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Abstract

Let (X, Y ) be a random pair taking values in H×R, where H is an

infinite dimensional separable Hilbert space. We establish weak con-

sistency of a nearest neighbor-type estimator of the regression function

of Y on X based on independent observations of the pair (X, Y ). As

a general strategy, we propose to reduce the infinite dimension of H
by considering only the first d coefficients of an expansion of X in

an orthonormal system of H, and then to perform k-nearest neighbor

regression in R
d. Both the dimension and the number of neighbors

are automatically selected from the observations using a simple data-

dependent splitting device.

1 Introduction

Regression is the problem of predicting a variable from some observation. An

observation is usually supposed to be a collection of numerical measurements

represented by a d-dimensional vector. However, in many real-life problems,

input data items are in the form of random functions (speech recordings,

spectra, images) rather than standard vectors, and this casts the regression
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problem into the general class of functional data analysis. Even though in

practice such observations are observed at discrete sampling points, the chal-

lenge in this context is to infer the data structure by exploiting the infinite-

dimensional nature of the observations. The last few years have witnessed

important developments in both the theory and practice of functional data

analysis, and many traditional data analysis tools have been adapted to han-

dle functional inputs. The book of Ramsay and Silverman [6] provides a

comprehensive introduction to the area. For an updated list of references,

we refer the reader to Cérou and Guyader [3], Rossi and Villa [7], and Tuleau

[8].

In the present paper, we consider the functional regression setting, where the

goal is to predict a scalar response Y from some infinite-dimensional observa-

tions X. More precisely, we will denote by (X,Y ) a random pair taking values

in Z = H × R, where H is an infinite dimensional separable Hilbert space.

Throughout the document, we will denote by ρ the (unknown) distribution

of (X,Y ), and by ρX the marginal distribution of X. Based on n indepen-

dent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), we introduce an estimator fn of

the regression function fρ(x) = E[Y |X = x] which is designed as follows:

First, we reduce the dimension of H by considering the first d coefficients

of an expansion of each observation in a orthonormal system of H; Second,

we perform k-nearest neighbor regression (see Györfi, Kohler, Krzyzak, and

Walk [5])in R
d. We select simultaneously the dimension d and the number

of neighbors k by a data-splitting device. Our main result states weak con-

sistency of the resulting estimator, thereby extending the general strategy

introduced by Biau, Bunea, and Wegkamp [2] in the context of classification

(ie, when Y takes its values in a finite set).

The paper is organised as follows. We start in Section 2.1 by introducing

some notation. Then, in Section 2.2, we present the construction of the

estimator, and state its weak consistency. Proof are collected in Section 3.
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2 Consistent functional regression

2.1 Notation

We let the symbols 〈.|.〉 and ‖.‖ denote the inner product and the associated

norm on H, respectively, and we let (φj)j≥1 be a complete orthonormal system

of H (Akhiezer and Glazman [1]). For each observation Xi, we set Xij =

〈Xi|φj〉. We know that

Xi =
∞

∑

j=1

Xijφj,

where the consistency holds in the L2 sense.

Introduce H(d), the finite-dimensional vector space spanned by the functions

{φ1, φ2, . . . , φd}, and let, for each Xi,

X
(d)
i =

d
∑

j=1

Xijφj.

Finally, denote by fρ and fρ,d the regression functions in H and H(d), respec-

tively, and by σ2
ρ and σ2

ρ,d their respective L2 errors. More precisely, we have

fρ(x) = E[Y |X = x], σ2
ρ =

∫

Z
(y − fρ(x))2dρ(x, y), and the same in H(d) × R

for fρ,d and σ2
ρ,d. Throughout the document, we suppose that Y < ∞ a.s.,

and all the integrals are to be understood over ρ or ρX .

2.2 k-nearest neighbor in H(d)

Let us first formally define our k-nearest neighbor type estimator. To this

aim, we consider the sequence (X
(d)
1 , Y1), . . . , (X

(d)
n , Yn) where the observa-

tions have been projected onto H(d). For x in H(d), we reorder the data:

(

X
(d)
(1) (x), Y(1)(x)

)

, . . . ,
(

X
(d)
(n)(x), Y(n)(x)

)

,

according to the increasing Euclidean distances ‖X(d)
i − x‖ of the X

(d)
i to x.

In other words, X
(d)
(i) (x) is the i-th nearest neighbor of x amongst X

(d)
j . If

‖X(d)
i − x‖ = ‖X(d)

j − x‖, X
(d)
i is declared closer to x if i < j. The k-nearest
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neighbor estimator of fρ is then defined (Györfi, Kohler, Krzyzak, and Walk

[5]) as

fn,k,d(x) =
1

k

k
∑

i=1

Y(i)(x). (1)

To select simultaneously the dimension d and the number of neighbors k,

we suggest the following data-splitting device. First we split the data into a

training set {(Xi, Yi), i ∈ Iℓ} of length ℓ, and a validation set {(Xj, Yj), j ∈ Jm}
of length m, with m+ℓ = n (ℓ and m possibly function of n). For each d ≥ 1,

1 ≤ k ≤ ℓ, we construct a k-nearest neighbor estimator based on the training

set. Second we use the validation set to select d̂ and k̂ as follows:

(d̂, k̂) ∈ arg min
d≥1,1≤k≤ℓ

[

1

m

∑

j∈Jm

(

Yj − fℓ,k,d(X
(d)
j )

)2

+
λd√
m

]

. (2)

Here, the term λd/
√

m is a given penalty term which tends to infinity with

d to prevent overfitting.

This method, which is computationnaly simple, leads to the estimator

f̂n(x) := fℓ,k̂,d̂(x
(d̂)), (3)

which has an error

E(f̂n) =

∫

Z

(

y − f̂n(x)
)2

dρ(x, y) =

∫

H

(

f̂n(x) − fρ(x)
)2

dρX(x) + σ2
ρ .

The estimator fn satisfies the following oracle inequality:

Proposition 2.1 Let M be a positive constant such that (Y − fℓ,k,d(x))2 ≤
M a.s., and suppose that

∆ :=
∞

∑

d=1

e−2(λd/M)2 < ∞. (4)

Then there exists a constant c > 0, only depending on ∆ and M , such that,

for every integer ℓ > 1/∆ and m = n − ℓ,
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E

∫

H

(

f̂n(x) − fρ(x)
)2

≤ inf
d≥1

[

(σ2
ρ,d − σ2

ρ) + inf
1≤k≤ℓ

(

E

∫

H(d)

(

fℓ,k,d(x) − fρ,d(x)
)2

)

+
λd√
m

]

+c

√

ln ℓ

m
.

(5)

The term σ2
ρ,d − σ2

ρ may be viewed as the price to be paid for using a finite

dimensional approximation of the observations, and it converges to zero by

Lemma 3.1 below. The term inf1≤k≤ℓ

(

E
∫

H(d)(fℓ,k,d(x) − fρ,d(x))2
)

converges

also to zero by Lemma 3.2. Since the infimum is taken over all d ≥ 1, weak

convergence of f̂n(x) to fρ(x) is ensured.

Theorem 2.1 Under the assumption (4) and

lim
n→∞

ℓ = ∞, lim
ℓ→∞

k = ∞, lim
ℓ→∞

k

ℓ
= 0, and lim

n→∞

ln ℓ

m
= 0,

f̂n weakly converges to fρ, i.e.

E

∫

H

(

f̂n(x) − fρ(x)
)2

→ 0 as n → ∞.

Pratically speaking, as discussed in Biau, Bunea, and Wegkamp [2], choosing

the penalty in (2) is not an easy task. Indeed, an abusive penalisation of high

dimensions can mask helpful information. For a more involved discussion

about the penalty choice, and experimental results, we refer the reader to

Tuleau [8], who shows that that adding a penalty term improves the stability

of the selected dimension d.

3 Proof

Proof of Proposition 2.1 Let

L(k, d) = E

[

(

Y − fℓ,k,d

(

X(d)
)

)2

| (Xi, Yi), 1 ≤ i ≤ n

]

,
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and

L̂(k, d) =
1

m

∑

j∈Jm

(

Yj − fℓ,k,d(X
(d)
j )

)2

.

We have to minimize L̂(k, d) + λd/m in k and d.

Fix ε > 0. For every d ≥ 1 and every k satisfying 1 ≤ k ≤ ℓ, we may write

P

{

L(k̂, d̂) − L̂(k, d) >
λd√
m

+ ε

}

≤ P

{

L(k̂, d̂) − L̂(k̂, d̂) >
λd̂√
m

+ ε

}

,

since, by definition of (k̂, d̂),

L̂(k̂, d̂) +
λd̂√
m

≤ L̂(k, d) +
λd√
m

.

Therefore,

P

{

L(k̂, d̂) − L̂(k, d) > λd/
√

m + ε
}

≤
∞
∑

d=1

ℓ
∑

k=1

P

{

L(k, d) − L̂(k, d) > λd/
√

m + ε
}

(by the union bound)

=
∞
∑

d=1

ℓ
∑

k=1

EP

{

L(k, d) − L̂(k, d) > λd/
√

m + ε | (Xi, Yi), i ∈ Iℓ

}

≤
∞
∑

d=1

ℓ exp
{

− 2[(λd/
√

m) + ε]2 × (m/M2)
}

(by Hoeffding’s inequality)

≤ ℓe−2mε2/M2
∞
∑

d=1

e−2(λd/M)2

= ∆ℓe−2mε2/M2
,

where ∆ =
∑∞

d=1 e−2(λd/M)2 . Since, for every d ≥ 1 and k with 1 ≤ k ≤ ℓ,

EL(k̂, d̂) ≤ EL̂(k, d) +
λd√
m

+

∫ ∞

0

P

{

L(k̂, d̂) − L̂(k, d) >
λd√
m

+ ε

}

dε ,

we obtain, for every u > 0,

EL(k̂, d̂) ≤ EL̂(k, d) +
λd√
m

+ u + ∆ℓ

∫ ∞

u

e−2mε2/M2

dε .

Note that
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∫ ∞

u

e−2mε2/M2

dε ≤ 1

2

∫ ∞

u

(

2 +
M2

2mε

)

e−2mε2/M2

dε

= −1

2

[

M2

2mε
e−2mε2/M2

]∞

u

=
M2

4mu
e−2mu2/M2

.

Whence, choosing u = M
√

ln(∆ℓ)/2m, we obtain

EL(k̂, d̂) ≤ EL̂(k, d) +
λd√
m

+ M

√

ln(∆ℓ)

2m
+

M

2
√

2m ln(∆ℓ)
.

Since k et d are arbitrary,

EL(k̂, d̂) ≤ inf
d≥1,1≤k≤ℓ

EL̂(k, d) +
λd√
m

+ M

√

ln(∆ℓ)

2m
+

M

2
√

2m ln(∆ℓ)
.

The fact that EL̂(k, d) = EL(k, d) for each fixed k,d leads to the inequality

(5). �

Proof of Theorem 2.1 will rely on the following lemma.

Lemma 3.1 We have

σ2
ρ,d − σ2

ρ → 0 when d → ∞ .

Proof of Lemma 3.1 :

σ2
ρ,d − σ2

ρ = E

[

Y − E
[

Y |X(d)
]

]2

− E

[

Y − E
[

Y |X
]

]2

= E

[

Y − E
[

Y |X
]

]2

+ E

[

E
[

Y |X
]

− E
[

Y |X(d)
]

]2

− E

[

Y − E
[

Y |X
]

]2

= E

[

E
[

Y |X
]

− E
[

Y |X(d)
]

]2

.

Since E[Y 2] < ∞, the sequence
(

E[Y |X(d)]
)

d≥1
is a L2 bounded Martingale,

therefore we have
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E[Y |X(d)] → E[Y |X] in the L2 sense as d → ∞. �

Lemma 3.2 Assume that k → ∞ and k/ℓ → 0 as ℓ → ∞. Then, for any

fixed d,

E

∫

H(d)

(

fℓ,k,d(x) − fρ,d(x)
)2

→ 0 as ℓ → ∞

Proof of Lemma 3.2 See Györfi, Kohler, Krzyzak, and Walk [5], Theorem

6.1, page 88. �

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1 Fix ε > 0. By Lemma 3.1, we know there exist d0

such that σρ,d − σ2
ρ ≤ ε for all d ≥ d0. Then, by Lemma 3.2, we have

E

∫

H(d0)

(

fℓ,k,d0(x) − fρ,d0(x)
)2

→ 0 as ℓ → ∞.

Finally by Proposition 2.1 we have :

E

∫

H

(

f̂n(x) − fρ(x)
)

≤ inf
d≥1

[

(σ2
ρ,d − σ2

ρ) + inf
1≤k≤ℓ

(

E

∫

H(d)

(

fℓ,k,d(x) − fρ,d(x)
)2

)

+
λd√
m

]

+ c

√

ln ℓ

m

≤ (σ2
ρ,d0

− σ2
ρ) + inf

1≤k≤ℓ

(

E

∫

H(d0)

(

fℓ,k,d0(x) − fρ,d0(x)
)2

)

+
λd0√
m

+ c

√

ln ℓ

m
≤ ε + o(1), as n → ∞.

Since ε is arbitrary the convergence is ensured. �
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