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A functoriality principle for blocks of p-adic linear groups

Jean-François Dat

Abstract

Bernstein blocks of complex representations of p-adic reductive groups have been com-
puted in a large number of examples, in part thanks to the theory of types à la Bushnell
and Kutzko. The output of these purely representation-theoretic computations is that
many of these blocks are equivalent. The motto of this paper is that most of these co-
incidences are explained, and many more can be predicted, by a functoriality principle
involving dual groups. We prove a precise statement for groups related to GLn, and then
state conjectural generalizations in two directions: more general reductive groups and/or
integral l-adic representations.
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1 Main statements

Let F be a p-adic field and let R be a commutative ring in which p is invertible. For G a
reductive group over F , we put G := G(F ) and we denote by RepR(G) the abelian category
of smooth representations of G with coefficients in R, and by IrrR (G) the set of isomorphism
classes of simple objects in RepR(G). We will be mainly interested in the cases R = Qℓ or Zℓ
or Fℓ for ℓ a prime number coprime to p.

Let us assume R = Qℓ for a while. For a general G, Bernstein [1] has decomposed RepQℓ(G)
as a product of indecomposable abelian subcategories called blocks. This decomposition is
characterized by the property that two irreducible representations belong to the same Bernstein
block if and only if their supercuspidal supports are “inertially equivalent”.

WhenG = GLn, Bushnell and Kutzko [3] [4] have proved that each block is equivalent to the
category of modules over an algebra of the form H(n1, q

f1)⊗Qℓ
· · ·⊗Qℓ

H(nr, q
fr) where H(n, q)
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denotes the extended Iwahori–Hecke algebra of type An−1 and parameter q (the size of the
residual field of F ). This shows in particular that, up to taking tensor product of categories, all
blocks of linear groups look “the same”. More precisely, joint with Borel’s theorem, their work
shows that any Bernstein block is equivalent to the principal block of a product of general linear
groups. Here, as usual, the “principal block” is the one that contains the trivial representation.

The main result of this paper is a “Langlands-dual” explanation of this redundancy among
blocks of linear groups. It will appear as a functoriality principle for blocks, and also will point
to particularly nice equivalences, related to the usual functoriality principle for irreducible
representations.

However, the main interest of the paper probably lies in the conjectural natural general-
izations of the main result. These speculations will involve more general reductive groups G

and/or coefficients R = Zℓ or Fℓ for ℓ a prime number coprime to p.

1.1 Functoriality for Qℓ-blocks of groups of GL-type

We say that G is “of GL-type” if it is isomorphic to a product of restriction of scalars of general
linear groups over finite extensions of F .

1.1.1 Langlands parametrization of Qℓ-blocks. — Let LG = Ĝ⋊WF be “the” dual group of
G, where WF is the Weil group of F . For a general G, Langlands’ parametrization conjecture
predicts the existence of a finite-to-one map π 7→ ϕπ

IrrQℓ (G) −→ Φ(G,Qℓ) := {ϕ : WF ⋉Qℓ −→
LG(Qℓ)}/∼

where the right hand side denotes the set of “admissible”1 L-parameters forGmodulo conjugacy
by Ĝ(Qℓ). For G of GL-type, this parametrization follows from the Langlands correspondence
of [8] [11] for GLn via the non-commutative Shapiro lemma, and it is a bijection. Moreover, this
correspondence is known to be compatible with parabolic induction in the following sense. If π
is an irreducible subquotient of some induced representation i

G
M,P (σ), then ϕπ |WF

∼ Lι ◦ϕσ|WF
,

where Lι : LM →֒ LG is any embedding dual to M →֒ G (note that M is also of GL-type). As
a consequence, for two irreducible representations π, π′ in the same Bernstein block, we have
ϕπ |IF ∼ ϕπ′ |IF , hence we get a decomposition

RepQℓ(G) =
∏

φ∈Φinert(G,Qℓ)

Repφ(G)

where the index set Φinert(G,Qℓ) = H1(IF , Ĝ(Qℓ))
WF is the set of Ĝ-conjugacy classes of admis-

sible inertial parameters, i.e. continuous2 sections IF −→ LG(Qℓ) that admit an extension to
an admissible L-parameter in Φ(G,Qℓ), and Repφ(G) consists of all smooth Qℓ-representations
of G, any irreducible subquotient π of which satisfies ϕπ |IF ∼ φ.

It is “well known” that Repφ(G) is actually a Bernstein block, see Lemma 2.4.1, so that

we get a parametrization of blocks of RepQℓ(G) by Φinert(G,Qℓ). In this parametrization, the
principal block corresponds to the trivial parameter i 7→ (1, i), which may explain why it is
sometimes referred to as the “unipotent” block.

1“admissible” implies in particular that the image of WF consists of semi-simple elements, an element of L
G

being semi-simple if its projection on any algebraic quotient Ĝ⋊ ΓF ′/F is semi-simple.
2In all this discussion Ĝ(Qℓ) is equipped with the discrete topology.
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1.1.2 Functorial transfer of Qℓ-blocks. — Let G′ be another group of GL-type over F , and
suppose given a morphism3 of L-groups ξ : LG′ −→ LG. The composition map ϕ′ 7→ ξ ◦ ϕ on

L-parameters translates into a map IrrQℓ (G
′)

ξ∗−→ IrrQℓ (G), known as the “(local) Langlands’
transfer induced by ξ”. A natural question to ask is whether this Langlands transfer can be
extended to non-irreducible representations in a functorial way. In general there seems to be
little hope, but the following result shows that it becomes possible under certain circumstances.

Let us fix an admissible inertial parameter φ′ : IF −→ LG and put φ := ξ ◦ φ′. As usual,
let C

Ĝ
(φ) denote the centralizer in Ĝ(Qℓ) of the image of the inertial parameter φ.

Theorem. — Suppose that ξ induces an isomorphism C
Ĝ′(φ′)

∼
−→ C

Ĝ
(φ). Then there is an

equivalence of categories Repφ′(G
′)

∼
−→ Repφ(G) that interpolates the Langlands transfer ξ∗ on

irreducible representations.

Remark.– We expect that such an equivalence will be unique, up to natural transformation.
In fact, the equivalences that we will exhibit are also compatible with parabolic induction, and
this extra compatibility makes them unique.

1.1.3 Let us give some examples that may shed light on the statement.

i) Suppose that ξ is a dual Levi embedding. This means that G′ may be embedded as a
F -Levi subgroup of G. Fix a parabolic subgroup P of G with Levi component G′, and let
[M ′, π′]G′ be the inertial equivalence class of supercuspidal pairs associated with φ′. Then the
condition in the theorem is equivalent to the requirement that the stabilizer of [M ′, π′]G′ in G
is G′. In this situation, it is well-known that the normalized parabolic induction functor iP
provides an equivalence of categories as in the theorem.

ii) Suppose that ξ is a base change homomorphism GLn ×WF −→ L(ResF ′|FGLn), and let
φ′ and φ both be trivial. Then the condition in the theorem is met if and only if F ′ is totally
ramified over F . On the other hand, Repφ′(G

′) is the principal block of GLn(F ) while Repφ(G)
is the principal block of GLn(F

′). So Borel’s theorem tells us they are respectively equivalent
to the category of right modules over H(n, qF ), resp. H(n, qF ′). Therefore they are equivalent
if and only if F ′ is totally ramified over F . Moreover, it is not hard to find an equivalence that
meets the requirement of the theorem.

iii) Suppose that ξ is an isomorphism of L-groups. Then the conditions of the theorem
are met for all φ′ ! To describe the equivalence, first conjugate under Ĝ to put ξ in the
form ξ̂ × ψ where ξ̂ : Ĝ′ −→ Ĝ is an épinglage preserving WF -equivariant isomorphism, and
ψ : WF −→ Z(Ĝ) ⋊WF . Then ξ̂ provides an F -rational isomorphism ξ̂∨ : G

∼
−→ G′ (well-

defined up to conjugacy), and ψ determines a character ψ∨ : G −→ Gab(F ) −→ Q
×

ℓ through
local class field theory. The desired equivalence is given by pre-composition under ξ∨ followed
by twisting under ψ∨. Its compatibility with the Langlands transfer is Proposition 5.2.5 of [7].

iv) Suppose that G = GLn and let φ be an inertial parameter of G that is irreducible
as a representation of IF . Put G′ = GL1 and φ′ = 1 (trivial parameter). Finally let ξ be
the product of the central embedding GL1 →֒ GLn and any extension ϕ : WF −→ GLn of
φ. Then the conditions of the Theorem are met, Repφ(G) is a cuspidal block and Repφ′(G) is
RepQℓ(F

×/O×
F ). The claimed equivalence is given by χ 7→ π ⊗ (χ ◦ det) where π corresponds

3Since we work with the Weil form of L-groups, we require that a morphism of L-groups carries semi-simple
elements to semi-simple elements.
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to ϕ through Langlands’ correspondence.

1.1.4 Reduction to unipotent blocks. — What makes Theorem 1.1.2 a very flexible statement
is that no a priori restriction was made on ξ ; namely its Galois component can be very
complicated. In this regard, it is important to work with the Weil form of the L-group. For
instance, in the last example above, φ′ was trivial but all the complexity of the setting was
“moved” to the L-homomorphism ξ. This is a simple example of a more general phenomenon
that allows to reduce Theorem 1.1.2 to an equivalent statement which deals with a single
parameter φ ∈ Φinert(G,Qℓ). We now explain this, and refer to section 2.2 for details.

By definition we may choose an extension ϕ of φ to an L-parameter WF −→ LG(Qℓ).
Conjugation by ϕ(w) in LG then induces an action of WF/IF on C

Ĝ
(φ) and a factorization :

φ : IF
i 7→(1,i)

// C
Ĝ
(φ)⋊WF

(z,w)7→zϕ(w)
// LG(Qℓ) .

It turns out that the outer action WF −→ Out(C
Ĝ
(φ)) does not depend on the choice of ϕ and

thus defines a “unique” unramified group Gφ over F . Moreover, one checks that this group is
of GL-type, and that there exists ϕ such that all ϕ(w) preserve a given épinglage of C

Ĝ
(φ). So

we get a factorization of the form φ : IF
1 × Id
−→ LGφ

ξϕ
−→ LG, as considered in Theorem 1.1.2. By

construction, the hypothesis of the latter theorem is satisfied, so we get the following

Corollary. — There is an equivalence of categories Rep1(Gφ)
∼

−→ Repφ(G) that extends the
transfer associated to the above ξϕ : LGφ →֒ LG.

We like to see this statement as a “moral explanation” to, and a more precise version of,
the well known property that any Qℓ-block of a GLn is equivalent to the principal Qℓ-block of a
product of linear groups over extension fields. Also we note that a different choice of extension
ϕ′ of φ as above will differ from ϕ by a central unramified cocycle WF −→ Z(Ĝ), and an
associated equivalence ξϕ′ is thus deduced from ξϕ by twisting by the associated unramified
character of G.

Remark.– Again we may ask whether an equivalence as in the Corollary is actually unique.
This boils down to the following concrete question. Let H = H(n, q) be the extended affine
Hecke algebra of type An and parameter q. Suppose Φ is an auto-equivalence of categories
of H − Mod that fixes all simple modules up to equivalence. Is Φ isomorphic to the identity
functor ? Even more concretely : if I is an invertible H⊗Qℓ

Hopp-module such that I ⊗HS ≃ S
for any simple left H-module S, do we have I ≃ H ?

1.1.5 On the proofs. — In fact, it is easy to show that Corollary 1.1.4 with (φ, ϕ) allowed
to vary, is equivalent to Theorem 1.1.2 with (φ′, ξ) allowed to vary, see Lemma 2.4.8. Now, to
prove the corollary directly, we may first reduce to the case where G is quasi-simple, i.e. of the
form ResF ′|FGLn, then by a Shapiro-like argument to the case G = GLn, then, using parabolic
induction, to the case where Gφ is quasi-simple. In the latter case, Repφ(G) is cut out by a
simple type of [3] and the desired equivalence follows from the computation of Hecke algebras
there. Note that the information needed on the simple type is very coarse ; only the degree
and residual degree of the field entering the definition of the type is involved here. Details are
given in 2.4.
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1.1.6 Variants. — In the foregoing discussion, we may try to replace admissible parameters
with domain IF by admissible parameters with domain any closed normal subgroup KF of IF .
The main examples we have in mind are KF = PF , the wild inertia subgroup, and KF =
I
(ℓ)
F := ker(IF −→ Zℓ(1)), which is the maximal closed subgroup of IF with prime-to-ℓ pro-
order. Other possibilities are ramication subgroups of PF . In any case, an admissible KF -
parameter of G will be a morphism KF −→ LG that admits an extension to a usual admissible
parameter WF −→ LG. By grouping Bernstein blocks, we thus get a product decomposition
RepQℓ(G) =

∏
φRepφ(G) where φ runs over admissible KF -parameters up to Ĝ conjugacy,

and Repφ(G) is “generated” by the irreducible representations π such that (ϕπ)|KF ∼ φ. For
example, in the case KF = PF , the factor Rep1(G) is the level 0 subcategory.

It is then easy to deduce from Theorem 1.1.2 exactly the same statement forKF -parameters,
simply by grouping the equivalences provided by this theorem. In contrast, our arguments in
this paper, in particular in paragraph 2.4.6, allow us to prove the natural analogue of Corollary
1.1.4 only when KF contains PF .

1.2 Functoriality for Zℓ-blocks of groups of GL-type

For G of GL-type, Vignéras [15] has obtained a decomposition of RepFℓ(G) formally analogous
to that of Bernstein, where the blocks are indexed by inertial classes of supercuspidal pairs
over Fℓ. This was further lifted to a decomposition of RepZℓ(G) by Helm in [10]. In general,
Vignéras or Helm blocks will not be equivalent to categories of modules over an Hecke–Iwahori
algebra, and actually even the structure of the principal block of RepZℓ(G) (which may contain
non-Iwahori-spherical representations) is not yet well understood.

1.2.1 Langlands parametrization of Zℓ-blocks. — In exactly the same way as for Qℓ-blocks
(see 2.4.2 for some details), Vignéras’ Langlands correspondence for Fℓ-representations [16]
allows one to rewrite the Vignéras–Helm decomposition in the form

RepZℓ(GLn(F )) =
∏

φ̄∈Φinert(GLn,Fℓ)

Repφ̄(GLn(F ))

with Φinert(GLn,Fℓ) the set of equivalence classes of semi-simple n-dimensional Fℓ-representations
of IF that extend to WF . This suggests to use L-groups over Fℓ in order to mimic the transfer
of Qℓ-blocks. However, in order to get a functoriality property analogous to Theorem 1.1.2, we
need to stick to the usual L-groups over Qℓ.

Recall that we have a “semisimplified reduction mod ℓ” map rℓ : Φinert(GLn,Qℓ) −→
Φinert(GLn,Fℓ). The basic properties of the Vignéras–Helm decomposition tell us that, denoting
by eφ̄ the primitive idempotent in the center ZZℓ(G) of RepZℓ(G) that cuts out the block
Repφ̄(G), we have the equality

eφ̄ =
∑

rℓ(φ)=φ̄

eφ, in ZQℓ(G).

Now recall the “prime-to-ℓ inertia subgroup” I
(ℓ)
F of 1.1.6, and define Φℓ′−inert(GLn, R) as

the set of semi-simple n-dimensional R-representations of I
(ℓ)
F that extend to WF (here, R is
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either Fℓ or Qℓ). We have a commutative diagram

Φinert(GLn,Qℓ)
res

//

rℓ
��

Φℓ′−inert(GLn,Qℓ)

rℓ
��

Φinert(GLn,Fℓ) res
// Φℓ′−inert(GLn,Fℓ)

.

The reduction map rℓ on the right hand side is a bijection because I
(ℓ)
F has prime-to-ℓ order.

Moreover, the restriction map on the bottom is also a bijection because a semisimple Fℓ-
representation of IF is determined by its restriction to I

(ℓ)
F (indeed, it is determined by its

Brauer character on ℓ′-elements, but the set of ℓ′ elements of IF is precisely I
(ℓ)
F ).

This shows that we may parametrize the Vignéras-Helm blocks by the set Φℓ′−inert(G,Qℓ),

with the restriction map from IF to I
(ℓ)
F playing the role of the reduction map rℓ. Using the

non-commutative Shapiro lemma (see Corollary 2.3.3), we get for any group G of GL-type a
parametrization of blocks of RepZℓ(G) by the set

Φℓ′−inert(G,Qℓ) :=
{
φℓ : I

(ℓ)
F −→ LG(Qℓ), ∃ϕ ∈ Φ(G,Qℓ), ϕ|I

(ℓ)
F

= φℓ

}
/Ĝ−conj

.

1.2.2 Functorial transfer of Zℓ-blocks. — Now consider again an L-homomorphism ξ :
LG′ −→ LG of groups of GL-type, fix an admissible parameter φ′ : I

(ℓ)
F −→ LG′ and put

φ := ξ ◦ φ′. Attached to φ is a Zℓ-block Repφ,Zℓ(G), whose Qℓ-objects form a finite sum of

Qℓ-blocks Repφ,Qℓ(G) =
∏

ψ
|I

(ℓ)
F

∼φRepψ(G).

Conjecture. — Suppose that ξ induces an isomorphism C
Ĝ′(φ′)

∼
−→ C

Ĝ
(φ), and also

that the projection of ξ(WF ) to Ĝ(Qℓ) is bounded. Then there is an equivalence of cate-
gories Repφ′,Zℓ(G

′)
∼

−→ Repφ,Zℓ(G) that interpolates the Langlands transfer ξ∗ on irreducible

Qℓ-representations.

Again we may also conjecture that there is a unique such equivalence of categories, or at
least that any equivalence Repφ′,Qℓ(G

′)
∼

−→ Repφ,Qℓ(G) as in Theorem 1.1.2 extends to an

equivalence Repφ′,Zℓ(G
′)

∼
−→ Repφ,Zℓ(G).

Remark.– Let us take up the base change example 1.1.3 ii). With the notation there, the
requirements of the conjecture are met if and only if F ′ is a totally ramified extension of degree
prime to ℓ. The conjecture then predicts an equivalence between the principal Zℓ-blocks of
GLn(F ) and GLn(F

′). In fact, it is plausible that such an equivalence exists when F ′ is only
assumed to be totally ramified, but in general it won’t interpolate the base change of irreducible
Qℓ-representations. As an example, put n = 2, F = Qp, ℓ|(p+1) odd, and F ′ = Qp(p

1/ℓ). In this
situation there exists a supercuspidal Qℓ-representation π in the principal Zℓ-block of GLn(F )
whose base change is a principal series of GLn(F

′). Indeed, take for π the representation

that corresponds to the irreducible Weil group representation σ := ind
WQp

WQ
p2
(χ) where χ is any

character of WQp2
−→ Z

×

ℓ that extends a character IQp ։ µℓ →֒ Q
×

ℓ .
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1.2.3 Reduction to unipotent Zℓ-blocks. — Start with an admissible parameter φ : I
(ℓ)
F −→

LG and choose an extension to some usual parameter ϕ : WF −→ LG. The same procedure

as in paragraph 1.1.4 provides us with a factorization φ : I
(ℓ)
F

1 × Id
−→ LGφ

ξϕ
−→ LG in which Gφ

is a group of GL-type that splits over a tamely ramified ℓ-extension, that only depends on φ,
and such that Ĝφ = C

Ĝ
(φ). In particular the assumption of the last conjecture is satisfied and

thus the following conjecture is a consequence of the latter :

Conjecture. — There is an equivalence of categories Rep1,Zℓ
(Gφ)

∼
−→ Repφ,Zℓ(G) that ex-

tends the transfer of irreducible Qℓ-representations associated to the above ξϕ : LGφ →֒ LG.

As in the case of Qℓ coefficients, Lemma 2.4.8 tells us that conjectures 1.2.3 and 1.2.2 are
actually equivalent.

1.2.4 Tame parameters and level 0 blocks. — An L-homomorphism ξ : LG′ −→ LG is
called tame if its restriction ξ|PF to the wild inertia subgroup PF of WF is trivial (which means

it is Ĝ-conjugate to the map p 7→ (1, p)). This definition also applies to L-parameters, for
which G′ is the trivial group, as well as to inertial and ℓ-inertial parameters. Note that neither
G′ nor G are required to be tamely ramified.

If φ ∈ Φℓ′−inert(G,Qℓ) is a tame ℓ-inertial parameter of G, the corresponding block Repφ(G)
in RepZℓ(G) has level (or depth) 0, and conversely any level 0 block of RepZℓ(G) corresponds to
a tame ℓ-inertial parameter. The following result is our best evidence in support of the above
conjectures.

Theorem. — Let ξ be as in Conjecture 1.2.2, and suppose ξ is tame. Then there is an
equivalence of categories Repφ′,Zℓ(G

′)
∼

−→ Repφ,Zℓ(G). Equivalently, let φ be as in Conjecture

1.2.3 and suppose φ is tame. Then there is an equivalence of categories Rep1,Zℓ
(Gφ)

∼
−→

Repφ,Zℓ(G).

Beyond the restriction to tame parameters, what this theorem is missing at the moment
is the compatibility with the transfer of Qℓ-irreducible representations. This theorem is not
proved in this paper. We will only show in 2.4.10 how it follows from the results in [5] where we
construct equivalences in the specific cases where ξ is either an unramified automorphic induc-
tion, or a totally ramified base change. Let us also note that these cases are not obtained via
Hecke algebra techniques, but by importing results from Deligne-Lusztig theory via coefficient
systems on buildings.

Remark : a less precise version of the second half of the theorem is that any level 0 Zℓ-block
of GLn is equivalent to the principal Zℓ-block of an unramified group of type GL.

1.2.5 A possible reduction to tame parameters. — Here we reinterpret current work in
progress by G. Chinello in our setting and show how it will imply (if successful) that Theorem
1.2.4 remains true without the word “tame”. For this, we push our formalism so as to reduce
the general case to the tame case in the following way. Instead of considering parameters with
source IF or I

(ℓ)
F , consider the set

Φwild(G,Qℓ) :=
{
ψ : PF −→ LG(Qℓ), ∃ϕ ∈ Φ(G,Qℓ), ϕ|PF = ψ

}
.

7



To any ψ as above is attached a direct factor (no longer a block) Repψ(G) :=
⊕

φ|PF=ψ Repφ(G)

of RepZℓ(G). When ψ is trivial, Repψ(G) is nothing but the level 0 subcategory of RepZℓ(G).

The same procedure as in 1.1.4 provides us with a factorization ψ : PF
1

−→ LGψ
ξ

−→ LG

where Gψ is a tamely ramified group of GL-type over F such that Ĝψ = C
Ĝ
(ψ). In this setting,

the map φ′ 7→ ξ ◦ φ′ is a bijection

{φ′ ∈ Φℓ′−inert(Gψ,Qℓ) tame}
∼

−→ {φ ∈ Φℓ′−inert(G,Qℓ), φ|PF = ψ}

and moreover ξ induces an isomorphism C
Ĝψ

(φ′)
∼

−→ C
Ĝ
(ξ ◦ φ′). Therefore, Conjecture 1.2.3

implies the following one :

Conjecture. — There is an equivalence of categories Rep1(Gψ)
∼

−→ Repψ(G) that extends
the transfer associated to the embedding ξ : LGψ →֒ LG.

Conversely, if the equivalence predicted in the last conjecture exists, it has to restrict to
an equivalence Repφ′(Gψ)

∼
−→ Repξ◦φ′(G) for all φ′ ∈ Φℓ′−inert(Gψ,Qℓ). Therefore the latter

conjecture, together with Conjecture 1.2.3 restricted to tame parameters, implies the full Con-
jecture 1.2.3. The same is true if we weaken all these statements by removing the compatibility
with transfer of irreducible Qℓ-representations.

Now, the point is that the weakened form of the last conjecture can be attacked by Hecke
algebra techniques. Namely, the core of the problem is to exhibit an isomorphism between the
Hecke algebra of a simple character (or rather, of its β-extension) of GLn(F ) and that of the
first principal congruence subgroup of an appropriate GLn′(F ′). This is exactly what Chinello
is currently doing.

1.3 More general groups

Because its formulation fits well with Langlands’ functoriality principle, a suitable version of
Theorem 1.1.2 should hold for all L-homomorphisms. In this subsection we speculate on how
it should work in an “ideal world”, in which Langland’s parametrization is known and satisfies
some natural properties. In a forthcoming work, we will treat groups of classical type, meaning
groups which are products of restriction of scalars of quasi-split classical groups, where all we
need is available, and the desired equivalence of categories will be extracted from the work of
Heiermann [9].

1.3.1 An ideal world. — Suppose we knew the existence of a coarse Langlands’ parametriza-
tion map IrrQℓ (G) −→ Φ(G,Qℓ), π 7→ ϕπ, for any reductive group G over any p-adic field F ,
and suppose further that these parametrizations were compatible with parabolic induction as
in [7, Conj. 5.2.2]. This means that if π is an irreducible subquotient of some parabolically
induced representation i

G
M,P (σ), then ϕπ |WF

∼ Lι ◦ ϕσ |WF
, where Lι : LM →֒ LG is any embed-

ding dual to M →֒ G. Then, as in the case of groups of GL-type, Bernstein’s decomposition
implies a decomposition

RepQℓ(G) =
∏

φ∈Φinert(G,Qℓ)

Repφ(G)

where Φinert(G,Qℓ) ⊂ H1(IF , Ĝ(Qℓ))
WF is the set of Ĝ-conjugacy classes of continuous sections

IF −→ LG(Qℓ) that admit an extension to an L-parameter in Φ(G,Qℓ), and the direct factor
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category Repφ(G) is characterized by its simple objects, which are the irreducible representa-
tions π such ϕπ |IF ∼ φ.

We note that these desiderata are now settled for quasi-split classical groups. Namely, the
existence of Langlands’ parametrization was obtained by Arthur for symplectic and orthogonal
groups and by Mok for unitary groups, while the compatibility with parabolic induction follows
from work of Moeglin for all these groups.

The main difference with the case of groups of GL-type is that Repφ(G) is not necessarily
a single Bernstein block. For example Rep1(Sp4(F )) contains the principal series block and
a supercuspidal unipotent representation. Equivalently, the corresponding idempotent eφ of
ZQℓ(G) need not be primitive. Note that eφ actually lies in the “stable” center Zst

Qℓ
(G) defined

in [7, 5.5.2], since an L-packet is either contained in Repφ(G) or disjoint from it. However, the
following example shows that eφ needs not even be primitive in this stable center.

Example. SupposeG = SL2 with p odd, and let φ be given by i ∈ IF 7→ diag(ε(i), 1) ∈ PGL2

with ε the unique non-trivial quadratic character of IF . Then an extension ϕ of φ to WF

has two possible shapes : either it is valued in the maximal torus of PGL2 or it takes any
Frobenius substitution to an order 2 element that normalizes non trivially this torus. In the
language of [7, Def. 5.3.3], these extensions (called infinitesimal characters in loc. cit.) fall
in two distinct inertial classes [ϕps] ⊔ [ϕ0]. Accordingly, we have a decomposition Repφ(G) =
Rep[ϕps](G) × Rep[ϕ0](G), where Rep[ϕps](G) is the block formed by (ramified) principal series

associated to the character ε ◦Art−1
F of the maximal compact subgroup of the diagonal torus of

SL2(F ), while Rep[ϕ0](G) is the category generated by cuspidal representations in the L-packet
associated to ϕ0. The cardinality of this L-packet is that of the centralizer of ϕ0, i.e. 4, so
that Rep[ϕ0](G) = RepQℓ({1})

×4. Accordingly, the idempotent eφ ∈ ZQℓ(G) decomposes as
eφ = e[ϕps] + e[ϕ0] in ZQℓ(G), with both e[ϕps], e[ϕ0] belonging to the “stable Bernstein center”
(as in [7, 5.5.2]), showing that eφ is not primitive, even in the “stable sense”.

Remark.– The decomposition of Repφ(G) in the above example can be generalized whenever
the centralizer C

Ĝ
(φ) is not connected. To see how, let us choose an extension ϕ of φ to WF ,

and let us take up the procedure of 1.1.4. So, conjugacy under ϕ(w) still endows C
Ĝ
(φ), and

also C
Ĝ
(φ)◦, with an action of WF/IF . But while the outer action WF/IF −→ Out(C

Ĝ
(φ)) is

still independent of ϕ, the outer action WF/IF −→ Out(C
Ĝ
(φ)◦) actually depends on ϕ. More

precisely, if ηϕ denotes the image of Frob by this outer action, then the set Aφ of all possible
ηϕ is a single π0(CĜ

(φ))-orbit inside Out(C
Ĝ
(φ)◦). Now, observe that if ϕ, ϕ′ are inertially

equivalent in the sense of [7, Def. 5.3.3], then ηϕ = ηϕ′ . This is because ϕ′(Frob) = zϕ(Frob)
for some z that belongs to some torus contained in C

Ĝ
(φ). Therefore we get a decomposition

Repφ(G) =
∏

η∈Aφ

Repφ,η(G)

where Repφ,η(G) is the “stable” Bernstein summand of RepQℓ(G) whose irreducible objects π
satisfy ϕπ |IF ∼ φ and ηϕ = η. It is plausible that the corresponding idempotents are primitive
in the stable Bernstein center.

1.3.2 The transfer problem. — Suppose given an L-morphism ξ : LG′ −→ LG and an
inertial parameter φ′ ∈ Φinert(G

′,Qℓ) such that ξ induces an isomorphism C
Ĝ′(φ′)

∼
−→ C

Ĝ
(φ).

In this generality, new issues arise on the path to a possible generalization of Theorem 1.1.2.
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The first one is related to the internal structure of L-packets. Suppose temporarily that
G and G′ are quasi-split. It is then expected that the L-packet of IrrQℓ (G

′) associated to
an extension ϕ′ of φ is parametrized by irreducible representations of the component group
π0(CĜ′(ϕ′)/Z(Ĝ′)WF ). In our setting, ξ has to induce an isomorphism C

Ĝ′(ϕ′)
∼

−→ C
Ĝ
(ξ ◦ ϕ′).

Lemma. — If ker(ξ) is commutative4, ξ also induces an isomorphism Z(Ĝ′)WF
∼

−→ C
Ĝ
(ξ).

Proof. Here, as usual, C
Ĝ
(ξ) is the centralizer of the image of ξ. So we clearly have ξ(Z(Ĝ′)WF ) ⊂

C
Ĝ
(ξ). Moreover, since Z(Ĝ′)WF ⊂ C

Ĝ′(φ′), our running assumptions imply that ξ|Z(Ĝ′)WF is
injective. It remains to prove surjectivity. Again we have C

Ĝ
(ξ) ⊂ C

Ĝ
(φ), so any element of

C
Ĝ
(ξ) has the form ξ(x) for a unique x ∈ C

Ĝ′(φ′), and we need to prove that x ∈ Z(Ĝ′)WF .
Pick an extention ϕ′ of φ′. Since im(ϕ′) normalizes im(φ′), it also normalizes C

Ĝ′(φ′), so that

[x, im(ϕ′)] ⊂ C
Ĝ′(φ′)∩ker(ξ) = {1}. On the other hand, [x, Ĝ′] = [x, Ĝ′

der] ⊂ Ĝ′
der∩ker(ξ) which

is finite. Since Ĝ′ is connected, it follows that [x, Ĝ′] = {1}. Finally, since LG′ = im(ϕ′)Ĝ′, we
get [x, LG′] = {1}, i.e. x ∈ Z(Ĝ′)WF .

Assume from now on that ker(ξ) is commutative. Since Z(Ĝ)WF ⊂ C
Ĝ
(ξ), we get an

embedding of Z(Ĝ)WF in Z(Ĝ′)WF , whence a map

hξ : H
1(F,G′) −→ H1(F,G),

through Kottwitz’s isomorphism [13, (6.4.1)]. Recall now that to any α ∈ H1(F,G) is associated
a “pure” inner form Gα of G′.

Expectation. — With the foregoing assumptions, for any α ∈ H1(F,G) there should exist an
equivalence of categories ξ∗ :

∏
β∈h−1

ξ (α) Repφ′(G
′
β)

∼
−→ Repφ(Gα) such that, for any irreducible

π′ ∈ Repφ′(G
′
β) we have ϕξ∗(π′) = ξ ◦ ϕπ′

Example. Suppose G = SL2, G′ = U(1) (norm 1 elements in a quadratic unramified
extension) and ξ : Gm ⋊WF −→ PGL2 ×WF is the automorphic induction homomorphism.
Then start with φ′ = θ : IF −→ Gm a character such that θσ

2
= θ and θσθ−1 has order > 2

(with σ a Frobenius element). Then Repφ(G) is generated by 2 distinct irreducible cuspidal

representations of G. The centralizer C
Ĝ′(φ) = Ĝ′ is connected, we have H1(F,G) = {1} while

H1(F,G′) has 2 elements. Both pure inner forms of G′ are isomorphic to G′ and Repφ′(G
′)

is generated by a single irreducible representation (a character). This picture generalizes to
supercuspidal L-packets constructed in [6].

Example. Suppose that p is odd, G = SO5, G
′ = SO3 × SO3 and that ξ : SL2 × SL2 →֒ Sp4

is an isomorphism onto the centralizer of the element ξ(1,−1) in Sp4. Take φ′ := (1, ε) with
ε the unique quadratic non trivial character of IF . In particular, C

Ĝ′(φ′) = SL2 × SL2
∼

−→
C

Ĝ
(φ) is connected. We have H1(F,G) = {±1}, H1(F,G′) = {±1} × {±1} and hξ is the

multiplication map. The category Repφ′(G
′) is a Bernstein block coming from the maximal

torus. On the other hand, G′
(−1,−1) = (D×/F×) × (D×/F×), with D the quaternion algebra,

so that Repφ′(G
′
(−1,−1)) decomposes into 4 blocks, each one generated by a quadratic character

of the form ψ · χ with ψ a quadratic unramified character of D× and χ a quadratic ramified

4With a bit more work, we can weaken the hypothesis to : Z((ker(ξ)◦)der) has order prime to p. The lemma
may be true with no hypothesis at all
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character of D×. Accordingly, Repφ(G) is the sum of a Bernstein block coming from the torus
and 4 supercuspidal blocks, associated to the four Langlands parameters ϕ = ξ ◦ ϕ′ with
ϕ′ = (ψ, χ)⊗∆ : WF ×SL2 →֒ SL2×SL2 and where now ψ is a quadratic unramified character
of WF and χ a quadratic ramified character of WF .

A second issue towards a generalization of Theorem 1.1.2 arises when we try to go to more
general non quasi-split groups. A similar “expectation”, involving Kottwitz’ B(G)bas instead
of H1(F,G), might apply to “extended pure forms” of quasi-split groups, enabling one to reach
inner forms of groups with connected center.

Another possibility is to add a suitable relevance condition. For example, consider condition

(R) An extension ϕ′ ∈ H1(WF , Ĝ) of φ′ is relevant for G′ if and only if ξ ◦ϕ′ is relevant for G.

The following statement seems to pass the crash-test of inner forms of linear groups :

Let ξ be as in the begining of this paragraph, and suppose further that condition (R) is
satisfied. Then there is an equivalence of categories ξ∗ :

∏
β∈ker(h−1

ξ )Repφ′(G
′
β)

∼
−→ Repφ(G)

such that, for any irreducible π′ ∈ Repφ′(G
′
β) we have ϕξ∗(π′) = ξ ◦ ϕπ′.

1.3.3 The “reduction to unipotent” problem. — Here the obvious new difficulty is that
the centralizer C

Ĝ
(φ) may not be connected. When it is connected, the same procedure as

for groups of GL-type allows us to associate to φ an unramified group Gφ with Ĝφ = C
Ĝ
(φ),

together with factorization(s) of φ as IF
1

−→ LGφ
ξ

−→ LG, see 2.1.2. Therefore, the natural
expectation is :

Expectation. — Assume G quasi-split, C
Ĝ
(φ) connected, and let ξ be as above. Then for

any α ∈ H1(F,G) there should exist an equivalence of categories ξ∗ :
∏

β∈h−1
ξ (α) Rep1(Gφ,β)

∼
−→

Repφ(Gα) such that, for any irreducible π′ ∈ Repφ′(G
′
β) we have ϕξ∗(π′) = ξ ◦ ϕπ′.

Examples. In the previous example with G = SL2, we have Gφ = U(1) and the expectation
is therefore satisfied. More generally, for φ the restriction of a tame parameter corresponding
to a supercuspidal L-packet as considered in [6], the expectation holds (note that in this case,
Gφ is an anisotropic unramified torus). Also the last example above gives us an instance of
this expectation in which G = SO5 and Gφ = SO3 × SO3.

More mysterious is the case when C
Ĝ
(φ) is not connected. In 2.1.4 we define several non-

connected reductive groups Gτ
φ over F , where τ belongs to a set Σ(φ) equipped with a map to

H1(F,G). We think that a similar statement to that above is plausible, with this collection of
groups replacing the Gφ,β, at least when CĜ

(φ) is “quasi-split” in the sense that it is isomorphic
to C

Ĝ
(φ)◦ ⋊ π0 with π0 acting by some épinglage-preserving automorphisms.

More precisely, for these non-connected groups Gτ
φ, there is a natural notion of “unipotent

factor” Rep1(G
τ
φ) of the category RepQℓ(G

τ
φ). Namely a representation of Gτ

φ is unipotent if the
restriction to G

τ,◦
φ (F ) is unipotent. Now, when C

Ĝ
(φ) is “quasi-split”, we expect that Repφ(G)

will be equivalent to the product of all Rep1(G
τ
φ) with τ mapping to 1 ∈ H1(F,G).

Example. Take up the example of paragraph 1.3.1 for G = SL2. For the φ considered there,
C

Ĝ
(φ) is the normalizer of the diagonal torus. Our construction, explicitly detailed in 2.1.6,

provides 3 groups : Gps
φ = Gm⋊Z/2Z andG1

φ = G2
φ = U(1)⋊Z/2Z, with the generator of Z/2Z
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acting by the inverse map in each case. For i = 1, 2, the unipotent factor of RepQℓ(G
i
φ) consists

of representations that are trivial on U(1), therefore Rep1(G
i
φ) = RepQℓ(Z/2Z) ≃ RepQℓ({1})

2

and these two copies account for the supercuspidal factor Rep[ϕ0](G) = RepQℓ({1})
4. On the

other hand, Rep1(G
ps
φ ) = RepQℓ(Z ⋊ Z/2Z) which is indeed equivalent to Rep[ϕps](G).

We hope that the recent results of Heiermann [9] will enable us to confirm the above “ex-
pectations” for groups of classical type. In this case, the disconnected centralizers are explained
by even orthogonal factors (in the last example, the groups Gφ are “pure” inner forms of O2).

2 Details and proofs

Notation. Unless stated otherwise, Ĝ and LG will stand respectively for Ĝ(Qℓ) and
LG(Qℓ).

Given an exact sequence H →֒ H̃ ։W of topological groups, we denote by Σ(W, H̃) the set

of continuous group sections W −→ H̃ that split the sequence and by Σ(W, H̃) the set of H-

conjugacy classes in Σ(W, H̃). If we fix σ ∈ Σ(W, H̃), conjugation by σ(w) induces an action ασ
ofW on H and a set-theoretic continuous projection πσ : H̃ −→ H . Then the map σ′ 7→ πσ ◦σ

′

is a bijection Σ(W, H̃)
∼

−→ Z1
ασ(W,H) that descends to a bijection Σ(W, H̃)

∼
−→ H1

ασ(W,H).

Suppose that H = H(Qℓ) for some algebraic group H. We will say that the extension H̃
of W by H is almost algebraic if it is the pullback of an extension of some finite quotient of
W by H . Equivalently, some finite index subgroup of W lifts to a normal subgroup W ′ ⊂ H̃
that commutes with H . In this case, a section σ ∈ Σ(W, H̃) is called admissible if for any such

W ′ (equivalently, some W ′) the elements σ(w), w ∈ W are semi-simple in the quotient H̃/W ′

(which is the group of Qℓ-points of an algebraic group).
For example, LG is an almost algebraic extension of WF by Ĝ, and the set ΦWeil(G,Qℓ) of

admissible Weil parameters (not Weil-Deligne) is the set of admissible elements in Σ(WF ,
LG).

2.1 The centralizer and its dual F -groups

We start with a general reductive group G over F . We will denote by KF a closed normal
subgroup of WF contained in IF , and we fix φ : KF −→ LG an admissible KF -parameter,
i.e. the restriction to KF of an admissible Langlands parameter. As previously introduced,
we denote by C

Ĝ
(φ) the centralizer of φ(KF ) in Ĝ. By [13, Lemma 10.1.1] this is a reductive,

possibly non-connected, subgroup of Ĝ.

2.1.1 Extensions of φ to WF . — By hypothesis, φ can be extended to an admissible Weil
parameter ϕ : WF −→ LG. Because ϕ(w) normalizes φ(KF ), it also normalizes C

Ĝ
(φ) so that,

letting w act by conjugation under ϕ(w), we get an action

αϕ : WF/KF −→ Aut(C
Ĝ
(φ)).

Note that the restriction of this action to a finite index subgroup of WF is by inner automor-
phisms of C

Ĝ
(φ). Indeed, if F ′ splits G, the action of WF ′ is through conjugation inside the

normalizer N = N
Ĝ
(C

Ĝ
(φ)), but N ◦ has finite index in N and acts by inner automorphisms

since Out(C
Ĝ
(φ)) is discrete.

12



Now, if we pick another extension ϕ′ and write ϕ′(w) = η(w)ϕ(w) with η(w) ∈ Ĝ, then we
compute that η ∈ Z1

αϕ(WF , CĜ
(φ)) (a 1-cocycle for the action αϕ). So we see in particular that

i) the outer action WF −→ Out(C
Ĝ
(φ)) is independent of ϕ and factors over a finite quo-

tient.

ii) the subgroup C̃
Ĝ
(φ) := C

Ĝ
(φ).ϕ(WF ) of

LG is independent of ϕ.

iii) the action of WF on the center Z(C
Ĝ
(φ)) via αϕ is independent of ϕ and factors over a

finite quotient.

Let us denote by Z1(WF , Ĝ)φ the set of all cocycles that extend φ and by H1(WF , Ĝ)[φ] the

fiber of the equivalence class of φ in H1(KF , Ĝ). Then the map η 7→ ηϕ clearly is a bijection

Z1
αϕ(WF/KF , CĜ

(φ))
∼

−→ Z1(WF , Ĝ)φ

and it is easily checked that it induces a bijection

H1
αϕ(WF/KF , CĜ

(φ))
∼

−→ H1(WF , Ĝ)[φ].

In order to see how admissibility is carried through this bijection, let us recast it in terms of
sections. Consider the extension

C
Ĝ
(φ) →֒ C̃

Ĝ
(φ) ։WF

where the middle group is that of point ii) above and the map toWF is induced by the projection
LG −→WF . Quotienting by φ(KF ) we get an extension

C
Ĝ
(φ) →֒ C̃

Ĝ
(φ)/φ(KF ) ։WF/KF .

Then we have
Σ(WF ,

LG)φ = Σ(WF , C̃Ĝ
(φ))φ

∼
−→ Σ(WF/KF , C̃Ĝ

(φ))

where the index φ means “extends φ” and the last map takes a section ϕ to (ϕ mod φ(KF )).

The next lemma shows that C̃
Ĝ
(φ), and hence C̃

Ĝ
(φ)/φ(KF ), is “almost algebraic” in the

sense of the begining of this section, and also that admissibility is preserved through the last
bijection, giving a bijection

ΦWeil(G,Qℓ)[φ]
∼

−→ Σ(WF/KF , C̃Ĝ
(φ)/φ(KF ))adm.

Lemma. — There exist a finite extension F ′ of F and an extension ϕ′ : WF −→ LG of φ
such that ϕ′(w′) = (1, w′) for all w′ ∈ WF ′.

Proof. Start with any extension ϕ as above. Let F0 be a finite Galois extension of F that splits
G and denote by ϕ̄ the composition of ϕ with the projection LG −→ Ĝ⋊ ΓF0/F . Then ϕ̄(WF )
is an extension of a cyclic (possibly infinite) group by a finite group and there is some finite
extension F ′ of F such that ϕ̄(WF ′) is central in ϕ̄(WF ) and ϕ̄(IF ′) is trivial. We may also
assume that F ′ contains F0, so that ϕ̄(WF ′) ⊂ Ĝ and actually ϕ̄(WF ′) ⊂ C

Ĝ
(ϕ̄) = C

Ĝ
(ϕ).

Enlarging F ′ further, we may assume that ϕ̄(WF ′) ⊂ C
Ĝ
(ϕ)◦. Now, since WF/IF is cyclic and

contains WF ′/IF ′ with finite index, we can find a homomorphism χ : WF/IF −→ C
Ĝ
(ϕ)◦ such

that χ|WF ′ = ϕ̄|WF ′ . Then ϕ
′ := χ−1ϕ has the desired property.
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2.1.2 The group Gφ in the connected case. — Let us assume in this paragraph that C
Ĝ
(φ)

is connected, and let Gsplit
φ denote a dual group for C

Ĝ
(φ) defined over F . By item i) of 2.1.1, we

have a canonical outer action WF/KF −→ Out(C
Ĝ
(φ)) = Out(Gsplit

φ ) that factors over a finite

quotient. Choosing a section Out(Gsplit
φ ) −→ Aut(Gsplit

φ ) (i.e. choosing an épinglage of Gsplit
φ ),

we get an action of the Galois group ΓF on G
split
φ . Associated to this action is an F -form,

Gφ of Gsplit
φ , which by construction is a quasi-split connected reductive group over F , uniquely

defined up to F -isomorphism, and which splits over an extension F ′ such that KF ′ = KF .

For any continous cocycle τ : ΓF −→ Gφ(F ), we have an inner form Gτ
φ of Gφ over

F . If τ ′ is cohomologous to τ , there is an F -isomorphism Gτ ′

φ
∼

−→ Gτ
φ well-defined up to

inner automorphism. We will therefore identify Gτ
φ and Gτ ′

φ , and we now have a collection
(Gτ

φ)τ∈H1(F,Gφ) of F -groups associated to φ.

In order to shrink this collection, we now define a mapH1(F,Gφ)
hφ
−→ H1(F,G) by using the

Kottwitz isomorphism. Recall the latter is an isomorphism H1(F,G)
∼

−→ π0(Z(Ĝ)WF )∗ with
∗ denoting a Pontrjagin dual. In the case of Gφ, this reads H

1(F,Gφ)
∼

−→ π0(Z(CĜ
(φ))WF )∗,

with WF acting through the canonical action of point iii) in 2.1.1. Now the desired map is
induced by the inclusion Z(Ĝ)WF ⊂ Z(C

Ĝ
(φ))WF .

The role of this map is the following. If the group G is quasi-split, the factor category
Repφ(G) is expected to be equivalent to the direct product of the unipotent factors of each Gτ

φ

for τ ∈ ker(hφ). More generally, for a pure inner form Gα of a quasi-split G associated to some
α ∈ H1(F,G), the factor category Repφ(G

α) is expected to be equivalent to the direct product
of the unipotent factors of each Gτ

φ for hφ(τ) = α.

All these connected reductive F -groups Gτ
φ share the same L-group, which we denote by

LGφ. As usual, it is defined “up to inner automorphism”. To fix ideas, let us choose an
épinglage ε of C

Ĝ
(φ). Then, as a model for the L-group we can take

LGφ = C
Ĝ
(φ)⋊αεφ

WF(2.1.3)

where the action αεφ is obtained from the canonical outer action via the splitting Out(C
Ĝ
(φ)) →֒

Aut(C
Ĝ
(φ)) associated to ε. The L-group LGφ is an extension of WF by C

Ĝ
(φ) but it is not a

priori clear whether it is isomorphic to the extension C̃
Ĝ
(φ). More precisely, let Ñ (ε) be the

stabilizer of ε in C̃
Ĝ
(φ) acting by conjugacy on C

Ĝ
(φ). Then Ñ (ε) is an extension of WF by

the center Z(C
Ĝ
(φ)), and we see that

Lemma. — The extensions C̃
Ĝ
(φ) and LGφ of WF by C

Ĝ
(φ) are isomorphic if and only if

the class [Ñ (ε)] in H2(WF/KF , Z(CĜ
(φ))) vanishes.

Note that the class always vanishes if KF = IF since WF/IF = Z. We give more details in
section 2.2.

2.1.4 More F -groups in the general case. — We now propose a construction without
assuming that C

Ĝ
(φ) is connected. Let us take up the split exact sequence

C
Ĝ
(φ) →֒ C̃

Ĝ
(φ)/φ(KF ) ։WF/KF
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of paragraph 2.1.1. Put π0(φ) := π0(CĜ
(φ)) and π̃0(φ) := C̃

Ĝ
(φ)/C

Ĝ
(φ)◦φ(KF ). Hence we

have a split exact sequence

π0(φ) →֒ π̃0(φ) ։WF/KF

and a possibly non split exact sequence

C
Ĝ
(φ)◦ →֒ C̃

Ĝ
(φ)/φ(KF ) ։ π̃0(φ).

Conjugation by any set-theoretic section of the above sequence gives a well-defined “outer
action”

π̃0(φ) −→ Out(C
Ĝ
(φ)◦)

that factors over a finite quotient of π̃0(φ). Let G
split,◦
φ denote a split group over F which is

dual to C
Ĝ
(φ)◦, and fix a section

Out(C
Ĝ
(φ)◦) = Out(Gsplit,◦

φ ) −→ Aut(Gsplit,◦
φ )

(i.e. fix an épinglage of Gsplit,◦
φ ). Then we can form the non-connected reductive F -group

G
split
φ := G

split,◦
φ ⋊ π0(φ)

which has an action by algebraic F -group automorphisms

π̃0(φ)
θ

−→ Aut(Gsplit
φ )

(here π̃0(φ) acts on π0(φ) by conjugation). Then, any continuous section

σ : WF/KF −→ π̃0(φ)

(for the topology induced from ΓF on WF and the discrete topology on π0(φ)) provides an
F -form Gσ

φ of Gsplit
φ such that the action of WF on Gσ

φ(F ) = G
split
φ (F ) is the natural action

twisted by θ ◦ σ. The unit component Gσ,◦
φ is quasi-split over F and we have

Gσ
φ(F ) = G

σ,◦
φ (F )⋊ π0(φ)

σ(WF ).

Moreover, if c ∈ π0(φ), conjugation by (1, c) in G
split
φ (F ) induces an F -isomorphism Gσ

φ
∼

−→

Gσc

φ , so that the isomorphism class ofGσ
φ over F only depends on the image of σ in Σ(WF/KF , π̃0(φ)).

More generally, for any continuous section

τ : WF/KF −→ G
split,◦
φ (F

KF
)⋊ π̃0(φ)

(again, here we use the topology ofWF induced from that of ΓF ) we get an F -form Gτ
φ of G

split
φ ,

which depends only on the image of τ in Σ(WF/KF ,G
◦,split
φ (F

KF
)⋊ π̃0(φ)). In order to better

organize this collection of F -groups, we use the projection τ 7→ σ :

Σ
(
WF/KF ,G

split,◦
φ (F

KF
)⋊ π̃0(φ)

)
−→ Σ (WF/KF , π̃0(φ))
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to get a partition

Σ(φ) := Σ
(
WF/KF ,G

split,◦
φ (F

KF
)⋊ π̃0(φ)

)
=

⊔

σ∈Σ(WF ,π̃0(φ))

H1
(
WF/KF ,G

σ,◦
φ (F

KF
)
)

=
⊔

σ∈Σ(WF ,π̃0(φ))

H1
(
F,Gσ,◦

φ

)

For the second line, we use that H1
(
WF/KF ,G

σ,◦
φ (F

KF
)
)
= H1

(
WF ,G

σ,◦
φ (F )

)
due to the fact

that H1(KF ,G
σ,◦(F )) = {1}, and we use that H1

(
WF ,G

σ,◦
φ (F )

)
= H1

(
ΓF ,G

σ,◦
φ (F )

)
due to

our non-standard choice of topology on WF .
Hence, if τ is mapped to σ, the group Gτ

φ is an inner form of Gσ
φ “coming from the unit

component”. However, the collection of all Gτ
φ’s should be viewed as a single “pure inner class”

of (possibly non-connected) reductive groups. As in the case of connected centralizers, we need
a map

Σ(φ) −→ H1(F,G)

in order to shrink this collection of groups. We define it as the coproduct of the maps
H1(F,Gσ,◦

φ ) −→ H1(F,G) which are dually induced by inclusions

Z(Ĝ)WF ⊂ Z(C
Ĝ
(φ)◦)π̃0(φ) ⊂ Z(C

Ĝ
(φ)◦)σ(WF ) = Z(Ĝσ,◦

φ )WF .

Finally we define a common L-group for all these non-connected groups. Namely we put

LGφ := (C
Ĝ
(φ)◦ ⋊αεφ

π̃0(φ))×WF/KF
WF(2.1.5)

where ε is an épinglage, and αεφ is the action obtained from the canonical outer action thanks
to this épinglage. The main inconvenience of this L-group is that it might not be always
isomorphic to the extension C̃

Ĝ
(φ). More precisely, let Ñ (ε) be the stabilizer of ε in C̃

Ĝ
(φ)

acting by conjugacy on C
Ĝ
(φ). Then Ñ (ε) is an extension of π̃0 ×WF /KF WF by the center

Z(C
Ĝ
(φ)◦), and we see that

Lemma. — The extensions C̃
Ĝ
(φ) and LGφ of π̃0 ×WF /KF WF by C

Ĝ
(φ)◦ are isomorphic if

and only if the class [Ñ (ε)] in H2(π̃0(φ), Z(CĜ
(φ))◦) vanishes.

Therefore, a necessary condition for LGφ ≃ C̃
Ĝ
(φ) is that π0(φ) has a lifting in C

Ĝ
(φ) which

fixes ε. When KF = IF , this condition is sufficient since WF/IF = Z.

2.1.6 An example. — Assume p is odd, KF = IF and let ε denote the unique non-trivial
quadratic continuous character of IF . Then consider the group G = SL2 and the parameter

φ : IF −→ PGL2(Qℓ) ×WF that takes i to

((
ε(i) 0
0 1

)
, i

)
. Then C

Ĝ
(φ) is the normalizer

N̂ of the diagonal torus T̂ of Ĝ. Denote by s the element

(
0 1
1 0

)
, of order 2. We thus have

G
split
φ = Gm⋊{1, s} with s acting by the inverse map. Moreover we have π̃0(φ) = {1, s}×WF/IF ,

so that Σ(WF/KF , π̃0(φ)) has 2 elements σ0, σ1, with σ0 the trivial morphism. Clearly we have
Gσ0
φ = G

split
φ = Gm ⋊ {1, s}. On the other hand we have Gσ1

φ = U(1) ⋊ {1, s} where U(1) is

16



the group of norm 1 elements in the unramified quadratic extension of F and s again acts by
the inverse map. Further, Σ(φ) = H1(F,Gm) ⊔ H1(F,U(1)) has 3 elements, τ0, τ1,1 and τ1,2.
We compute that

Gτ0
φ = Gm ⋊ {1, s}, and G

τ1,1
φ = G

τ1,2
φ = U(1)⋊ {1, s}.

Observe also that in this case we have LGφ ≃ C̃
Ĝ
(φ).

2.2 Unipotent factorizations of a KF -parameter

We keep the general setup of the previous section, consisting of a connected reductive F -group
G and an admissible parameter φ : KF −→ LG. We have associated an L-group LGφ to φ, see
(2.1.3) and (2.1.5), after fixing an épinglage ε of C

Ĝ
(φ)◦. We will denote by 1 : KF −→ LGφ

the morphism that takes k ∈ KF to (1, k).

2.2.1 Definition.– A strict unipotent factorization of φ is a morphism of L-groups ξ :
LGφ −→ LG that extends the inclusion C

Ĝ
(φ)◦ →֒ Ĝ and satisfies ξ ◦ 1 = φ. Two such

factorizations are called equivalent if they are conjugate by some element ĝ ∈ Ĝ.

2.2.2 Proposition. — Suppose that C
Ĝ
(φ) is connected. In the following statements, we

use the canonical action of WF/KF on Z(C
Ĝ
(φ)).

i) The map ξ 7→ ϕ := ξ|W sets up a bijection between

{strict unipotent factorizations of φ} and

{parameters ϕ : WF −→ LG that extend φ and such that αϕ preserves ε.}

ii) Multiplication of cocycles turns the second set of point i) into a torsor over Z1(WF/KF , Z(Ĝφ)).

iii) The set of equivalence classes of strict unipotent factorizations of φ is a torsor over
H1(WF/KF , Z(CĜ

(φ))).

iv) There is an obstruction element βφ ∈ H2(WF/KF , Z(CĜ
(φ))) which vanishes if and only

if φ admits a strict unipotent factorization.

Proof. i) From the equality ξ(ĉ, w) = ĉ.ϕ(w), we see that the map is well-defined. To prove it
is a bijection it suffices to check that the inverse map ϕ 7→ ξ : (ĉ, w) 7→ ĉ.ϕ(w) is well-defined
too. But any extension ϕ of φ to WF leads to a factorization

φ : KF
i 7→(1,i)

// C
Ĝ
(φ)⋊αϕ WF

(ĉ,w)7→ĉ.ϕ(w)
// LG .(2.2.3)

If ϕ preserves the épinglage ε, then the semi-direct product in the middle is LGφ and the
map on the right hand side is therefore a strict unipotent factorization.

ii) Suppose the second set of point i) is not empty, and let ϕ be an element in this set.
Then any other ϕ′ in this set has the form ϕ′(w) = η(w)ϕ(w) for some η ∈ Z1

αϕ(WF , CĜ
(φ)).

Since ϕ|KF = ϕ′
|KF

we have in fact η ∈ Z1
αϕ(WF/KF , CĜ

(φ)). Moreover, since both αϕ and
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αϕ′ preserve ǫ and induce the same outer automorphism, Intη(w) has to be trivial, that is,
η ∈ Z1

αϕ(WF/KF , Z(CĜ
(φ))) = Z1(WF/KF , Z(CĜ

(φ))) (the action on Z(C
Ĝ
(φ)) is canonical).

This shows that, if non empty, the second set in point i) is a (obviously principal) homogeneous
set over Z1(WF/KF , Z(CĜ

(φ))).

iii) Suppose both ξ and ξ′ = Intĝ ◦ ξ, with ĝ ∈ Ĝ, are strict unipotent factorizations of φ.
Since ξ|KF = ξ′|KF = φ, we must have ĝ ∈ C

Ĝ
(φ). But since also ξ|C

Ĝ
(φ) = ξ′|C

Ĝ
(φ) = φ, we have

ĝ ∈ Z(C
Ĝ
(φ)). Then we see that ξ′|W = η.ξ|W , where η is the boundary cocycle w 7→ (ĝ.w(ĝ)−1).

Hence point iii) follows from ii) and i).
iv) This is Lemma 2.1.2. Here is a more detailed argument. Start with an arbitrary extension

ϕ of φ to WF . We need to investigate the existence of a cocycle η ∈ Z1
αϕ(WF/KF , CĜ

(φ)) such
that ηϕ fixes the épinglage ε. This is equivalent to asking that αεφ(w) = Intη(w) ◦ αϕ(w) for all
w ∈ WF . But for w ∈ WF/KF , there is a unique element βεϕ(w) ∈ C

Ĝ
(φ)ad such that αεφ(w) =

Adβεϕ(w) ◦ αϕ(w). Unicity insures that the map w 7→ βεϕ(w) lies in Z
1
αϕ(WF/KF , CĜ

(φ)ad), and
the existence of η as above is equivalent to the vanishing of the image βφ of βεϕ by the boundary
map

H1
αϕ(WF/KF , CĜ

(φ)ad) −→ H2(WF/KF , Z(CĜ
(φ))).

2.2.4 Remark. — Here is the significance of point iii) in terms of transfer of representations.
Assume that a strict unipotent factorization ξ of φ exists. Then the transfer map dual to ξ,
from the set of L-packets of Gφ to that of G, only depends on the Z(Ĝφ)-conjugacy class of

ξ. If we change ξ to η.ξ for η ∈ H1(WF/KF , Z(Ĝφ)) then the transfer map is twisted by the
character of Gφ associated to η in [2, 10.2] (this character is unramified if KF = IF or has level
0 for KF = PF ).

2.2.5 Corollary. — When KF = IF , any parameter φ admits a strict unipotent factoriza-
tion (provided C

Ĝ
(φ) is connected).

Proof. In this case WF/KF = Z , so H2(WF/KF , A) = 0 for any Z[WF/KF ]-module A.

2.2.6 Remark. — In the non-connected case, points iii) and iv) remain true with the pair
(WF/KF , Z(CĜ

(φ))) replaced by (π̃0(φ), Z(CĜ
(φ)◦)). However, we will not use it in this paper.

In the sequel, we will also encounter “non-strict” unipotent factorizations.

2.2.7 Definition.– A unipotent factorization is a pair (H, ξ) consisting of a connected re-

ductive F -group and a morphism of L-groups LH
ξ

−→ LG such that

• φ is Ĝ-conjugate to ξ ◦ 1 with 1 the trivial parameter k ∈ KF 7→ (1, k) ∈ LH.

• ξ induces an isomorphism Ĥ
∼

−→ C
Ĝ
(φ).

Let us make explicit the relation between unipotent factorizations as above and strict ones.
If ι is an épinglage-preserving WF -equivariant isomorphism Ĥ

∼
−→ Ĝφ, we denote by Lι :=

ι× IdWF
: LH

∼
−→ LGφ the associated isomorphism of L-groups.
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2.2.8 Proposition. — If (H, ξ) is a unipotent factorization of φ, there are an épinglage-
preserving WF -equivariant isomorphism ι : Ĥ

∼
−→ Ĝφ and a strict unipotent factorization ξ′

such that ξ is Ĝ-conjugate to ξ′ ◦ Lι. Moreover ι is unique and ξ′ is unique up to equivalence.

Proof. Conjugating ξ under Ĝ we may assume that ξ ◦ 1 = φ. Conjugating further ξ under
C

Ĝ
(φ), we may assume also that ξ takes the given épinglage on Ĥ to ε. Now let ϕ′ be the trivial

parameterWF −→ LH and put ϕ := ξ◦ϕ′. Then ξ|Ĥ isWF -equivariant for the actions αϕ′ on Ĥ

and αϕ on C
Ĝ
(φ). But αϕ′ is the natural action on Ĥ and preserves the given épinglage, hence

αϕ preserves ε. Therefore ι := ξ|Ĥ is an épinglage-preserving WF -equivariant isomorphism

Ĥ
∼

−→ Ĝφ and ξ′ := ξ ◦Lι
−1

is a strict unipotent factorization, whence the existence statement.

Unicity of ι is clear, and any other ξ′′ has to be both Ĝφ-conjugate to ξ′ and strict, hence is

Z(Ĝφ)-conjugate to ξ′.

Remark.– We see in particular that a general unipotent factorization (Gφ, ξ
′) is equivalent

to the composition of a strict one with an “outer” WF -equivariant automorphism of Ĝφ.

2.3 Restriction of scalars

We consider here a reductive group G over F of the form G = ResF ′|FG
′ for some reductive

group G′ over some extension field F ′ of F . We then have the following relationship between
their dual groups equipped with Weil group actions :

Ĝ = IndWF
WF ′

Ĝ′ =
{
ĝ : WF −→ Ĝ′, ∀(w′, w) ∈ WF ′ ×WF , ĝ(w

′w) = w′

(ĝ(w))
}

where we have denoted with an exponent w
′
the action of WF ′ on Ĝ′ and we let v ∈ WF act on

G by (vĝ)(w) := ĝ(wv).

2.3.1 We still denote by KF a closed normal subgroup ofWF , and we put KF ′ :=WF ′∩KF .
Note that if KF is one of the groups IF , I

(ℓ)
F or PF , we have respectively KF ′ = IF ′, I

(ℓ)
F ′ or PF ′.

There is a natural map on continuous cocycles

Z1(KF , Ĝ) −→ Z1(KF ′, Ĝ′)

that takes the cocycle (ĝγ)γ∈KF to the cocycle (ĝγ′(1))γ′∈KF ′ . We will call it the “Shapiro map”.
It is compatible with coboundary relation thus induces a map

H1(KF , Ĝ) −→ H1(KF ′, Ĝ′).

Shapiro’s lemma asserts that when KF =WF the map on Z1 is onto while the map on H1 is a
bijection. From the definition of Shapiro’s map we have two commutative diagrams

Z1(WF , Ĝ) // //

res
��

Z1(WF ′, Ĝ′)

res
��

Z1(KF , Ĝ) // Z1(KF ′, Ĝ′)

and H1(WF , Ĝ) ∼
//

res
��

H1(WF ′, Ĝ′)

res
��

H1(KF , Ĝ) // H1(KF ′, Ĝ′)
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2.3.2 Lemma. — The right hand square is cartesian.

Proof. The two diagrams are transitive with respect to intermediate field extensions. Applying
this to the extension F ′′ defined by WF ′′ = WF ′KF , we see it is enough to prove the claim in
the following 2 cases : a) KF = KF ′ or b) WF = KFWF ′.

In case b), we have Ĝ = IndKFKF ′
Ĝ′ as groups with KF -action, so that the bottom map of

our diagram is also an isomorphism and the claim is clear.
In case a) we have to prove that for any two cocycles (ĝw)w∈WF

, and (ĥw)w∈WF
in Z1(WF , Ĝ),

we have
(
∀γ ∈ KF = KF ′, ĝγ(1) = ĥγ(1)

)
⇒
(
(ĝγ)γ∈KF = (ĥγ)γ∈KF in H1(KF , Ĝ)

)
.

Let us fix a set {v1 = 1, . . . , vr} of representatives of left WF ′-cosets in WF and let us denote
by k̂ the unique element of Ĝ such that k̂(vi) = ĥvi(1)

−1ĝvi(1) for all i.
The cocycle property tells us that ĝγ(v) = ĝv(1)

−1ĝvγ(1) for all v ∈ WF , hence also ĝγ(v) =

ĝv(1)
−1 · ĝvγv−1(1) · vγv

−1
(ĝv(1)) and the same for ĥ. Since by hypothesis we have ĝvγv−1(1) =

ĥvγv−1(1), this implies that for each i we have

ĥγ(vi) = k̂(vi) · ĝγ(vi) ·
viγv

−1
i k̂(vi)

−1 = k̂(vi) · ĝγ(vi) · k̂(viγ)
−1

Then, for any v ∈ WF , writing uniquely v = v′vi with v
′ ∈ WF ′ we get

ĥγ(v) =
v′ ĥγ(vi) =

v′ k̂(vi) ·
v′ ĝγ(vi) ·

v′ k̂(viγ)
−1 = k̂(v) · ĝγ(v) · k̂(vγ)

−1.

Since k̂(vγ) = (γk̂)(v), this shows that (ĥγ)γ∈KF is cohomologous to (ĝγ)γ∈KF .

Recall that, by definition, the set of admissible KF -parameters for G is the set of continous
sections φ : KF −→ LG such that, writing φ(γ) = (φ̂γ, γ), we have

(φ̂γ)γ∈KF ∈ Image
(
Φ(G,Qℓ)

res
−→ H1(WF , Ĝ)

res
−→ H1(KF , Ĝ)

)
.

Recall also that we have denoted this set by Φinert(G,Qℓ), Φℓ′−inert(G,Qℓ) and Φwild(G,Qℓ)

according to KF being IF , I
(ℓ)
F and PF .

2.3.3 Corollary. — The Shapiro map induces bijections Ψ(G,Qℓ)
∼

−→ Ψ(G′,Qℓ) where Ψ
denotes either Φinert or Φℓ′−inert or Φwild.

Proof. This is because the Shapiro bijection H1(WF , Ĝ) −→ H1(WF ′, Ĝ′) preserves the admis-
sibility conditions on both sides [2, 8.4].

Let φ : KF −→ LG be an admissible KF -parameter and let φ′ be its Shapiro mate. Pick a
parameter ϕ : WF −→ LG that extends φ and let ϕ′ be its Shapiro mate. We get an action
Intϕ : w 7→ Intϕ(w) ofWF on Ĝ, where Intϕ(w) means conjugation by ϕ(w) inside LG. Similarly,

we have an action Intϕ′ of WF ′ on Ĝ′. Now consider the map

(Ĝ, Intϕ) → IndWF
WF ′

(Ĝ′, Intϕ′)

ĝ 7→ g̃ : w 7→ [Intϕ(w)(ĝ)](1)
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It is easily checked that this map is well-defined and is a WF -equivariant isomorphism of
groups. In fact, writing ϕ(w) = (ϕ̂w, w), we have g̃(w) = ϕ̂w(1)ĝ(w)ϕ̂w(1)

−1, so that the
inverse isomorphism is given by ĝ(w) = ϕ̂w(1)

−1g̃(w)ϕ̂w(1).

The centralizer C
Ĝ
(φ) is stable under the action Intϕ, and in the last section we had denoted

the resulting action by αϕ. Similarly, C
Ĝ
(φ′) is stable under the action Intϕ′ .

2.3.4 Lemma. — The above isomorphism takes C
Ĝ
(φ) into IndWF

WF ′
(C

Ĝ′(φ′)) and induces
an isomorphism

(C
Ĝ
(φ), αϕ)

∼
−→ Ind

WF /KF
WF ′/KF ′

(C
Ĝ′(φ

′), αϕ′)

where we identify the RHS with the KF -invariant functions in IndWF
WF ′

(C
Ĝ′(φ′)). Moreover, αϕ

preserves an épinglage of C
Ĝ
(φ)◦ if and only if αϕ′ preserves an épinglage of C

Ĝ′(φ′)◦.

Proof. By definition C
Ĝ
(φ) is the subgroup of fixed points under KF acting on (Ĝ, Intϕ). Hence

the above isomorphism carries it to the subgroup IndWF
WF ′

(Ĝ′, ϕ′)KF . However for a function g̃,

being KF -invariant means g̃(wγ) = g̃(w) for all w ∈ WF and γ ∈ KF . Since KF is normal
in WF this is equivalent to g̃(γw) = g̃(w) for all w, γ. Applying this to γ ∈ KF ′ we get that
g̃(w) ∈ C

Ĝ′(φ′) for all w, as claimed.

Now if ε = (B, T, {xα}) is an épinglage of C
Ĝ
(φ) fixed by αϕ, evaluation at 1 in the

isomorphism of the lemma provides an épinglage of C
Ĝ′(φ′) fixed by αϕ′ . Conversely, let

ε′ = (B′, T ′, (x′)α′∈∆′) be an épinglage of C
Ĝ′(φ′) stable by αϕ′. Put B = Ind

WF /KF
WF ′/KF ′

(B′)

and T = Ind
WF /KF
WF ′/KF ′

(T ′). This is a Borel pair in the group Ind
WF /KF
WF ′/KF ′

(C
Ĝ′(φ′)), with set of

simple roots ∆ = Ind(∆′) = (WF ′/KF ′)\[(WF/KF ) × ∆′]. For a simple root α = (v, α′), let
xα : WF/KF −→ Hom(Ga, CĜ′(φ′)) be the function supported on WF ′v given by xα(w

′v) =
w′
xα′ = xw′α′. The triple (B, T, (xα)α∈∆) is then a WF -stable épinglage of Ind

WF /KF
WF ′/KF ′

(C
Ĝ′(φ′))

which, through the isomorphism of the lemma, provides an épinglage ε of C
Ĝ
(φ) fixed by

αϕ.

Suppose now that C
Ĝ′(φ′) is connected, or equivalently, that C

Ĝ
(φ) is connected, and let

us fix épinglages ε and ε′ to build the L-groups LGφ and LG′
φ′ . The following is a translation

of the last lemma in the language of the previous section.

2.3.5 Corollary. — i) We have the following relation between Gφ and G′
φ′. Denote by

F ′′ the intermediate extension such that WF ′′ = WF ′KF and let φ′′ : KF ′′ −→ LG′′ with
G′′ = ResF ′|F ′′G′ be the Shapiro mate of φ′. Then we have

Gφ ≃ ResF ′′|FG
′′
φ′′ and G′

φ′ ≃ G′′
φ′′ ×F ′′ F ′,

whence in particular an L-homomorphism (unique up to conjugacy)

LGφ
ξu−→ LResF ′|F (G

′
φ′)

which is an isomorphism if F ′′ = F ′ ( i.e. KF ′ = KF ), while its adjoint L(Gφ ×F F
′) −→

LG′
φ′ is an isomorphism if F ′′ = F ( i.e WF = WF ′KF ).
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ii) φ admits a strict unipotent factorization if and only if φ′ does. Moreover, if ξ : LGφ −→
LG is a strict unipotent factorization of φ, there are a strict unipotent factorization ξ′ :
LG′

φ′ −→
LG′ of φ′ and a factorization

ξ : LGφ
ξu−→ LResF ′|F (G

′
φ′)

ξ̃′

−→ LResF ′|F (G
′) = LG

with ξ̃′
| ̂Res(G′

φ′
)
= IndWF

WF ′
(ξ′

|Ĝ′
φ′
) and ξ̃′|WF

a Shapiro lift of ξ′|WF ′
.

2.3.6 Remark. — Because of the form taken by ξ̃′, the tranfer map

ξ̃′∗ : Φ(ResF ′|F (G
′
φ′),Qℓ) −→ Φ(ResF ′|F (G

′),Qℓ)

coincides with the transfer map ξ′∗ through the Shapiro bijections. Moreover, since ξu in-

duces an isomorphism Ĝ
KF
φ

∼
−→ ̂ResF ′|FG

′
φ′

KF
, the map ξ̃′ induces an isomorphism C(1) =

̂ResF ′|FG
′
φ′

KF ∼
−→ C

Ĝ
(φ).

2.4 Groups of GL-type

Recall that G is of GL-type if it is isomorphic to a product of groups of the form ResF ′|F (GLn).
For such a group, the local Langlands correspondence for GLn and the Shapiro lemma provide
a bijection IrrQℓ (G(F ))

∼
−→ Φ(G,Qℓ), π 7→ ϕπ.

2.4.1 Lemma. — Let φ ∈ Φinert(G,Qℓ). Define Repφ(G) as the smallest direct factor of
RepQℓ(G) which contains all irreducible π such that ϕπ |IF ∼ φ. Then Repφ(G) is a Bernstein
block of RepQℓ(G).

Proof. We may assume that G = ResF ′|F (GLn). In this case, Lemma 2.3.2 and Corollary

2.3.3 provide us with a Shapiro bijection Φinert(GLn,Qℓ)
∼

−→ Φinert(G,Qℓ), φ
′ 7→ φ, such that

Repφ′(GLn(F
′)) = Repφ(G(F )). So we are reduced to the case G = GLn. In this case, we

need to prove that the extensions ϕ of φ fall in a single “inertial class”. Equivalently, writing
ϕ(w) = (ϕ̂(w), w) with ϕ̂ an n-dimensional representation, we see that we need to prove that
if two semisimple representations ϕ̂, ϕ̂′ of WF are isomorphic as IF -representations, then there
are decompositions ϕ̂ = ϕ̂1 ⊕ · · · ⊕ ϕ̂r and ϕ̂′ = ϕ̂′

1 ⊕ · · · ⊕ ϕ̂′
r and unramified characters χi,

i = 1, . . . , r, of WF such that ϕ̂′
i = χiϕ̂i for all i = 1, · · · , r. But Clifford theory tells us that the

restriction of an irreducible ϕ̂ to IF has multiplicity one, and that anyWF -invariant multiplicity
one semisimple representations of IF extends to a representation ofWF which is irreducible and
unique up to unramified twist. Hence any decomposition ϕ̂ = ϕ̂1 ⊕ · · · ⊕ ϕ̂r into irreducible
summands has to be matched by a similar decomposition of ϕ̂′ satisfying the desired twisting
property.

Therefore, we have a parametrization of Bernstein blocks of RepQℓ(G(F )) by Φinert(G,Qℓ),
which moreover is compatible with the Shapiro bijection. Let us turn to Vignéras-Helm blocks.

2.4.2 Proposition. — Let φ ∈ Φℓ′−inert(G,Qℓ). There is a unique direct factor subcategory
Repφ(G) of RepZℓ(φ) such that for any π ∈ IrrQℓ (G) we have π ∈ Repφ(G) if and only if
ϕπ |I(ℓ)F

∼ φ. Moreover Repφ(G) is a block.
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Proof. Again, we may assume that G = ResF ′|F (GLn), and using Lemma 2.3.2 and Corollary
2.3.3, we are reduced to the case G = GLn. The Vignéras blocks of RepFℓ(GLn(F )) are parame-

trized by inertial classes of semisimple Fℓ-representations of WF , and the same proof as above
shows these are in bijection with isomorphism classes of semisimple Fℓ-representations of IF
that extend to WF . As explained in 1.2.1, the latter are in bijection with isomorphism classes
of (semisimple) Qℓ-representations of I

(ℓ)
F , via reduction mod ℓ and restriction. Going through

these identifications, considering the definition of the “mod ℓ inertial supercuspidal support”
of a π ∈ IrrQℓ (GLn(F )) in [10, Def. 4.10] and applying Theorem 11.8 of [10], we find that
π, π′ ∈ IrrQℓ (GLn(F )) lie in the same Helm block if and only if ϕπ and ϕπ′ have isomorphic

restrictions to I
(ℓ)
F .

We thus get a parametrization of Vignéras-Helm blocks of RepZℓ(G(F )) by Φℓ′−inert(G,Qℓ),
which is compatible with Shapiro bijections.

2.4.3 Assumptions and convention. — In the sequel, KF will denote one of the subgroups
IF , I

(ℓ)
F or PF ofWF . The notation Repφ(G) will denote a block of RepZℓ(G) if KF = I

(ℓ)
F , and a

block of RepQℓ(G) if KF = IF . When KF = PF , it will denote a direct factor of RepZℓ(G). On

the other hand, the notation Irrφ (G) will always denote the set of Qℓ-irreducible representations
in this block.

2.4.4 We will denote by EF (φ′, ξ) the following statement, that depends on an admissible
KF -parameter φ′ : KF −→ LG′ and an L-homomorphism ξ : LG′ −→ LG which induces an
isomorphism C

Ĝ′(φ′)
∼

−→ C
Ĝ
(φ), where φ = ξ ◦ φ′.

EF (φ′, ξ) :
there is an equivalence of categories Repφ′(G

′)
∼

−→ Repφ(G)
that extends the transfer map ξ∗ : Irrφ′ (G

′) −→ Irrφ (G).

We also denote by EF (φ′, ξ)− the same statement without the condition on the transfer map.

2.4.5 Example. — Suppose that ξ is a Levi subgroup embedding. Then we can embed G′

as an F -rational Levi subgroup of G (well-defined up to conjugacy). The assumption that ξ
induces an isomorphism of centralizers translates into the property that the normalizer of the
inertial supercuspidal support of any π ∈ Irrφ (G) is contained (up to conjugacy) in G′. In this
context, it is known that for any parabolic subgroup P of G with G′ as a Levi component, the
normalized parabolic induction functor IndGP induces an equivalence of categories Repφ(G

′)
∼

−→
Repφ(G) (which is independent of the choice of P up to natural transform). We refer to [10,

Thm. 12.3] for Zℓ coefficients. We claim that this equivalence is compatible with the transfer ξ∗.
Indeed, using the Shapiro yoga, it is enough to treat the case of G = GLn and G′ =

∏r
i=1GLni ,

where ξ∗ is given in terms of representations by (σ1, · · · , σr) 7→ σ1 ⊕ · · · ⊕ σr, which is well
known to correspond to normalized parabolic induction in this context. Therefore EF (φ′, ξ) is
satisfied in this setting.

2.4.6 Computation of Gφ when G = GLn. — In this case we may write φ = φ̂ × IdWF

where φ̂ is an n-dimensional semi-simple representation of KF that can be extended to WF .
Our aim is to find a nice extension ϕ̂ of φ̂ to WF . There is a decomposition φ̂ = φ̂1 ⊕ · · · ⊕ φ̂r,
uniquely determined (up to reordering) by the following properties :
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i) the irreducible constituents of φ̂i form a WF -orbit,

ii) HomKF (φ̂i, φ̂j) = 0 whenever i 6= j.

Since this decomposition is preserved by any extension of φ̂ to WF , each φ̂i is extendable to
WF . Putting ni := dimφ̂i, this means that φ factors through a Levi subgroup embedding
ι : (GLn1 × · · · ×GLnr)×WF →֒ GLn ×WF . Moreover, by ii) this Levi subgroup contains the
centralizer of φ (in other words ι induces an isomorphism of centralizers).

To compute the centralizer, let us write

φ̂i = Q
ei
ℓ ⊗


 ⊕

w∈WF /Wσi

wσi




where σi is some irreducible representation of KF and Wσi its stabilizer in WF . This decompo-
sition identifies C

Ĝ
(φ) with

∏r
i=1GLei(Qℓ)

[WF :Wσi ].

Lemma. — Any irreducible representation σ of KF can be extended to its normalizer Wσ

in WF .

Proof. The case KF = IF is clear since WF/IF ≃ Z, so we assume that KF  IF . In this case,
Wσ/KF is the semi-direct product of a pro-cyclic group (Wσ∩IF )/KF by a copy of Z acting by
multiplication by qr for some r > 0. Hence σ can be extended to a representation σ̃0 ofWσ∩IF
such that the generator w of Z acts by wσ̃0 ≃ σ̃0χ for some character χ of (Wσ ∩ IF )/KF . But
this character admits a (qr − 1)th-root χ0 (since x 7→ xq

r−1 is surjective on µℓ∞ and µp′∞), so
that σ̃0χ

−1
0 is fixed by w, hence extends to a representation σ̃ as desired.

Let us apply this lemma to each σi and pick an extension σ̃i to Wσi . Then, putting

ϕ̂ := ϕ̂1 ⊕ · · · ⊕ ϕ̂r, with ϕ̂i = Q
e

ℓ ⊗ IndWF
Wσi

(σ̃i),

we get an extension ϕ of φ such that

(C
Ĝ
(φ), αϕ) ≃

r∏

i=1

IndWF
Wσi

(GLei)

where Wσi acts trivially on GLei. In particular αϕ fixes any diagonal épinglage of C
Ĝ
(φ) ≃∏r

i=1GL
[WF :Wσi ]
ei and we may identify C

Ĝ
(φ) ⋊αϕ WF with the L-group LGφ. Denoting by Fi

the finite extension such that WFi =Wσi , we then see that Gφ ≃
∏r

i=1ResFi|F (GLei), and that
the factorization (2.2.3) is a unipotent factorization ξ = ξϕ of φ of the following form

ξ : LGφ =

(
r∏

i=1

IndWF
WFi

GLei

)
⋊WF −→

(
r∏

i=1

GLni

)
×WF →֒ GLn ×WF ,

where ξ|WF
= ϕ.

2.4.7 Proposition. — Let φ be a KF -parameter of a group G of GL-type. Then Gφ is also

of GL-type and φ admits a strict unipotent factorization φ : KF
1 × Id
−→ LGφ

ξ
−→ LG.
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Proof. By definition of being of GL-type, we may assume that G = ResF ′|FG
′ for G′ = GLn

and F ′ a finite separable extension of F . By Corollary 2.3.5, we may assume that G = GLn,
which has just been treated.

This proposition allows us to consider the following statement, that depends on an admis-
sible parameter φ : KF −→ LG (with G unspecified) :

UF (φ) :
for any strict unipotent factorization ξ : LGφ −→ LG,
there is an equivalence of categories Rep1(Gφ)

∼
−→ Repφ(G)

that extends the transfer map ξ∗ : Irr1 (Gφ) −→ Irrφ (G).

Note, that because of Remark 2.2.4, replacing “any” by “one” in the first line gives an equivalent
statement. Again, we will denote by UF (φ)− the same statement without the compatibility with
transfer.

2.4.8 Lemma. — The following are equivalent.

i) Statement EF (φ′, ξ) is true for all F , φ′ and ξ satisfying the required conditions.

ii) Statement UF (φ) is true for all F and φ.

iii) Statement UF (φ) is true for all F and φ pertaining to G = GLn, and statement EF (1, ξ) is
true for all base change ξ : LGLn −→ LResF ′|FGLn, with WF ′KF = WF (and F allowed
to vary).

Moreover the same equivalence holds for statements EF (φ′, ξ)− and UF (φ)−.

Proof. i) ⇒ iii) is clear. To prove ii) ⇒ i), start with (φ′, ξ), choose a strict unipotent
factorization ξ′ of φ′ and consider the diagram

φ : KF
1

−→ LG′
φ′

ξ′

−→ LG′ ξ
−→ LG.

Then ξ ◦ ξ′ is a unipotent factorization of φ, albeit not strict a priori. By Proposition 2.2.8, it
is equivalent to the composition ξ′′ ◦ α of a strict unipotent factorization and a WF -invariant
outer automorphism α of Ĝφ. A WF -invariant outer automorphism of Ĝφ induces an F -
automorphism of Gφ, well-defined up to Gφ-conjugacy, hence an endo-equivalence of categories
of Rep(Gφ) and in particular of Rep1(Gφ) (since the trivial representation is fixed). By [7,
Prop. 5.2.5], this equivalence is known to be compatible with Langlands’ transfer. Therefore,
using this equivalence and the ones granted by UF (φ

′) and UF (φ), we get E(φ′, ξ).
Let us prove iii) ⇒ ii). We want to check UF (φ) for any φ. It is sufficient to do so when

G = ResF ′|F (GLn). Let ξ be a strict unipotent factorization of φ. We have a factorization

ξ = ξ̃′ ◦ ξu as in Corollary 2.3.5 ii). By hypothesis, and thanks to Remark 2.3.6, we can find
an equivalence of categories associated to ξ̃′, so we are left with finding one associated to ξu.
With the notation of Corollary 2.3.5 i), we have a further factorization of ξu :

ξu :
LGφ

∼
−→ LResF ′′|F (G

′′
φ′′) −→

LResF ′|F (G
′
φ′)

which shows that it is sufficient to do it when F ′′ = F , i.e. WF ′KF =WF . In this case, ξu is a
base change L-homomorphism ξu : LGφ −→ LResF ′|F (Gφ ×F F

′). Now, Gφ is of GL-type and
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“KF -unramified”, in the sense that it splits over an extension F0 of F such that KF0 = KF . So
we need an equivalence associated to a base change homomorphism of the form

ξu :
L(ResF0|FGLn) −→

LResF ′|F (ResF0|FGLn ×F F
′)

where F0 is a KF -unramified extension of F . But then F ′ and F0 are disjoint, so we have
ResF0|FGLn ×F F

′ = ResF ′F0|F ′GLn and the above L-homomorphism takes the form

L(ResF0|FGLn) −→
LResF0|F (ResF0F ′|F0GLn)

and is thus “induced” from the base change L-homomorphism over F0

L(GLn) −→
LResF0F ′|F0GLn.

Using Remark 2.3.6 again, it is enough to associate an equivalence to the latter L-homomorphism,
but this is precisely part of the hypothesis in iii).

2.4.9 Proof of Theorem 1.1.2. — Here we assume that KF = IF and we will prove that
EF (φ′, ξ) holds true for all φ′ and ξ that satisfy the required conditions. It is enough to prove
the statements in point iii) of the previous lemma. We will denote by H(q, n) the extended
Iwahori-Hecke algebra of type An−1 with parameter q over Qℓ. We will also denote by qF the
cardinality of the residue field of F .

Totally ramified base change of the unipotent block of GLn. We use Zelevinski’s classification
m 7→ Z(m) of IrrQℓ (GLn(F )) in terms of multisegments of unramified characters of F×. Let
F ′|F be a totally ramified extension. The base change for GL1 is induced by the norm map
(F ′)× −→ F×. Since the latter induces an isomorphism F ′×/O×

F ′

∼
−→ F×/O×

F , the base change
is a bijection on unramified characters, hence also on multisegments m 7→ m′. Since base change
is compatible with parabolic induction, and thus with the Langlands quotient construction, it is
also compatible with the Zelevinski construction, in the sense that the base change of Z(m) has
to be Z(m′). Now, by a theorem of Borel, there is a natural equivalence of categories between
Mod(H(qF , n)) and Rep1(GLn(F )) which takes Rogawski’s classification of simple modules of
H(qF , n) in terms of multisegments of characters of Zn to Zelevinski’s classification, see [14].
The desired equivalence between Rep1(GLn(F )) and Rep1(GLn(F

′)) hence follows from the
equality qF ′ = qF .

Property UF (φ) for GLn. As in paragraph 2.4.6, let us write φ = φ̂ × IdIF and decompose

φ̂ = φ̂1 ⊕ · · · ⊕ φ̂r. If r > 1, paragraph 2.4.6 tells us that any unipotent factorization of φ
factors through a Levi embedding that induces an isomorphism of centralizers. Thanks to
Example 2.4.5, we may thus assume r = 1. In this case, let σ be an irreducible constituent
of φ̂. Its stabilizer Wσ in WF is the Weil group WFf of “the” unramified extension of degree
f = [WF : Wσ] and paragraph 2.4.6 tells us that Gφ ≃ ResFf |F (GLe) where e = n/(fdimσ).

Pick an extension σ̃ of σ to WFf and put ϕ̂ := Q
e

ℓ ⊗ IndWF
WFf

(σ̃). We get an extension ϕ of φ to

WF , whose associated strict unipotent factorization ξϕ has the following effect on parameters.
Identify Φ(G,Qℓ), resp. Φ(Gφ,Qℓ), with the set of (classes of) Frobenius-semisimple continuous
Qℓ-representations of W

′
F of dimension n, resp. of W ′

Ff
of dimension e. Then the transfer map

ξϕ,∗ is given by

ρ ∈ Φ(Gφ,Qℓ) 7→ ind
W ′
F

W ′
Ff

(σ̃ ⊗ ρ) ∈ Φ(G,Qℓ),
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For example, denoting by Spe the special representation of dimension e (associated to the
Steinberg representation), we see that ξϕ,∗(Spe) = Spe ⊗ IndWF

WFf
(σ̃). Let us translate this in

terms of irreducible representations. Let π be the supercuspidal representation of GLfdim(σ)(F )

that corresponds to IndWF
WFf

(σ̃) via the LLC. To any pair (χ, a) with χ an unramified character

of F×
f and a ∈ N, we associate the segment ∆π(χ, a) = (πχ, πχ ⊗ ν, · · · , πχ ⊗ νa−1) where

ν = | det |F and πχ = π ⊗ (χ1/f ◦ det) (which is independent of the choice of an f th-root of
χ). This extends to a bijection m 7→ mπ between multisegments of unramified characters
of F×

f and “multisegments of type π”. Then the formula above shows that the transfer map
ξϕ,∗ : Irr1 (Gφ) −→ Irrφ (G) takes Z(m) to Z(mπ) in Zelevinski’s notation (or equivalently L(m)
to L(mπ)), compare [12, §2].

Now let us put Hφ := H(qfF , e). Thanks to their theory of simple types, Bushnell and
Kutzko produce “natural” equivalences of categories between Mod(Hφ) and Repφ(GLn(F )) [3,
Thm 7.5.7]. These equivalences are unramified twists of each other [3, Prop. 7.5.10]. In light
of the above, we will normalize the equivalence so that it takes the sign character of Hφ to
the “generalized” Steinberg representation Ste(π). Then, the compatibility of Bushnell-Kutzko
equivalences with normalized parabolic induction [3, Thm. 7.6.1] and unramified twisting [3,
Prop. 7.5.12] shows that it also takes the simple module M(m) associated to the multisegment
m to Z(mπ). On the other hand, as recalled previously, Borel’s theorem produces a “canonical”
equivalence of categories between Mod(Hφ) and Rep1(Gφ), that takes M(m) to Z(m). By
composition we get an equivalence between Rep1(Gφ) and Repφ(GLn(F )) that takes Z(m) to
Z(mπ), as desired.

Remark.– We may ask whether an equivalence as in statement EF (φ′, ξ) is unique. In view
of the above discussion, this reduces to asking whether an auto-equivalence α of Mod(H(q, n))
that “preserves simple modules” (in the sense that α(M) ≃ M for each simple module M) is
isomorphic to the identity functor. For this, one has to compute the Picard group of H(q, n)
over its center.

2.4.10 “Proof” of Theorem 1.2.4. — Here we explain how Theorem 1.2.4 follows from
constructions in [5]. So we assume that KF = I

(ℓ)
F and we consider statements EF (φ′, ξ) for Zℓ-

blocks when both φ′ and ξ are tame. Recall that this means that φ′
|PF

, resp. ξ|PF , is equivalent
to the trivial parameter. We note that Lemma 2.4.8 remains true if we impose tameness of φ′,
ξ and φ in each item i), ii) or iii). This is because a unipotent factorization of a tame parameter
is tame, and Shapiro bijections preserve tameness. In this tame setting we can reduce further
these statements as follows.

Lemma. — Assertions i), ii) and iii) of Lemma 2.4.8 restricted to tame parameters are
equivalent to :

iv) Statement EF (φ
′, ξ) is true in the following cases :

(a) φ′ is tame and ξ is an unramified automorphic induction LResFf |F (GLn/f) −→
LGLn

(b) φ′ = 1 and ξ is a totally ℓ′-ramified base change LGLn −→ LResF ′|FGLn.

Moreover the same equivalence holds for statements EF (φ′, ξ)− and UF (φ)−.
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Proof. i) ⇒ iv) is clear, so we only need to check that iv) ⇒ iii), and in fact it is sufficient
to prove that iv)(a) implies property UF (φ) for tame parameters φ of G = GLn. Write φ =

φ̂ × Id
I
(ℓ)
F

with φ̂ an n-dimensional representation of I
(ℓ)
F /IF . By 2.4.6, we know that if Gφ is

not quasi-simple then any unipotent factorization factors through some Levi subgroup. Thanks
to Example 2.4.5, we may thus assume that Gφ is quasi-simple. In this case, 2.4.6 tells us that

we can extend φ̂ to ϕ̂ ≃ Q
e

ℓ ⊗ IndWF
Wσ

(σ̃), where σ is an irreducible summand of φ̂, and σ̃ is an
extension of σ to its normalizer Wσ in WF . Factorization (2.2.3) of ϕ then reads

ϕ : WF
(1, IdW )
−→ LGφ = C

Ĝ
(φ)⋊αϕ WF

Id .ϕ
−→ GLn ×WF ,

with Gφ = ResFσ |F (GLe) for the finite extension Fσ such that WFσ = Wσ. In our tame context,
since IF/PF is abelian, Wσ contains IF hence Fσ = Ff is the unramified extension of some
degree f over F . Moreover, since σ has dimension 1, we have f = n/e and C

Ĝ
(φ) identifies

with the diagonal Levi subgroup (GLe)
f of GLn.

Now, looking at the unipotent factorization above, we see that it involves the “right groups”
ResFf |F (GLe) and GLn, but the morphism of L-groups Id .ϕ is not the automorphic induction
morphism. So we look for another factorization (not unipotent) of ϕ, involving the same groups
but with the automorphic induction morphism.

We know that, as with any extension of φ, the group ϕ̂(WF ) is contained in the normalizer
N = N

Ĝ
(C

Ĝ
(φ)). For formal reasons, ϕ(WF ) is therefore contained in the subgroup N ×N/N ◦

WF of LG, where the fibered product is for the composition WF
ϕ̂

−→ N −→ N /N ◦. Actually,
if ε denotes any diagonal épinglage of C

Ĝ
(φ) ≃ (GLe)

f , we know that ϕ̂(WF ) is contained in
the normalizer Nε of this épinglage in N , and therefore ϕ(WF ) ⊂ Nε ×N/N ◦ WF .

Now the point is that N ◦ = C
Ĝ
(φ) (because it is a Levi subgroup), N ◦

ε = Z(C
Ĝ
(φ)), and

we can find a section morphism Nε/N ◦
ε = N /N ◦ →֒ Nε (taking permutation matrices). Then

the action αε of WF on C
Ĝ
(φ) through N /N ◦ makes the semi-direct product C

Ĝ
(φ) ⋊αε WF

isomorphic to LGφ, and identifies the semi-direct product Z(C
Ĝ
(φ))⋊αεWF with Z(Ĝφ)⋊WF ⊂

LGφ. Moreover this section induces an isomorphism C
Ĝ
(φ) ⋊ (N /N ◦)

∼
−→ N , which in turn

induces an isomorphism

ι : LGφ = C
Ĝ
(φ)⋊αWF = (C

Ĝ
(φ)⋊ (N /N ◦))×N/N ◦ WF

∼
−→ N ×N/N ◦ WF .

Now consider ϕ′ := ι−1 ◦ ϕ : WF −→ LGφ and ξ the composition of ι with the inclusion of
N ×N/N ◦ WF into LG. By construction, we have a factorization

ϕ : WF
ϕ′

−→ LGφ = LResFf |FGLe
ξ

−→ LG

and ξ is the automorphic induction L-morphism. Restricting to I
(ℓ)
F , we get a factorization

φ : I
(ℓ)
F

φ′

−→ LGφ = LResFf |FGLe
ξ

−→ LG

where φ′ is extendable to WF (namely to ϕ′) and ξ induces an isomorphism on centralizers.
Now, hypothesis iv)(a) provides us with an equivalence of categories Repφ′(Gφ)

∼
−→ Repφ(G),

but what we need is an equivalence Rep1(Gφ)
∼

−→ Repφ(G). For this, observe that ϕ′ factors

through Z(Ĝφ)⋊WF (because ϕ̂(WF ) ⊂ Nε). Therefore ϕ
′ corresponds to a character Gφ

χ′

−→

Q
×

ℓ as in [2, 10.2]. Twisting by this character provides an equivalence Rep1(Gφ)
∼

−→ Repφ′(Gφ)
and composing with the latter gives the desired correspondence.
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We close this paragraph by stating that the weakened forms of iv)(a) and iv)(b) (i.e.
whithout compatibility with transfer) are proved in [5]. What is missing at the moment to
get the strong form is the compatibility of the construction in loc. cit. with parabolic induc-
tion.
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[12] G. Henniart. Une caractérisation de la correspondance de Langlands locale pour GL(n).
Bull. Soc. math. France, 130(4):587–602, 2002.

[13] R.E. Kottwitz. Stable trace formula: cuspidal tempered terms. Duke Math. J., 51(3):611–
650, 1984.

29



[14] J. Rogawski. On modules over the Hecke algebra of a p-adic group. Invent. Math.,
79(3):443–465, 1985.
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