ n (x) = 0 for any x ∈ H n (G), regardless of G. However the example of Z/2 (which is the absolute Galois group of R) shows that θ n x can be non-zero, since Proposition 2.10 establishes that I Z/2 = (0).

The commutative square of Theorem 4.2 then shows clearly that ζ is an isomorphism when ℓ(-1) is not a zero divisor.

  s a g e : A= S t e e n r o d A l g e b r a ( 2 , ' m i l n o r ' ) s a g e : t h e t a= lambda n : sum (A. b a s i s (2 ^( n-1)-n ) ) . b a s i s ( ' s e r r e -c a rta n ' ) Subsequent calls to theta(n) will give the value of θ n , in terms of the Sq k 's. The examples given in the Introduction were computed in this way. (b)

4.

  Applications to Milnor K-theory 4.1. Technicalities profinite groups. When dealing with Galois theory, we shall encounter profinite groups. Let us indicate our conventions.

  we consider the field extension F [ √ a] (within the fixed separable closure F ). Then for σ ∈ G, we have σ( √ a)/ √ a = ±1. Thus we define a continuous homomorphism ζ(a) : G → k × by setting ζ(a)(σ) = σ( √ a)/ √ a. It is immediate that ζ is a homomorphism, and depends only on the class of a modulo squares.

  Galois with Galois group Z/4. Suppose first that k does not contain √ -1. Then R(Z/4, k) is the same as R(Z/4, R). Moreover ζ(a) factors through Z/4 as the representation ε, in the notation of Proposition 3.5. This Proposition states that c 1 (ε) 2 = 0 = ζ(ℓ(a)) 2 , as we needed. Now suppose that alternatively k does contain √ -1. Then R(Z/4, k) is the same as R(Z/4, C), and ζ(a) factors through Z/4 as ρ ⊗2 in the notation of Proposition 3.4. Thusc 1 (ρ ⊗2 ) = 2c 1 (ρ) = 0 = ζ(ℓ(a)) ,since we have tensored with F 2 (note however that this class squares to zero even without tensoring, from the same Proposition). Thus ζ factors through k * (F ) in any case.The commutativity of the square follows from the property ω(c 1 (r)) = w 1 (r) for any representation r. Indeed, Milnor's map sends ℓ(a) to w 1 ( ζ(a)) (when k = R).

Lemma 4. 3 -

 3 Let k have characteristic 0. • Either k contains √ -1, and the inclusion Q( √ -1) → k induces an isomorphism R(G, Q( √ -1)) = R(G, k); in particular one has R(G, k) = R(G, C). • Or, k does not contain √ -1, and the inclusion Q → k induces an isomorphism R(G, Q) = R(G, k); in particular one has R(G, k) = R(G, R).Proof. Every element in G has order dividing 4. So we are essentially left with the cases k = C and k = R. We have already dismissed the choice k = C. Lemma 4.4 -When k = Q or R, the mapζ : k * (F ) -→ (gr R(G, k) ⊗ F 2 ) decis always surjective, and is an isomorphism in degrees 1 and 2.

  4.3.2. F real closed. In this caseG = Z/2, so H * (G) = F 2 [t] with t of degree 1.The map ζ is clearly an isomorphism, by Lemma 4.4 and Proposition 3.5 combined. 4.3.3. F a local field. In this case k * (F ) is again concentrated in degrees ≤ 2, so ζ is an isomorphism. 4.3.4. F a global field. We use the commutative diagramk * (F ) ζ ----→ (gr R(G, R) ⊗ F 2 ) dec     v k * (F v ) ⊕ζv -