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1 Introduction
Computers are more and more involved in various automated systems, and software tends
to replace human decision. This is particularly true for tasks in furthest or dangerous places
that human cannot reach. Autonomy is also interesting in space exploration missions,
which imply very long communication delays and prevent complex real-time control of the
autonomous system from the Earth. For all these reasons, past and current research are
focusing on giving a better autonomy of these system, which should be allowed to evolve in
a complex and non a priori de�ned environment, free from a continuous external control.

However, actual autonomy capabilities rely on arti�cial intelligence techniques often
known as e�cient, but also non predictable, and sometimes non dependable. A contest
has been organized in March 2004 by the DARPA1 in the Mojave Desert, in which �fteen
autonomous vehicles had to run over 228 Km. The best robots did not go beyond the
twelfth kilometre. During the 2005 edition, 18 of 23 bots did not �nish the race. This
shown that, in spite of the work that is carried out to increase the functional abilities
of the robot, another important challenge concerns the dependability of the autonomous
systems. Among the various domains covered by the dependability, the safety is de�ned
in [1] as the freedom from accidents or losses. To our concerns, we may sum up the safety
as 1) preventing the autonomous systems from damaging its environment and 2) avoiding
catastrophic decisions that would lead to the loss of the objectives.

This is particularly interesting as long as, in some cases, some simple safety measures
enforced for the automatic systems (such as preventing people from entering in the working
area of the system) cannot be actually enforceable without calling into question the main
goals of the autonomous system. Consequently, in addition to the safety process dedicated
to the design of the autonomous system, a safety monitoring may be useful to manage
the safety during the operations. This safety is mainly a�ected by the following classes of
hazards:

• the adverse situations met by the autonomous system;
• insu�cient perception abilities, caused by faults a�ecting the sensors or by percep-

tual uncertainties;
• an erroneous control of the autonomous system, due to faults a�ecting the hardware

and the physical devices of the system; and design or implementation faults of the
control software.

In the previous DARPA Grand Challenge, the safety requirements consisted of a
manned support vehicle and remote emergency stop capability using a stop safety ra-
dio supplied by the DARPA. Obviously, this kind of safety monitoring restricts the actual
autonomous abilities of the system, that is why the on-board safety system should be de-
signed to be automatic and independent from the monitored system, in order to protect
the system from the hazards mentioned above. This implies the online veri�cation of safety
properties from an external viewpoint, i.e. the application of rules determined indepen-
dently from the main system design, and executed by a subsystem with its own monitoring
resources (to compute, perceive, and react). However, one of the remaining problem is how
to specify the behaviour of the safety system, i.e., how to de�ne the set of safety properties.
Safety analyses often leads to corrective measures to be applied on the system. Our goal
is a little bit more speci�c, since the corrective measures are previously partially de�ned
(the implementation of an online safety system), and consists in the production of safety
monitoring properties aimed at being executed by the safety system.

Since the safety of the autonomous system will rely on this safety rule determination
process, it has to be e�cient and clearly de�ned. In the literature, the monitoring systems
are often described in term of architecture and design choices, but not really in term of

1http://www.darpa.mil/grandchallenge/
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safety analysis. Consequently, our main goal is to link the design of the safety system
with the upper part of its development process, including the safety analysis and the
derivations of the safety rules. For this, a state of the art (complementary to [2]) about
safety monitoring systems is presented in this article, which is aimed at presenting the
explicit methods that are presented in order to specify the behaviour of the safety system.
Furthermore, we studied what are the characteristics of the design of the safety systems
and their relevant monitoring capabilities.

The �rst part of this article is dedicated to the autonomy, giving a de�nition and pre-
senting examples of software architectures. Then, the second part deals with dependability
of autonomous systems, and presents fault removal methods, such as veri�cation and test,
and online dependability methods that involve robustness and fault-tolerance mechanisms,
among which we may distinguish safety mechanisms. The second section presents several
examples of safety systems, some of them monitoring automatic systems and others au-
tonomous systems. The last part is an orthogonal view of the examples, organized on two
themes. On one hand architectures are compared, that leads to the de�nition on three
generic patterns and on the other hand their safety development process (including safety
rule determination) are presented.
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2 Autonomous systems and their dependability
This section is aimed at introducing the autonomous system concept and at presenting
the di�erent dependability issues that are related to this kind of system. After a �rst part
in which autonomy is de�ned and illustrated by examples of decisional architectures, we
will address the main concerns about autonomous systems and dependability, including
software veri�cation, testing, and fault-tolerance.

2.1 Autonomy
Autonomy, in its most generic sense, is de�ned as �the ability to self-manage, to act or to
govern without being controlled by others�. This de�nition is insu�cient for our purpose,
and can be applied to �dumb� automatic drink distributors as well as to �intelligent robots�
or deep space exploration probes. A more suitable de�nition for our purpose needs to focus
on the latter type of systems.

2.1.1 De�nition
According to the de�nitions given in [3] and [4], an autonomous system is able to reason
and take decisions to reach given goals based on its current knowledge and its perception
of the variable environment in which it evolves.

An autonomous system features decision capabilities, which implies:
• A planner, that schedules tasks to be performed to reach the given goal
• A procedural executive component, in charge of re�ning high level plans into ele-

mentary actions to be executed.
• Sensors and actuators, that allow the system to perceive its environment (localiza-

tion, object recognizing) and to act on it.
• An autonomous system might also include some learning capabilities, in order to

adapt the system behavior according to the situations it meets.
To sum up, an autonomous system possesses deliberative capabilities based on deci-

sional mechanisms, in order to make the appropriate decisions. These decisions taken by
an autonomous system cannot be calculated a priori because of the complexity and the
variability of the environment in which the system is evolving. Instead, decisions have to
be taken in real-time during operation. For this, a search is realized in a possibly very
large state space. The search process is accelerated via the utilization of heuristics and
should compute a solution that satis�es the system's goals. In contrast, an automatic sys-
tem reacts simply, predictably, and according to a prede�ned behavior. This segregation
between automatic and autonomous systems is related to the complexity of the task the
system has to perform, and to the variability of the environment taken into account. The
boundary between autonomous and automatic systems is not sharp: between a purely
reactive automatic system and a totally autonomous deliberative system, a spectrum of
systems may be considered. In the following parts of the paper, we consider a system to
be autonomous if it needs a decision process exploring a space state in order to perform
its mission. We focus on this feature of the autonomous systems since we are interested to
address the relevant issues from a safety viewpoint.

Most autonomous systems implement the decision process through some sort of planner,
which has to produce a plan according to the current state of the system and its current
goals. A plan is a set of tasks with temporal relations, which may be total (Task1 <
Task2 < Task3) or partial (Task1 < Task2, Task1 < Task3). Most planners are model-
based, using a description of the systems' capabilities that have to be taken in account
during planning (For example, the ability to move, to take photos etc.). Three criteria
characterize decisional mechanisms [5]: soundness, which is the ability to produce correct
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Figure 1: The Domino model (from [6])

results, completeness, which provides guarantees about the production of a solution and
tractability, which characterize the complexity of the inference mechanism (polynomial,
NP-complete). As these criteria are linked together, a tradeo� has to be made, for example
soundness may be sacri�ed in order to ensure tractability.

2.1.2 Illustration
In this section, we present two models for autonomy. The �rst is the domino model, a
high-level modeling of a reasoning process. Then, a more concrete example is given: a
three-level software architecture for autonomous system control.

The Domino Model. This model was proposed in [6] to design an autonomous entity
for the prescription of medical treatments (see �gure 1). It models a generic decision
process in a diagram, where the nodes are knowledge bases, and the arrows are deduction
procedures that perform a step forward in the process.

This model is generic since it may be applied to various situations. The knowledge
bases and inference procedures are not given in detail and have to be adequately imple-
mented in the chosen context. It �rst starts from a knowledge base (Situation beliefs) that
should lead to the de�nition of its main goals, via problem de�nition. This problem de�-
nition may be clearly translated in the medical domain since the considered prescription
system �rst has to detect symptoms and to perform a diagnosis before treating the patient.
This interpretation is harder to generalize to autonomous systems whose main goals are
de�ned externally. However, some parts of the problem are not de�ned in the main goals:
for example an obstacle in the environment that has to be perceived to avoid a collision.
Once the current problem goals have been de�ned, a set of solutions is proposed (Candi-
date solutions), from which some decisions are taken (Decisions) after an argumentation.
The decisions leads to new information in the situation beliefs and to the production of
plan. Finally, this plan is decomposed into elementary actions (Actions) whose results are
acquired in the situations beliefs.

The domino model, in spite of its abstract aspect, may be partially mapped to a software
decision process for autonomous system control. For example we may recognize the search
for a valid solution (Propose solution, Argumentation), the plan enactment (Schedule), the
perception (Acquired date), etc.

The LAAS Architecture. This is a typical hierarchical architecture (see �gure 2). Its
layers are di�erent in term of abstraction: highest layers deal with high-level perception and
action whereas lower layers have local views and can only take speci�c actions. Reactivity
is more important at the bottom of the architecture whereas the top layer needs to resort
to complex decisional reasoning.

The LAAS Architecture is composed of three layers:
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• A decisional layer including a temporal executive: the IxTeT-eXeC planner, and a
procedural executive: OpenPRS. To produce a plan according to the goals, IxTeT-
eXeC relies on a constraint satisfaction problem (CSP) solver using a model. This
model is a set of constraints that describes the actual ways for the robot to reach
its goals: its ability to move or to use its I/O devices. Searching for a solution
has been accelerated in the solver with heuristics on the depth-�rst search. Even
if the heuristic always leads the solver to a solution if it exists, it does not provide
any guarantee about the time to �nd the solution. OpenPRS is in charge of the
supervision of the plan execution. It processes high-level requests to obtain a set
of low-level actions to be performed by the functional layer.

• An execution control layer, acting as a safety bag [7]. The R2C component (Request
& Report Checker) is a �lter between the decisional and functional layers. On
reception of a request from the decisional level, it checks the system safety and
consistency and decides to commit the request, to reject it or to abort a currently
running function that is inconsistent with the requested function. R2C is detailed
more in Section 3.2.1.

• A functional layer, aimed at managing low-level functions. It is composed of a set
of functional modules, each one with a speci�c task. For example, one is trying to
�nd paths, whereas another is managing electric motor control.

2.2 Hazards related to autonomous systems
Autonomy raises signi�cant dependability challenges due to the high variability of the
system environment. It also induces complex control software that is di�cult to verify
exhaustively, since the state space is potentially huge, and cannot even be de�ned in
advance since some situations cannot be known in advance. For the same reasons, it is also
di�cult to evaluate how complete any test cases might be. Another threat to dependability
is the utilization of heuristic methods to accelerate the search for a solution in the state
space: this may reduce soundness or completeness but also introduces complexity that leads
to a loss of predictability in the decisional mechanism that makes test and veri�cation so
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much harder.
The decisional layer is particularly challenging from a safety viewpoint since it produces

and re�nes commands that can be potentially dangerous.
Taking inspiration from [8] and [9], we classify the main threats as follows:
• Endogenous hazards arising from the autonomous system itself:

• Development faults, i.e., faults introduced during system design and imple-
mentation (by compromise, by accident, or even by malice).

• Physical faults occurring in operation and a�ecting hardware resources (pro-
cessors, sensors, actuators, energy sources).

• Exogenous hazards arising from the physical, logical and human environment of
the autonomous system:

• External faults such as physical interference, malicious attack, operator/user
mistakes and inter-system cooperation faults.

• Environment uncertainties due to imperfect perception of environment at-
tributes (lack of observability, non-ideal sensors, etc.)2.

• Environment contingencies such as uncontrollable events, unforeseen cir-
cumstances, workload dynamics, etc.

Environment variability is taken into account by decisional mechanisms relying on ar-
ti�cial intelligence techniques such as expert systems, planning using constraint solvers,
Bayesian networks, arti�cial neuron networks, model-based reasoning, etc., that take deci-
sions from their perception of the environment, their self-perception and from the means
they have to reach their goals. These decision processes include some form of domain-
speci�c knowledge and a means for making inferences based on this knowledge. This kind
of technique leads us to consider the following potential fault sources [9]:

• Internal faults of decisional mechanisms
• Wrong, incomplete or inconsistent knowledge base.
• Unsound inference.
• Unforeseen contingencies, the knowledge base may be correct but reasoning

based on it may break down when it is confronted with unusual situations
that are not foreseen by the designer.

• Interface faults of decisional mechanisms
• Ontological mismatch, when a mismatch occurs between the meaning of a

term used within a component and the meaning of the same term when used
outside the component (by its user or by another component).

• When there is human interpretation, it may be incorrect; in particular due to
overcon�dence or on the contrary incredulousness, due to lack of information
on the way the result has been produced.

For example, a typical ontological mismatch may occur between two layers of a hierar-
chical architecture. Two di�erent layers exchange data that may have di�erent semantics
at each level, since their abstraction degrees are di�erent. Homogeneity of semantics in the
models of the di�erent layers is a current challenge in robotic software architecture. For
example, the IDEA architecture [10] was designed with agents using the same formalism
to describe their models, in order to reduce inconsistency.

Internal errors can be illustrated by the domain model used by a planner to produce a
plan according to the objectives. It is a set of facts and rules, which is one of the system's
major knowledge sources. It is identi�ed in [11] as an important factor that a�ects the

2Uncertainties may also be considered as a consequence of an insu�cient design. However, since it is
clearly related to the di�culty to forecast all the situations, we arbitrarily decided to associate it with
exogenous threats.
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soundness of results. Moreover, heuristics are used for generating plans, and their tuning is
also important for the quality of the plans produced. These kind of highly complex systems
are susceptible to the �butter�y e�ect� due to their high sensitivity to any modi�cation of
either model or heuristic.

2.3 O�ine dependability methods
The �rst class of method that may be used to increase dependability of an autonomous
system is o�ine, and is mainly composed of o�ine model checking and testing. Currently,
others techniques such as theorem proving and static analysis seems not to be actually
applied in the autonomous system domain. However, o�ine methods are an important
area of current research, since fault removal enables the dependability of autonomous
systems to be increased before and during their deployment.

2.3.1 O�ine model checking
The model checking veri�cation technique may be de�ned as an automated means to check
a formal model of the system with respect to a set of behavioral properties, by exhaustive
exploration of the state space. If the properties hold, the model checker informs the user
that it succeeded, else a counter example of an execution in contradiction to the properties
is given, and exploration ends. For complex systems, the exploration time and memory
space may become huge, which is quali�ed as the state explosion limitation. This has been
partially solved with symbolic model checking methods using compact representations of
states, such as Binary Decision Diagrams (BDD), which manage states in sets rather than
individually.

In addition to its automated component, model checking has the advantage of possible
use early in the design process, as a model is only required for checking. For this reason,
on one hand it is an improvement on testing, but on the other hand formal guarantees
are provided only on the model and absolutely not on the actual implementation. This is
particularly true when considering the di�culty of de�ning a sound model from the actual
system. Even if the model is successfully checked, a doubt still exists about the modelled
system.

Model checking considers two types of properties to be checked:
• Safety properties state that nothing bad should happen (e.g., no deadlock). This
logical safety is speci�c to the model checking technique and is not relevant to the
safety related to the dependability.

• Liveness properties state that something good must eventually happen (every client
will eventually get the shared resource).

Model checkers often use temporal logics to express theses properties. These logics
are extensions of propositional logics with temporal modalities [12]. Time is considered
as discrete, and propositional formulas are evaluated at each step of a trajectory in the
model's state space. Frequent modalities3 are <next> which states a formula holds in the
next step, <always>, a formula holds in each state, <until>, a formula always holds until
another starts to hold.

We can distinguish two classes of temporal logic:
• Linear Temporal Logic (LTL), which expresses path formulas. It considers a linear

sequence (time steps) of logic formulas (for example representing events) and checks
properties on it. A typical example of using LTL is analyzing a single execution
trace (see �g. 3).

3It should be noted that past time temporal logics also exist. Expressive power seems to be the same,
the choice being mainly directed by the kind of properties to be expressed.
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¤Safe_State
All the steps of the execution must be safe

Power_TurnOn →©Power_TurnOff
Any ON signal must be followed by an OFF signal at the next execution step

Figure 3: LTL formula examples

AG(Safe_State)
All states of all possible executions must be safe

AG(EF (Possible_recovery))
All states of al possible execution must allow a state to be reached from which recovery is

possible

Figure 4: CTL formula examples

• Computational Tree Logic (LTL) which expresses state formulas. Rather than con-
sidering a single execution, we may want to express properties on states, such as
�in state X, some execution paths must lead to state Y�. This kind of property
(see �g. 4) does not only consider the future as a linear path but rather as several
possible futures reachable from the current state.

Speci�cations in temporal logics are also used for on-line veri�cation and online er-
ror detection (see R2C and MaCS examples in section 3), in which we are particularly
interested.

Model checking is often applied on model of a subsystem or on a model of a subsystem
component, since state explosion limitation does not allow the veri�cation of too complex
models. In the autonomous system domain, there are many models used and that are
potentially critical. This is the case for the Planner model. As stated in Section 2.2,
soundness of this kind of model is fundamental to the system's behavior, since the planner
relies on it to �nd a way to reach its goals. Particularly, model consistency is critical and, in
[11], a method is presented to apply model checking techniques. The Remote Agent HSTS
planner takes domain models written in LISP-like syntax. These models describe relations
between the di�erent states of the system, each state being represented as a predicate. The
example of model given in the article shows relations between states as temporal precedence
constraints, where the robot has to go to the hallway when moving from kitchen to living
room. Thus temporal predicates are de�ned: Before(Task1, Task2) (Task1 ends before
Task2 starts), Contains(Task1, Task2) (Task2 starts after Task1 starts and ends before
Task2 ends), etc. To verify the model, it has to be translated into an understandable
model for the model checker. As HSTS models are similar to SMV4 models, they can be
translated to a transition system that SMV can process. In the example, the transition
system uses the states of the robot's model and temporal constraints are translated into
transitions. An application with a �hole �xer robot� is presented. The domain model,
consisting of 65 temporal constraints, leads to the generation of a veri�able model with
thousands of states. Properties state that �An execution can lead to �x the hole� or �The
robot can eventually reach a state where �xing is possible�. The �rst property checked to be
true, but not the second one because with bad initial conditions (low battery), the mission
could not be completed.

Another example concerns the FDIR model veri�cation. Livingstone is the Remote
Agent's model-based Fault Detection, Isolation and Recovery System (FDIR) [13]. A

4SMV, Symbolic Model Veri�er, is the Carnegie Mellon University model checker, cf
http://www.cs.cmu.edu/ modelcheck/.
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Livingstone model describes the system's redundant architecture and allows the system to
diagnose hardware faults and to trigger recon�guration. As with the previous example,
the hardest step is the translation of the Livingstone model into a model that can be
processed by a model checker. Here, 45 days were required to obtain a veri�able model.
After that, checking revealed �ve concurrency bugs, of which four were judged as critical
by the development team and would probably not have been detected by regular testing.

It's important to note that model checking can also be applied to lower abstraction
levels than automata. For example, Java PathFinder [14] can directly take as input Java
bytecode, translating it to Promela (SPIN model checker input language). Java Path�nder
was used to verify Mobot, a robot aimed at following a line on a road. It is not an
autonomous system as de�ned in 2.1.1, although the approach proposed in [15] is interesting
because the whole system is checked by Java PathFinder. The checked model is composed
of the Java control software, a model of the continuous system (with di�erential equations)
and a model of the environment. Safety properties concern speed, and distance to the line,
whereas liveness properties deal with robot mobility and accuracy after a �xed amount
of time. Model-checking time and required memory space were respectively seven seconds
and 5 MB. No counter-examples were mentioned in the article, which is partially explained
by the oversimpli�cation of the system model. However, the main goal was reach, i.e., the
veri�cation of a model of the complete system.

2.3.2 Testing
Testing is another important concern in autonomous systems. Contrary to the model-
checking, testing can be carried out on real systems evolving in real environment. However,
as this class of system is supposed to evolve in an open environment, the state space is
possibly in�nite. Consequently, testing has to be extremely intensive in order to cover
the larger range of situations, which is the main issue of the autonomous system testing.
According to [16], testing the real system with �high �delity test beds� is also very long
to perform, if the designer has to test a real mission scenario. For Deep Space One, only
the nominal scenario testing was carried out due to the time and resources limitations for
testing. However, it has been accelerated by simpler testbeds, for example by testing a
subsystem in a simpli�ed environment.

Another important issue is the de�nition of the oracle [17], aimed at checking if the
outputs of the tested system are correct with respect to the inputs. This can be automated,
for example in [18], a plan execution component is tested. This component takes a plan
as input and generates an execution trace. A framework, mainly composed by a test case
generator and an observer, is set up (see �g 5). Plans (input of the tested application)
are generated exploiting the search capability of a model checker (part of the test-case
generator) and, for each plan, some properties are automatically extracted. These prop-
erties mainly deal with precedence and timing constraints on the execution of the tasks
de�ned in the input plan. Then, the oracle (Observer) is generated with respect to the
properties, the plan is executed (by the Application), and �nally the oracle checks is the
trace generated by the execution is correct.

As previously said in Section 2.2, the components of an autonomous system are very
sensitive to any modi�cation. Consequently, non-regression testing, which has to ensure
that the new version of the tested system is as good as the previous, may be useful. For
example, in [19], since slight modi�cation on the model may lead to an important behavior
change, non-regression testing of the models in the software architecture is done. For each
version of the model, some executions are launched and a trace veri�cation tool (Eagle5)
analyzes the generated logs according to generic and problem speci�c properties (depending

5http://osl.cs.uiuc.edu/ ksen/eagle/.
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Figure 5: Test-case generator and trace veri�cation framework (from [18])

on the model) that are not explicitly given.
This shows that testing the autonomous systems is an active area of research. It can

be realistically performed, with real systems and real environments. In addition, oracles
can be automatically generated. However, the problem of the limited coverage, because of
the limited time and execution resources, still exists and is the main limitation.

2.3.3 The need for online techniques
O�ine dependability techniques applied to autonomous systems can be:

• either formal on a model: we can obtain strong formal guarantees, but only on an
abstraction of the system;

• or applied on a real system or software: accurate but incomplete, since all the
situations that the autonomous system can met cannot be exhaustively tested.

Currently, event if these techniques are becoming more and more e�cient and are
essential to ensure a level of correctness of the design, they are not su�cient to guarantee
a correct execution of the system during operations. For this, designers may use additional
online techniques such as fault-tolerance and robustness.

2.4 Online dependability methods
Whereas o�ine dependability techniques aim to avert hazards that arise during develop-
ment of an autonomous system (namely, development faults), online dependability tech-
niques aim to handle hazards that arise during operation. This includes endogenous haz-
ards such as physical faults and residual development faults (i.e., those not avoided by
o�ine dependability techniques), as well as all classes of exogenous hazards (cf. Section
2.2).

2.4.1 Fault-tolerance and robustness techniques
As in [3], we classify online dependability techniques as either fault-tolerance techniques
or robustness techniques according to the class of hazards being addressed

• Fault-tolerance techniques aim to avoid system failures in the presence faults af-
fecting system resources (i.e., endogenous hazards such as sensor failures, software
design faults, etc.)

• Robustness techniques aim to avoid system failures in the presence of external
faults, environment uncertainties and contingencies (i.e., exogenous hazards).6

This distinction is useful since robustness issues have to be addressed mostly by the
domain expert, whereas fault tolerance is the responsibility of the system architect.

6This de�nition is compatible with the term �robustness� used as an attribute for characterizing de-
pendability with respect to external faults, as in [8], which did not consider other exogenous hazards.
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Fault-tolerance techniques rely on system-level redundancy to implement error detec-
tion and system recovery [8], where an error is de�ned as �the part of the total state of
the system that may lead to its subsequent service failure�. System recovery consists of er-
ror handling (rollback, rollforward, compensation) and fault handling (fault diagnosis and
isolation, and system recon�guration and re-initialization). Error handling by rollback or
rollforward is executed on demand, following error detection. Error handling by compensa-
tion may be executed on demand, or systematically, even in the absence of detected errors.
This latter approach is often referred to as fault masking.

Since robustness techniques aim to deal with endogenous hazards, the notion of an
error de�ned in terms of the system state alone is too restrictive. Instead, it is necessary
to take into account the state of the system and its environment. Here, we use the term
�adverse situation� to denote a global state of the autonomous system and its environment
that may cause the autonomous system to fail to reach its goals.

Robustness techniques may be classi�ed according to whether they handle adverse
situations implicitly (by a treatment applied systematically in all situations) or explicitly
(by a treatment applied on demand, following the detection of an adverse situation) [5].

Implicit handling of adverse situations may be likened to fault masking since the same
treatment is applied in all situations, adverse or not. Examples include uncertainty man-
agement approaches such as fuzzy logic, Kalman �ltering and Markov decision processes,
and sense-reason-action techniques such as planning. In the latter approach, a search is
carried out through projections of the currently-perceived situation towards possible future
situations for a solution sequence of actions able to achieve the system's goals. The re-
dundancy resulting from the combinations and permutations of possible actions increases
the likelihood of a solution sequence enabling adverse situations in the possible futures
to be circumvented. Moreover, if least commitment planning is employed, then adverse
situations that arise dynamically while a plan is being executed will be easier to elude.

Explicit handling of adverse situations may be likened to error detection and system
recovery in fault-tolerance: an adverse situation is detected either directly (by appropriate
sensors, model-based diagnosis, situation recognition, etc.) or indirectly (through obser-
vation of action execution failures). In the latter case, system recovery may consist in
backward recovery (action re-execution in the hope that the dynamic situation has evolved
and is no longer adverse), but more commonly, recovery entails some application-speci�c
rollforward approach such as re-planning, plan repair or modality switching.

2.4.2 Reliability and safety techniques
An orthogonal classi�cation of online dependability techniques may be made in terms of the
intended dependability goal: avoidance of failures in general (reliability and availability)
or avoidance of catastrophic failures (safety).

When reliability/availability is the goal, the key issue is the presence of su�cient re-
dundancy of resources, of function and of information to ensure continued service in the
face of failed resources, functionality that is inadequate for the current situation, or impre-
cise or erroneous information. The redundancy may be exploited concurrently, as in fault
masking or implicit handling of adverse situations, or on demand, following detection of
an error or a manifestation of an exogenous hazard.

When safety is considered, detection of potential danger is the primary issue, be it due
to an endogenous or an exogenous hazard. If a potential danger is detected, a safeguard
procedure (such as shutdown) can be initiated. Such a safeguard procedure can be viewed
as a speci�c form of forward recovery.

If reliability/availability and safety are simultaneously required (which is usually the
case), a compromise must be made since any attempt to ensure continued operation (reli-
ability/availability) in the face of hazards can only increase the likelihood of a current or
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future hazard being mishandled and leading to catastrophic failure. Conversely, shutting
down the system whenever danger is suspected (safety), evidently decreases the likelihood
of continuous service delivery (the safest system is one that never does anything).

In a given system, reliability/availability and safety may be required interdependently
at di�erent levels. For example, the correct execution of a safeguard procedure (for system
safety) requires continuous service (reliability/availability) of the mechanisms responsible
for the safeguard procedure (e.g., the �y-by-wire system required to land an aircraft). As
another example, for a system to be reliable, its subsystems need to be safe in the sense
that they avoid failures that are catastrophic for the system as a whole.

A global approach to safety requires the consideration of both endogenous and exoge-
nous hazards. So, although detection of errors due to internal faults can be seen as a
necessary condition for a system to be safe, it is not su�cient alone � both external faults
and the situation of the system with respect to its uncertain and dynamic environment
must also be taken into account.

2.4.3 Independent safety systems
Since we decided to focus on safety, and since online dependability methods are required
to ensure online correctness, the development of a safety system may increase signi�cantly
the dependability of the relevant safety-critical system. This is particularly true for the
autonomous systems that use non �safety trustable� components.

The safety systems have to be independent, i.e., designed from an independent speci�-
cation composed by a set of safety properties. The independence also concerns the online
independence of the safety system, which has to enforce the safety properties independently
from any faults of the functional system.

Examples are presented in section 3. Among these examples, we may distinguish Safety
Bags and Safety Kernels. The Safety Bag concept is described in [20] and is de�ned as
[21](C.3.4) �an external monitor implemented in an independent computer to a di�erent
speci�cation�. It monitors continuously the main computer and only deals with ensuring
safety. Safety kernel is a little bit di�erent in John Rushby's sense [22] it is a software
monitor that isolates the control software from the features that may a�ect the safety
of the system. Thus, when the control software asks the Safety Kernel to use a partic-
ular functionality, the latter can reject an unsafe command. For this, Rushby gave two
conditions:

• Hazardous operations cannot be executed without being checked by the safety ker-
nel, i.e., all safety-related operations must be observable at the kernel level.

• Safety properties should be expressed as a combination of operations observable at
the kernel level.

For specifying the behavior of the safety kernel, as well as for Security Kernels, people
often use the term �Safety Policy� to denote a set of high-level properties the kernel has to
enforce, for example, the non-production of sudden movements.

Other expressions are used to denote a safety system: Monitoring and Sa�ng Unit
[23], Protection System [24], Safety Manager [25], Safety Monitor [26], Checker [7] and
[27], Guardian Agent [6]. In the following sections of this document, we decided to use
a generic expression to refer to the class containing theses systems: independent safety
system, system in its most generic sense and independent as long as the safety system
has to protect the system independently (with its own abilities whatever happens to the
monitored system) from the functional system. We also use safety system to denote the
same concept.
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2.5 Conclusion
In this section, we saw what an autonomous system is, with a de�nition and an example of
software architecture. Then, we introduced the hazards related to this kind of systems and
the relevant o�ine dependability methods. On one hand, autonomous systems are di�cult
to verify exhaustively due to the variability of the environment, and the consequent state
space to verify. On the other hand, testing is also carried out to reduce faults in the
autonomous systems, but should be as intensive as possible according to the planning and
the budget of the project. To complement these o�ine methods, on-line techniques are
presented, to increase the reliability of the autonomous system, by robustness and fault-
tolerant means. Finally, since the current online dependability techniques do not guarantee
safety, we conclude on the necessity to use an independent safety system, only dedicated
to the safety monitoring of the system, independently of its functional behavior. Thus, the
next part of this text deals with examples of independent safety systems.
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3 Examples of independent safety systems approaches
In this section, we present several protection mechanisms aimed at preventing a system
from entering an unsafe state. All of them do not monitor autonomous system according
to the de�nition given in the section 2.1.1, however they share a safety-critical feature.
This section is divided in three parts. The �rst one deals with safety systems on automatic
systems whereas the second concerns safety systems on autonomous system. The distinc-
tion is made since the safety systems may not have the same roles. For example, safety
systems on autonomous systems often monitor the control software (see section 4.1.3) since
the software decision process is critical for the system safety. The last part presents two
generic frameworks for online veri�cation.

3.1 Automatic applications
In this section, four systems are presented from various application domains: medicine,
nuclear energy, railway and space. They all possess an independent safety system.

3.1.1 Magnetic Stereotaxis System
The Magnetic Stereotaxis System (MSS) [28] is a medical device for cerebral tumor treat-
ment. A small magnetic seed is introduced inside the brain and is moved to the location
of the tumor by magnetic �elds produced by coils. The seed can be used for hyperthermia
by radiofrequency heating, or for chemotherapy by delivering drugs at the location of the
tumor. The seed is controlled by a human operator who observes movements on a dis-
play by magnetic resonance images. An automatic monitoring system uses X-Rays and a
�uoroscopic screen to track the seed.

In [28], identi�ed hazards, leading to potential patient injury are:
• Failure of electromagnets or controllers.
• Incorrect calculation of commands to provide a requested movement.
• Misrepresentation of the position of the seed on the MR images.
• Erroneous movement command by the human operator.
• X-Ray overdose.

The architecture is built using a Safety Kernel (cf. section 2.4.3) that �lters commands
and monitors the physical I/O devices (see �gure 6) according to de�ned Safety Policies.
Their safety policies seem to consist in safety rules, and we prefer to keep a higher level
meaning of policy, that is a set of high-level properties.

The choice of using a Safety Kernel as an interface between the control software and
the I/O devices is motivated by:

• Ensured enforcement of safety policies.
• Simplicity and veri�ability of the Safety Kernel structure.
• Simpli�cation of the application software, as the kernel frees the application of

enforcing the policies.
• Kernel control of I/O devices.

Basically, the safety policies are grouped in class such as: hazardous operation device,
device fails, erroneous input from computer, operator error, erroneous sensor input, etc.,
and concerns issues at the software level as well as at the system level.

3.1.2 SPIN
SPIN (French acronym for Digital Integrated Protection System) is a safety system for
nuclear power plants [24]. It has been designed to prevent catastrophic situations such
as meltdown that can lead to the spread of nuclear material outside of the plant. SPIN

16



Figure 6: Magnetic Stereotaxis System's Safety Kernel (from [28])

monitors physical parameters such as the pressure of the steam or the temperature of the
core. More precisely, SPIN ensures three groups of functions, categorized in [24] and [29]
as:

• Protection functions, the monitoring of operational parameters
• Safeguard functions, the invocation of safeguard actions in case of accident, such

as area islolation, activation of safety water circuit supply.
• Safety functions, aimed at switching to a safe position if a critical accident occurs,

typically with the interruption the fusion reaction using the control rods.
SPIN's architecture is divided in two stages: acquisition and control (see �gure 7).

The �rst is composed of four capture and processing units (UATP). Each UATP includes
two capture units (UA) in active redundancy and �ve functional units that execute the
protection algorithms. UATPs do not communicate with each other, but only with the
second stage, composed of two safeguard logic units (ULS). This control layer is in charge
of performing safeguard actions and emergency procedures. Each ULS includes four pro-
tection and processing units (UTP), and each UTP receives signals coming from the four
UATPs, and a vote is done to ensure the availability of the �rst stage. Then, a second
vote (2/2) is carried out between each pair of UTPs inside each ULS. Finally, safeguards
and safety actions are triggered after a last vote (1/2 for the safeguard actions, 2/4 for the
safety actions).

Computers are monitored by local test units (not present on the �gure) that are man-
aged by a centralized test unit (UTC) that performs periodical checks. In case of an
abnormal situation, a diagnostic procedure is triggered and performed by the diagnostic
unit (UTD).

This monitor relies heavily on fault masking through functional redundancy and voting.
This may be explained by the need for not only safety but also high reliability of the safety
system itself, needed to increase the availability of the power plant.

3.1.3 Elektra
Elektra [20] is an electronic interlocking system for railways. As safety in transportation is
a major issue, Alcatel Austria developed a safety system to prevent unsafe situations that
could lead to disasters, such as collisions. Elektra is now in operation in many Austrian
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Figure 7: Architecture of the SPIN (from [24])
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Figure 8: Architecture of the Elektra Safety Bag [2]

and Swiss railway sites. The safety requirements of Elektra are described by the Austrian
Federal Railway standard, which states at most one catastrophic accident may occur within
10 years.

This is the �rst reference to the expression Safety Bag as a kind of diversi�cation.
A channel is dedicated to achieve the main function (functional channel), and another
(safety channel) to ensure the safety of the decisions taken by the functional channel (see
�gure 8). The Safety Bag checks the commands produced by the functional channel, which
are calculated from an order of the operator. If the command is not safe, the Safety Bag
do not commit the command and the voting unit do not proceed to the execution of the
command issued only from the functional channel. It uses its own expert system and
knowledge base containing the current state of the system and the safety rules, and then
decides whether the commands are safe or not. Safety rules are expressed in PAMELA,
a logic programming language dedicated to the development of real-time control expert
systems. The Safety Bag's redundant hardware, and communication between the safety and
functional channel, are supported by the VOTRICS (VOting TRiple modular Computing
System) layers to build a fault-tolerant safety channel in order to ensure availability in the
system.

3.1.4 Automated Transfer Vehicle
The Automated Transfer Vehicle (ATV) is the European Space Agency autonomous space-
craft designed to supply the International Space Station (ISS) with propellant, air, water,
payload experiments, etc. In the operational life of the ATV, the rendezvous and docking
phases are hazardous due to the potential for collision with the ISS. To manage this kind
of hazard, a Safety Unit has been developed to ensure the safety of the ATV during this
phase. If a hazardous situation is detected, the rendezvous is aborted.

ATV's data management architecture is centralized, a single computer function handles
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Figure 9: Automated Transfer Vehicle

all control tasks. This makes the system more predictable, easier to validate, and tends
to limit the amount of software and relevant possible faults. Safety is addressed by a
safety component (Monitoring and Sa�ng Unit, MSU) to monitor the data management
system by fault-tolerance. Safety and nominal systems are isolated in order to respect the
following requirements ([23]):

• Operations shall be possible in case of nominal software failure.
• The MSU software data are directly coming from sensors.
• The MSU software shall have precedence over the nominal software. It must be

able to passivate the nominal software.
The safety system (see �gure 9) is composed by a pair of MSU and monitors a fault-

tolerant pool of computers: the nominal system. This segregation pattern looks like Elektra
Safety Bag (see section 3.1.3). The MSUs are also in charge of monitoring some ATV
critical parameter such as attitude or distance to the docking port, and are executing the
same safety software. The nominal system is composed by three computers, executing the
same nominal software, which produce commands that are compared with a vote.

The safety system obtain the information about environment thanks to a fault-tolerant
pools of sensors partially shared with the nominal system. However, the safety system
uses raw data from the shared sensors whereas the nominal system uses processed data,
thus the monitoring function is independent of any sensor-internal processing fault. If an
hazardous situation is detected, the rendezvous is aborted: the functional computers are
reseted and the safety chain takes the control of the ATV to engage the collision avoidance
manoeuvres.

3.1.5 Ranger Robotic Satellite Servicer
The Ranger [26] is a robotic system aimed at refueling, repairing, and upgrading the
International Space Station (ISS). It is composed of two seven degrees of freedom arms.
This research project was lead by the University of Maryland and supported by the NASA.

Hazard analysis, including Impact Energy Analysis in order to analyze the system
physics, highlighted the following catastrophic situations:

• Manipulator motion physically damages the Shuttle and prevents a safe return to
Earth (e.g., by preventing the payload bay doors from closing).
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Figure 10: Architecture of the Ranger (from [26])

• Releasing an untethered object (e.g., an orbital replacement unit) that damages
the shuttle or becomes orbital debris.

• Breaking an object due to excessive force or torque.
In addition, an Impact Energy Analysis has been performed in order to analyze the system
physics.

The architecture is shown in �gure 10. The production of safe commands is achieved by
Data Management Units (DMUs). Main DMU produces commands and performs safety
checking whereas Monitor DMU only performs the safety checks. The Vehicle-Wide Safety
Checks concern:

• Position. Enforces the minimum approach distance determined by the impact en-
ergy analysis to prevent position violations.

• Velocity. Enforces the system-wide maximum velocity determined by the impact
energy analysis.

• Inadvertent release of task equipment.
• Excessive force or torque of an interface.

All these checks are implemented in the same ways in both DMUs, except the one
about position that was independently developed. As emphasized by the term Vehicle-
Wide used in [26], the safety checks only concern external state of the system without
taking into account internal data, such as hazardous commands.

The ranger has been developed, and was tested in laboratory and in water pool for
hours in order to study the dexterous robotic on-orbit satellite servicing.

3.2 Autonomous applications
As well as for the automatic applications, we present safety systems for autonomous sys-
tems. The application domains are also various and concern space, robotics and medicine.

3.2.1 Request and Report Checker
As mentioned in section 2.1.2, R2C [7] is a safety and consistency checker located between
the decisional and the functional layers of the LAAS architecture for robot control (see
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Figure 11: Request and Report Checker

�gure 2, page 7). R2C is designed to avoid:
• Inconsistency of the system state between di�erent abstract representations at dif-

ferent layers.
• Unforeseen incorrect behavior due to very high complexity of the decisional mech-

anisms.
• Incorrect low-level module interactions, since they execute concurrently and asyn-

chronously.
• Adverse situations due to an open environment that cannot be exhaustively iden-

ti�ed and therefore, tested.
R2C checks safety properties written in a subset of the CTL temporal logic. It takes

as input requests produced by the decisional layer and reports coming back from the
I/O devices through the functional layer (see �gure 11). R2C is divided in two parts, a
database that records the state of the modules, and the checker. The functional layer is
composed of several modules, each one achieving a particular function and modeled by
a state machine with idle, running, failed, ended states. The main goal of the R2C is
to manage safety and consistency issues of these modules by sending them commands to
change their state. This is done according to CTL7 rules compiled into a controller relying
on an Ordered Constraint Rule Diagram (OCRD)8. This controller is used online to detect
potential violations of rules and to react to keep the system in a safe state.

As R2C is a controller, it does not really detect unsafe situations and afterwards trigger
a recovery procedure. Rather, it continuously restricts the system's behavior by �ltering
each command that could lead to an unsafe or inconsistent operational situation.

3.2.2 Lancaster University Computerized Intelligent Excavator
Lancaster University Computerized Intelligent Excavator (LUCIE) [25, 30] is a commercial
excavator that is controlled by an on-board computer that replace the human operator.
The main goal is to have a system that reach the working area, dig trenches without the
need of human intervention.

A Safety Manager has been developed to prevent accidents such as:
• Collision with an underground object.
• Collision with a surface object.

7Computational Tree Logic, see section 2.3.1.
8An extension of the Ordered Binary Decision Diagram with domain constraints.
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Figure 12: Safety component distribution in a three-layer architecture (from [25])

• Toppling of the excavator.
The control software of LUCIE is based on a three-level architecture for the control of

autonomous system. It is similar to the LAAS architecture and is composed of an Activ-
ities Planning layer at its top, a Reactivity-Coordinating level and a Low-Level Reactive
Control layer (see �gure 12). The Safety Manager is distributed through the architecture,
a component being present at each level.

In the Low-Level Reactive Control, safety is embedded in a module that also manages
functional features. The Safety Module takes as input the desired command vector, modi-
�es it make it safe, and then sends it to the excavator track and arm drives. It eliminates
the hazards through real-time responses, for example an immediate motion of the track in
case of tilting.

Safety is better separated from the functional components at the Reactivity-Coordination
level. This layer decomposes high-level plans into subtasks, thus providing a low-level of
reasoning. It operates on a local egocentric view of world. If a subtask is unsafe, the safety
module of this layer can trigger a censoring action of the task. This safety component
ensures safety from its local egocentric viewpoint, for example by avoiding a close obstacle.

At the Planning layer, an agent is dedicated to safety management. Communication
between safety and functional planning agents is done through symbolic messages. Both
agents use topological maps to obtain a global view of the environment and thereby facil-
itate moving of the excavator. They try to in�uence each other: on one hand the control
agent tries to convince the safety agent that such or such an action is absolutely necessary;
on the other hand, the safety agent tells the control agent that such or such an action is
unsafe. The safety agent ensures that a consensus has been found and that it is safe. This
higher-level safety component checks long term decision with a global view of the world,
for example by checking the safety of the trajectory the functional software proposes. The
distribution of the safety system through the architecture is more discussed later in the
section 4.1.

3.2.3 SPAAS
SPAAS, Software Product Assurance for Autonomy on-board Spacecraft [31] is an ESA
project carried out in collaboration between EADS-Astrium, Axlog and LAAS-CNRS. The
main goal was to determine how to ensure safety and dependability for autonomous space
systems. The need for autonomy in space is motivated by the following tasks:

• Continuous Earth observation
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• Deep space exploration, with self-managing probes.
• Robotic services, such as repair missions or rock sample extraction, etc.

Two major threats possibly a�ecting safety were identi�ed: adverse situations (exoge-
nous) and software or hardware failures (endogenous). One of the recommendations of this
study was the presence of a Safety Bag mechanism in the system, to keep it in a safe state.
A prototype was developed and integrated in an existing software architecture. In this
architecture, the messages coming from the ground, or sent from one on-board service to
another, are managed by the Telecommand (TC) service. To ensure safety, all commands
are checked by the Safety Bag. The checks are achieved by simulating the execution of the
current command, and determining whether the induced state is safe or not. TCs were
also previously checked by a Plausibility Checker before being sent from the ground. The
Safety Bag acts as a TC service wrapper, although it is implemented as a normal service
(see �gure 13) due to constraints on the architecture. The Safety Bag behavior is described
by hard-coded rules concerning on-board power: global power level must not fall under a
threshold, and every power-on command must be followed by a power-o� one.

3.2.4 Guardian Agent
Fox and Das, in their book Safe and Sound [6], presents arti�cial intelligence means to
develop a medical prescription system, based on the concept of intelligent and autonomous
agent. However, they also highlight speci�c threats related to this class of system (see
section 2.2) and concludes to the need for means to increase the overall safety, since an
incorrect prescription may lead to catastrophic situation such as the death of the patient.
First, they designed the decision process on which relies each autonomous agent: the
Domino Model (cf. section 2.1.2). The development of the agents is also facilitated by the
utilization of a speci�c development lifecycle and a graphical language named PROforma to
describe clinical decision process. In spite of these cautions, they conclude to the inability
of the development process to foresee all of the hazards that can arise [32], and thereby
to the utility of an online safety mechanism. Consequently, they developed an agent only
dedicated to ensure the safety: the Guardian Agent.

Its concept was inspired by the Elektra Safety Bag, which was modeled in PROForma
and was conceptually enriched on three main points:

• A higher level rule language. If-Then-Else rules do not explicit the rationale behind
the rules. Thus, if a rule is inappropriate or inconsistent with the others, the system
has no way of knowing it.

• The Safety Bag concept becomes generic, and not limited to a domain.
• Separation of the general safety knowledge and the safety expert domain knowledge.

As well as for the Domino Model that is not a software architecture, the Guardian
Agent is not a precise safety system whose reaction are precisely de�ned in [6]. However,
interesting concepts, such as generic safety rules to specify the Guardian Agent's behavior
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Figure 14: Monitoring Checking and Steering (MaCS) framework (derived from [27])

has been presented. Some of these aspects are revisited in section 4.2.3.

3.3 Generic frameworks
Independently from the application, generic frameworks exist for online veri�cation. These
frameworks formally verify properties on the current execution, and are a combination
between testing and model checking. Among them, we may focus on two particular systems,
which are actively developed and maintained.

3.3.1 Monitoring, Checking and Steering framework
The Monitoring, Checking and Steering framework (MaCS) [27] is a generic checker for
software monitoring[33]. It is developed at the University of Pennsylvania and is being con-
tinuously upgraded. MaCS relies on event generation by the monitored software. These
events are composed into high-level events on which properties are checked. The archi-
tecture of MaCS is shown on �gure 14. The �lter is the component �plugged� into the
monitored software to extract data and transmit it to the event recognizer. It consists of
two parts:

• the instrumentation of the Java bytecode, which is basically instruction insertion
before or after a �key-point� (method call or return, attribute access);

• and the transmitter, a thread in charge of sending data through a socket.
The event recognizer builds high-level events from logic combinations of elementary

events coming from the �lter. These combinations are described in the monitoring script
that is used for the automatic generation of the �lter and the event recognizer. Then,
events are checked by the checker according to a set of rules written in a script.

Finally, steering is performed through invocations by the checker of steering procedures
de�ned in the steering script, which refers to methods already present in the monitored
software. For steering, instrumentation is also required.

An application is presented with an inverted pendulum (IP, see �gure 15). The device
is controlled by a Java software including two controllers: a (trusted) safety controller,
and an experimental controller to be tested. The goal is to swap from experimental con-
troller to the safety controller if imbalance is detected, which is the single �safety criterion�.
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Figure 15: Inverted Pendulum (IP) device (from [27])

Low-level events are raised on the variation of internal variables of the program, such as
the pendulum angle with the vertical axe, its position on the track, etc. Safety properties
concern the possible range of positions of the pendulum, and the force to be applied to the
cart, taking into account physical parameters. For the experiment, a faulty controller was
developed from the safety controller, the faulty controller produces the nominal outputs
until the moment when the output fails, taking a faulty constant value. During experi-
ments, when outputs became incorrect, the checker successfully detected it and swapped to
the safety controller. However, further analysis showed high latency between the failure of
the experimental controller and the reaction during which 16 faulty values (320 ms) were
sent. This was due to the checker being con�gured to send a large amount of data, with
large bu�ers that must be full before actually sending the data through the network.

3.3.2 Monitoring Oriented Programming
MoP, Monitoring oriented Programming is a framework for advanced Design by Contract.
It relies on code annotation in various logics, that are processed and either replaced by
target code, or transformed into instrumentation code and a checker (as in MaCS, sec-
tion 3.3.1). It is presented as �a light-weighted formal method to increase the reliability
and dependability of a system by monitoring its requirements against its implementation�.
MoP is target language and logic independent. However the developed prototype, Java-
MoP, works with Java and a set of various logics.

Annotations are extracted from the source code to obtain a logic speci�cation, which
is routed to the right logic engine. The logic engine processes annotations and produces
abstract code. Abstract code makes the logic engines independent of the target language.
Then, abstract code is translated into target code, which is �nally integrated either directly
into the source code, or compiled into an independent monitor fed with events produced
after instrumenting the program using Aspect Oriented Programming to weave automata
code into Java bytecode.

MoP comes with �ve logic engines: two Linear Temporal Logics (LTL, see section 2.3.1),
past time LTL and future time LTL, regular expressions, Java Modeling Language (JML)
and Java with assertions (Jass).
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4 Analysis of examples
This section presents a transversal analysis of the safety systems presented in the previous
section. The analysis is aimed at highlighting interesting features of each, and extracting
the most appropriate ideas for developing an independent safety system for autonomous
systems.

First, architectural issues are addressed, particularly concerning perception and action
capabilities of the safety systems, classes of faults that are covered, and patterns of safety
systems are proposed. Second, the process related to the determination of the safety rules
is analyzed.

4.1 Architectural issues
From an architectural viewpoint, there are some important di�erences between the various
safety systems Some of them act independently from the control software at a system
level, while others are interfaced with it. The architectural di�erences are presented and
analyzed in this section. First, an overview of the integration in the architecture of the
perceptual and reaction capabilities of the safety systems is presented. Then, we discuss
the impact of these design choices on fault coverage and on the abstraction level the safety
system is working at. Finally, some architectural patterns are presented.

4.1.1 Observation and reaction levels
An independent safety system may be considered as a safety monitor of the considered
system, and is supposed to observe the evolution of the system in its environment. From
an external high-level viewpoint, safety is mostly related to the external state of the au-
tonomous system, i.e., the state of its physical I/O devices (sensors, actuators, displays)
and the state of some critical parameters (position, velocity), and the state of the close
environment. Consequently, a safety monitoring should be e�cient on the interface of the
physical state of the system and its close environment. however, in addition to the physi-
cal evolution of the autonomous system, we may consider another dimension: its discrete
evolution, related to the internal logical state of the autonomous system. This lead us
to consider three levels of monitoring. The �rst one is the internal level, which monitors
internal correctness of the data, such as commands, abstract representation, etc. The sec-
ond monitoring level is the functional external level, which monitors directly the system's
state using sensors of the functional system: 1) the health of the hardware components
of the system and 2) the interface between I/O devices and the environment. The third
one, safety external level also directly monitors these parameters but using safety sensors
that are diversi�ed from the funtional ones. These aspects a�ect the architecture of the
monitoring system (developed in Section 4.1.4), but also the coverage of the safety system
(see section 4.1.2).

In the table 1, we may notice that not all systems are directly monitoring the system
using sensors. For example, R2C and the SPAAS Safety Bag only obtain their information
indirectly via the control software. Concerning sensor data, some systems such as ATV or
Ranger only use external information to manage safety. External state knowledge is the
most pertinent for the immediate safety situation; however, checking control software data
or produced commands may increase knowledge about safety, for example by analyzing
plans or pending tasks to take into account what the system is expected to do in the
future. This abstraction degree of monitoring is developed further in the Section 4.1.3.
The safety external monitoring provides additional guarantees concerning on the sensed
data, and is used in SPIN, which sense with its own sensors, and the spatial systems (ATV
and Ranger). The ATV's Safety Unit has a part of its sensors that are shared with the
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Observation level
Internal Functional external Safety external

MSS seed position within the brain coil state
SPIN temperature safety sensors
Elektra logical command checking track and switch monit.
ATV Gyros Sun sensors
MaCS logical checking
Ranger Position sensors ?
LUCIE Velocity, tilting management
R2C logical command checking

SPAAS TC checking

Table 1: Observation levels

functional system, the other part being its own safety sensors.
It is important to note that this segregation is not directly related to the exoge-

nous/endogenous one presented in 2.2. An endogenous hazard, such as a design fault
leading to the production of an erroneous arm movement can be managed at the external
level, whereas an exogenous hazard, such as an upset modifying a read only memory can
be managed internally. However, the kind of data that is observed is dependent of the
nature of the hazard. Most of the independent safety systems monitor parameters such
as environment and physical behavior of the robot, that is mainly domain-dependent and
covers exogenous hazards. However, monitoring the assurance of the abilities of the phys-
ical resources (processors, sensors, actuators, etc.) of the functional system to carry out
their task with a su�cient level of correctness mainly concerns the system's architect, and
covers the endogenous hazards.

After observation of the environment and the state of the controlled system, the safety
system has to react when a safety rule is violated to put the system in a safe state. This
reaction is a form of forward recovery and may be classi�ed in two categories:

• Passivation reaction, when a safe state is directly accessible. This passive state may
be reached by rejection of a permissive command9 (Elektra), by switching o� the
actuators, etc.

• Active reaction, when the system has to perform an active task to reach a safe state.
For example, when a hazardous situation is detected while it is trying to dock, the
ATV engages a procedure to avoid collision with the ISS. When LUCIE starts to tilt,
the balance has to be kept actively.

As with observation, reaction can be performed at di�erent levels (see table 2). How-
ever, an important di�erence is that the environment can be observed, but not controlled.
Reaction capabilities may be applied at di�erent levels:

• Actuators, by resetting them or by removing power for example,

• Internal commands, for example, by rejecting an erroneous command that would
lead to a hazardous situation, by recon�guring computers or switching to a low
power consumption mode.

Some systems, such as Ranger, ATV or SPIN, directly apply safety procedures to
physical actuators, without considering the control software. Ranger just switches o� the
actuators, whereas ATV starts an active rendezvous abortion procedure.

9A permissive command let the receiver performing more hazardous actions than before.
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Level Type
Actuators Internal commands Active Passive

MSS √ √ √
SPIN √ √
Elektra √ √ √
ATV √ √
MaCS √ √ √
Ranger √ √
LUCIE √ √
R2C √ √

SPAAS √ √

Table 2: Reaction levels and types

Other systems react both on actuators and by rejecting commands when necessary
(Elektra, MSS) whereas the remaining systems (LUCIE, R2C, SPAAS) react only inter-
nally. They check whether commands to be sent to an output device or to another part of
the system are safe and consistent with a given speci�cation. Safety is only ensured at a
local subsystem level, but not at the system level since nothing is done directly.

Concerning the health monitoring, the ATV Safety Unit monitors the health of the
functional computers: the rendezvous phase with the ISS is initiated only if the number of
healthy functional processors is su�cient to ensure the required safety level. In the MSS,
one class of safety rules is only dedicated to check the health of the devices.

4.1.2 Hazards and fault coverage
The purpose of the safety system is to avoid hazardous events during the operational
phases. Hazards are directly related to the physical abilities of the system and its ability
to survive in its environment. These hazards can be the results of error that may be
classi�ed in two classes [22]:

• Omission errors, the expected functional action does not occur, and an active re-
covery procedure has to be initiated by the safety system.

• Commission error, the system applies a forbidden sequence of actions, and may be
corrected by rejecting actions.

This is directly related to the application. For example, Elektra Safety Bag only deals with
commission faults. It checks the safety of decisions about the a�ectation of a route to the
trains, and can eject a command if it would lead to an hazardous situation. The safety bag
has not to take active decisions since the correctness of the issued commands are su�cient
to guarantee the safety of the routes. Some others systems, such as ATV Safety Unit has
to take active decision to avoid hazardous events in case of omission faults.

Since only little information is given in the literature about the previous segregation
on the autonomous systems, another interesting distinction between hazards may be done
according to the origin of the hazards. According to Section 2.2, an unsafe behavior at the
system level may be relevant to exogenous and endogenous hazards, respectively related
to robustness and fault-tolerance. For each kind of hazard, the next parts of this section
will deals about the main goals of the independent safety system:

• Protect the main system from hazards. For this, the safety system has to be inde-
pendent from the functional system in order to detect them and to react adequately.

• Protect itself from hazards that may perturb a safe monitoring.
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Exogenous hazards The primary goal of robustness is the tolerance of non-speci�ed
and adverse situations that may met the autonomous system. Functionaly, this problem
seems complex to solve. However, from a safety viewpoint, it may be less di�cult to
de�ne the boundaries of the safe situations whatever is functionaly speci�ed. Thus, a
safety system that correctly monitors the system can cover the adverse situations. More
precisely, the e�ciency of this coverage rely on the speci�cation of the safety system, i.e.,
on the safety properties the safety system has been build on (cf Section 4.2). Another
important issue robustness is uncertainties, in e�ect, the abilities of the system to perceive
its environment are limited. Consequently, it should possibly make probabilistic evaluation
to quantify the gap between what is perceived and what is considered by the system as
the actual situation. In the presented systems, uncertainties on the perception of the
functional system are not directly addressed by the safety systems. However, an unsafe
behavior induced by uncertainties may be managed by the safety system, which reacts
whatever is the origin of the error (adverse situation or uncertainty). This is also the
case for the external faults. For example, MSS, Elektra and The Ranger safety systems
cover operator faults. However, malicious attacks are evocated in none of the systems.
A malicious attack on the functional system only may not a�ect safety since the safety
systems would still be operational. the second class of robustness hazards of the exogenous
hazards that a�ect directly the safety system itself. Environment uncertainties may also be
a problem for the safety system. In LUCIE, this is partially managed with the utilization
of stochastic models. Some kinds of external faults, such as space radiations that modify
memories, are internally propagated an are managed as endogenous hazards with fault-
tolerance techniques (see below). However, malicious attack against the safety system
are not considered in the examples, since this kind of hazard is probably considered as
currently unrealistic for these systems.

Endogenous hazards In addition to robustness, fault-tolerance has to avoid unsafe
behaviors due to faults that a�ect internal resources of the system. These resources may
be localized in the monitored system itself, or in the safety system. From a fault-tolerance
viewpoint, the safety system has to:

• Protect the autonomous system from reaching an unsafe state because of faults that
may a�ect the system. Monitoring the system from an external viewpoint may
cover actuator and sensor faults, but also software and hardware ones, since they
would induce unsafe behavior at the system level. In some cases, software faults
may be considered as the main hazard (section 2.2 gives examples of typical faults in
decisional mechanisms). This may also be covered by monitoring the whole system's
functional behavior. Some health checks on components may also be performed.
The safety system also have to be independent to the monitored system, i.e., it
has to protect itself from the faults that it is supposed to cover. For example, the
speci�cation of the safety system has to be de�ned separately from the functional
system design, to avoid common-mode failures. In addition, processor faults, can only
be detected if the safety system is executed on its own processor. Concerning the
devices, we may distinguish sensors and actuators. Faults in actuators may directly
result in the production of an erroneous behavior, which has to be monitored whereas
sensors faults may be handled later in the plan or act phases. We de�ned three levels
of coverage for the actuators: the safety system acts through other software layers
(indirect in the table 3), or acts directly with or without their own devices (resp.
direct and direct/own).

• Protect itself from its residual faults, which could lead to lack of coverage of hazardous
situations, or cause the system to leave a safe state (safety system fault tolerance).
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Fault coverage
Coverage Control software Processors Sensors Actuators
MSS √ √ √ direct/own
SPIN √ √ √ direct/own
Elektra √ √ ? direct
ATV √ √ √ direct/own
MaCS √ indirect
Ranger √ √ √ direct/own
LUCIE √ indirect
R2C √ indirect

SPAAS √ indirect

Table 3: Fault coverage in the examples

Concerning hardware failures, the architecture of the safety system may use redun-
dancy to perform a fail-safe continuous monitoring with reliability constraints or to
provide self-checking and fail-stop operations. Software, actuator and sensor failures
of the safety system induce the utilization of safety-critical methods for the devel-
opment and adding fault-tolerant abilities to the safety system. For example, the
software may be developed twice to introduce software redundancy. Sensor faults
may also be covered by plausibility checks or detection and comparison of the results
of redundant sensors.

In the table 3 we can see that all the systems cover software faults, since none of them
are only hardware or health I/O device monitors. On one hand, some safety systems (R2C,
SPAAS, LUCIE), directly monitor software, focusing their task on ensuring safety and
consistency at the software level. This class of software monitor can also monitor actuators
threw other software layer, but this management is only logical, i.e., only performed with
software commands. This may cover some output devices faults but needs to trust 1) in
the software interface layer between the safety system and the actuators, and 2) to trust
the functional actuators used for the recovery. This is referred as the �indirect� output
device coverage in the table 3. This kind of safety system is often used in autonomous
software (see section 4.1.3). On the other hand, other safety systems (Elektra, MSS, ATV,
Ranger) monitor the whole system state. Even if the software and its execution resources
are not directly monitored, their relevant faults are indirectly covered. To carry out the
monitoring, the monitor has to be itself independent from the faults that may a�ect the
functional system, and concerning this we may distinguish few features. First of all, the
safety system will not fail in case of functional hardware failure if it is executed on a
separate computer. This is the case in SPIN, Elektra, ATV. For the Ranger, it is a little
bit di�erent since one monitor is on the functional computer and another is separate.
MSS executes the safety system on a functional processor, however, an additional safety
processor is in charged to detect any disturbance in the execution of the safety software.
Logical independence is also required, i.e., the safety system has to be fully independent
from any software module of the functional software, or any part of its data. For example,
in MaCS the monitor is only fed with events coming from the monitored application and
thus slaved to the monitored software. Concerning the sensors, only SPIN and ATV possess
their own ones (ATV also shares sensors with the functional system) thus directly cover
sensor faults. However, the MSS and Ranger safety systems share fault-tolerant pool of
sensors with the functional system. With respect to actuator faults, MSS, SPIN, ATV and
Ranger perform their recovery (actually a system or subsystem shutdown) with their own
capability.
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Fault-Tolerance of the safety system
Coverage Monitoring software Processors Sensors Actuators
MSS √ √
SPIN √ √ √ ?
Elektra √ √ √
ATV √ √ ?
MaCS
Ranger √ √
LUCIE √
R2C

SPAAS

Table 4: Fault-Tolerance of the examples of safety systems

According to the table 4, faults in the monitoring software are only covered in SPIN and
partially in LUCIE. The LUCIE safety manager is also interesting since it is distributed
in three components aimed at monitoring the three levels of the software architecture. As
the levels are di�erent representations of the same problem (the control of the system),
monitoring at each level can be considered as a form of functional redundancy of the safety
system. However, the Safety Manager becomes more complex, harder to validate and has
to address the classic problem of internal consistency between its components (ontological
mismatch, see section 2.2). Processors faults are covered with hardware redundancy in
SPIN, Elektra, ATV, RANGER. The safety kernel of the MSS itself is monitored (heart-
beats) by a little module setting the system in a safe state in case of no response from the
safety kernel. In Elektra, if the processor of the safety channel fails, the safety bag will
enter in a safe state blocking all the commands issued from the functional channel. Sen-
sors are redundant in MSS, SPIN, ATV and Ranger (the MSS and Ranger safety systems
share a fault-tolerant pool of computer with the functional system). In ATV, since most
of the redundant sensors are used in cold redundancy, plausibility checks are performed in
order to detect an error before switching to the redundant sensor. In Elektra, the operator
interfaces are replicated.

To sum-up, the fault coverage of the safety system may be de�ned as a function of the
following characteristics:

• Software in the safety system is speci�ed and designed independently from the
functional system (including its operator).

• End-to-end monitoring at the system level, to cover the maximum of faults.
• Execution of the safety software on a separate processor.
• Independent from the functional system, in order to protect itself from the faults

the safety system has to cover. It takes its own decisions, it is executed on its own
execution resources, and possesses its own perception and reaction devices.

• The safety system has to be itself safe and fault-tolerant.

4.1.3 Monitoring inside the software architecture
The independent safety system is aimed at preventing the monitored system from having
unsafe interactions with its environment. This goal is the same for both automatic and
autonomous systems. The di�erence in reaching this goal is that autonomous systems con-
tain components working at a high level of perception and reasoning. Some safety systems
take advantage of this high-level perception and reasoning to manage safety, which may
explain why some safety systems only focus on software monitoring (cf table 1, page 28).
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In addition to an �immediate� safety rule such as �The current velocity of the robot is too
high considering that an obstacle is very close�, we may want to express safety rules of
a higher order, taking into consideration the �intentions� of the system. In the following
part of this article, the intentions are referred as projected actions, in opposition to the
impending actions. For example: �In the current situation, if the robot tries to reach this
far site, its battery will run out of energy�. This is a higher order monitoring in the sense
that it does not simply monitor the current situation, but also what may be the future
situation according to the projected actions of the autonomous system, in addition to the
current state. If this safety rule had to be expressed with an �immediate� safety rule,
the autonomous system would detect that it is entering in an unsafe situation just before
reaching the point of non-return, too late to trigger a recovery procedure to go back to
the battery recharging station. Thus, the choice of the abstraction level where the safety
system is operating mainly depends of what kind of properties the safety system has to
ensure. This is an example of how the safety properties (i.e., the speci�cation of the safety
system) may impact on the architecture of the safety system.

Analyzing the projected actions of the autonomous system in this way may provide
bene�cial features:

• Hazardous situations may be detected earlier.
• Reaction may be applied earlier, for example by rejection of a plan, or a pending

task.
• Ensuring safety at the suitable level in the decision process, or at various levels.

However, monitoring functional software data induces an important need for synchro-
nization between the functional software and the safety system. Moreover, This may reduce
the independence of the safety system since it must cooperate closely with the control soft-
ware, instead of working independently. This is the case in some examples: R2C, SPAAS
safety bag, LUCIE. This reduction of independence is not obligatory, but often facilitates
the design of such safety systems. It is important to notice that this kind of high-level
monitoring increases the e�ciency of the safety system, since hazardous situations are
detected earlier.

Concerning software architecture, the LUCIE [25] example is very interesting. As LU-
CIE is a three-level architecture, designers decided to distribute the safety system through-
out all the levels. For each level, there is a corresponding safety component that checks
properties at the right abstraction level. But this approach seems complex, particularly in
terms of consistency between the di�erent safety components (see section 4.1.2). Moreover,
there is no presentation of layer-dependent properties to substantiate this choice of safety
system architecture. However, a layered safety system may allow the possibility of:

• checking the simultaneous consistency between the layers, by observing in the ar-
chitecture, the same environment, goal descriptions, etc., from di�erent viewpoints;

• tracking the safety of the decisions through the decision process.
Many of the safety systems (R2C, Elektra Safety Bag, MSS Safety Kernel) work in an

intermediary mode. They do not really consider long-term projected actions of the system,
but only the low-level command to be sent. If executing the command leads the system
in an unsafe state, it is rejected. SPAAS safety bag has a more long-term view, since it
checks in plans if a power-o� command will be issued from the moment when a power-on
command is sent.

In contrast, ATV and Ranger safety systems execute in a fully independent way from
the main system. They only get information by sensors and act directly (if needed) on
actuators. On the ATV, the only interaction between the safety system and the main
system is an inhibition command from the former to the latter (since the rendezvous phase
is short and the functional computers are tested at its beginning, the probability of the

33



Figure 16: Software Monitor.

main software failing to receive the inhibition command is considered to be zero).

4.1.4 Architecture patterns
Considering the previous elements: perception and reaction capabilities of the system, the
kind of faults that are covered, and the level of abstraction the safety system is working
on, we can de�ne three generic architectures (see table 5 and 6):

- Software Monitor
- Independent System Monitor
- Hybrid System Monitor

The Software Monitor (see �gure 16) is a software module, often running on the same
processor as the main software, which is aimed at monitoring the execution of the functional
software. It can take various aspects: an active monitor running on an separate thread or
process, a passive wrapper that reacts when it is fed by events coming from the control
software, or inserted/weaved executable assertions. This safety system does not have its
own capabilities of perception and action, thus relies on other piece of software. This
approach is particularly used in autonomous systems (SPAAS, LUCIE, R2C) since the
monitor can be integrated anywhere in the software architecture, and thus can be placed
at the appropriate abstraction level. The monitoring should be positioned such that the
semantics of the monitored data facilitates analysis, e.g., at the output of a module issuing
high-level messages or commands. However, the main disadvantage is the high dependence
of the safety system on the functional software. Figure 16.

An Independent System Monitor (see �gure 17) executes on an independent computer,
and has direct access to sensors and actuators or even its own ones. Interaction between
the safety and functional software is restricted to the minimum, like an inhibition action
when the safety monitor takes the control of the actuators. This safety system has a
higher level of independence since it is monitoring the system from an external viewpoint,
in an end-to-end way. The counterpart is that the projected actions of the autonomous
system cannot be taken into account, causing safety violations to be detected at the latest
possible time. Thus, the set of the safety properties checkable by such a system may be
quite restricted. This approach seems to be well adapted when ensuring safety consists
of a continuous monitoring with triggering of an active recovery procedure. As this class
of monitor can �wraps� any kind of systems, it is not speci�c to autonomous systems and
manages safety at a low abstraction level.
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Figure 17: Independent System Monitor

The Hybrid System Monitor, is a combination between the �rst two architecture pat-
terns (see �g 18). It gathers intention management and an end-to-end monitoring of the
autonomous system. Intention may be observed or modi�ed at various points in the ar-
chitecture: at the planning level, between two communicating components or at the level
of physical I/O. Instrumentation code has to be introduced to observe the system's pro-
jected actions and to perform censoring actions. This software module is driven by the
main monitor. Censoring actions on the functional software may be complemented with
compensation actions, to provide a reaction for the case of omission faults. However, it
seems safer to act directly on the actuators, whenever that is possible. The counterpart of
this kind of safety system is the di�culty of the design and its integration into the system,
since it is both monitoring deep in the software architecture and at the highest level of the
system to ensure the whole system safety.

Two examples, Elektra's Safety Bag and MSS's Safety Kernel, may �t to this pattern.
They both analyze and stop commands before sending them to the peripherals. In addition,
they manage safety in an end-to-end way since they directly perceive and act on the
environment and the system. However, Elektra's Safety Bag needs to be synchronized
with the functional channel twice: a) it must obtain the command to be checked; b)
voting is carried out between the functional and safety modules to commit or reject it.
MSS's Safety Kernel also performs command checking and continuously monitors physical
variables (speed, location) of the seed placed in the brain of the patient. The LUCIE Safety
Manager cannot be considered as a Hybrid System Monitor since it does not monitor the
system level and does not ensures the independence of the safety system (it is deeply
embedded in the software architecture).

In conclusion, the choice of the pattern is directed by two main factors. The �rst
concerns the component that is the considered main hazard: is it the whole system or only
the control software? If the software is the weakest part of a system, with other assumed
dependable parts, a Software Monitor is the most appropriate approach, since it is the
easiest to integrate in the system (for example as a thread or a process) and can monitor
anywhere in the software architecture. On the contrary, if the whole system has to be
monitored, the choice of the most appropriate safety system depends on the properties it
has to enforce. If the properties only concern the current state of the system, then an
Independent System Monitor should be su�cient. If not, the system's projected actions
have to be managed and a Hybrid System Monitor is necessary.
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Patterns
Software Monitor Independent Monitor Hybrid Monitor

MSS √
SPIN √
Elektra √
ATV √
MaCS √
Ranger √
LUCIE √
R2C √

SPAAS √

Table 5: Mapping between the generic patterns and the actual systems

Figure 18: Hybrid System Monitor.

Safety system pattern
Software Moni-
tor

Independent
System Moni-
tor

Hybrid System
Monitor

Monitoring and
reaction level

control SW System control SW &
System

Coverage of soft-
ware design fault

√ √ √

Coverage of pro-
cessor faults

√ √

Independent per-
ception and reac-
tion means

√ √

Decisional layer
observation

√ √

Table 6: Characteristics of the patterns
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4.2 De�nition of safety rules
This subsection addresses the essential issues of hazard analysis, the derivation of safety
properties, and their mapping to rules to be checked by a safety system. We call safety
property a high-level domain constraint, in opposition to safety rule, which is a low-level
executable design dependent constraint. The last part of this section deals with formalisms
that can be used for expression of the safety rules.

4.2.1 Hazard identi�cation
The hazard analysis process covers the whole development [1]. Its starts early with hazard
identi�cation, also known as Preliminary Hazard Analysis (PHA). It continues during the
design, for example by modifying a weakness of the system or one of its subsystems.
The process covers veri�cation tasks during system development, and de�nition of safety
systems and procedures for the operational life of the system.

Various methods may contribute to the identi�cation of hazards. For example, Leve-
son [1] gives the following recommendations:

• Review pertinent historical safety experiences, lessons learned.
• Use published checklists and lists of hazards.
• Examine the basic energy source, high-energy items, hazardous material.
• Look at potential interface problems.
• Look at particular transition phases, etc.

Hazards are recorded in tables including the following information: concerned system,
subsystem or unit; hazard description; hazard cause; e�ects on the system or its envi-
ronment; hazard level; operational phases; corrective or preventive measures; veri�cation
methods; etc. In the examples, identi�cation is often performed from expert domain knowl-
edge that provides from experience a list of identi�ed hazards. This was used in Elektra
(railway is an old engineering domain and Austrian standards embody rules derived from
experience), in SPAAS regarding rules about power consumption, and R2C where multiple
unsafe interactions were identi�ed in an �ad hoc� manner by researchers and engineers
working on the system or one of its subsystems.

Other safety systems were designed using explicit methodologies to identify hazards.
For examples, high-level hazards in MSS (events leading to a patient injury) were identi�ed
with a hazard analysis. For the Ranger, a Preliminary Hazard Analysis (PHA) was used to
identify hazards related to manipulations: collision with the International Space Station,
releasing of an object in space, breaking an object. For LUCIE's safety manager design,
the �rst step was de�ning the basic functionalities that the excavator had to achieve. Then,
according to these functionalities, hazards were identi�ed in the most high-level manner
in order to avoid omitting some situations. The second step consisted of a functional de-
construction to obtain a more precise view of the operational functionalities of the system,
from which the relevant hazards (for example tilting during digging phase) were analyzed.
This analysis is aimed at de�ning the dynamics of the hazards by looking at particular
scenarios:

• Which sequences of system level events may induce the hazard?
• How may be best avoided the hazard? What are the remedial actions?
• If no remedial action on the system is possible, what are the necessary assumptions

to ensure safety?
Moreover, other techniques allow these identi�ed hazards to be re�ned according to

the system design. We may cite Fault-Tree Analysis (FTA), a top-down approach that
allows discovery of weakness of the system starting from an identi�ed root event. Failure
Mode E�ects and Criticality Analysis (FMECA) is a bottom-up approach that starts from
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the failure of a component and focuses on the actual e�ects on the system. Event-Tree
Analysis is also a bottom-up approach, which considers a root event, and an ordered
sequence of other events that determines the �nal state of the system. Cause-Consequence
Diagrams are a combination of top-down and bottom-up approaches. Finally, HAZard and
OPerability analysis (HAZOP) focuses the impact of the deviation of system variables on
system safety, described with �guidewords� such as more, as well as, reverse, etc. HAZOP
is mentioned in [6], in order to de�ne the safety constraints to be enforced by the Guardian
Agent.

4.2.2 Safety rule derivation
When the main hazards are identi�ed, executable safety rules have to be obtained as a
composition of the safety properties and safety analysis relevant to the system design, since
the rules enforce properties on the actual designed system. The previously-identi�ed safety
properties are re�ned by dependability methods that rely on static or dynamic system
decomposition. In the examples, only little information is given about the determination
of the executable safety rules.

The most common mean to identify the properties is the fault-tree analysis, which lead
to the deduction of the subsystem's role in the system safety. For example, fault trees
were used in the ATV sa�ng unit, in LUCIE's safety manager, and in MSS's safety ker-
nel. In LUCIE, the use of fault trees was aimed at identifying internal system interactions
from which conclusions could be drawn. However, the conclusions presented in [30] are
high-level and mainly highlight some weaknesses of the subsystems: perceptual and reac-
tion de�ciencies, software and mechanical system integrity, inter-controller communication
assurance.

Another use of the fault-trees is done in the MSS safety analysis. A generic fault tree
was used to classify the safety rules according to their monitoring levels. At the root is
the system failure, in the next level are subsystem failures, then for each subsystem may
occur a physical actuator failure or erroneous input from software, etc. According to the
available information, it only seems to help them in the classi�cation of the safety rules,
but not in their identi�cation.

FMECA, jointly used with FTA were mentioned for the ATV and the Ranger safety
system development, in order to help the design of both the system and the safety system.

Another step in the safety rule derivation, is the format of the �nal rule. For example, a
rule may be either derivated to constraint between facts, such as in R2C, which can specify
exclusive rules between services, or derivated to a detection-correction rule. The latter has
two parts: a detection part, which specify a pattern to be recognized, and an action
part, which specify what are the corresponding actions to be performed. This detection-
correction process may be enriched in some ways. For example, a corrective action may
not be safe in some cases, this also has to be checked. For this, an interesting approach
for de�ning safety rules is that of the guardian agent. Fox and Das empirically de�ned
a set of generic safety rules that have to be instantiated. Thereby rule determination is
reduced to the extraction of domain safety data (required for the instantiation of the rules)
since the global safety mechanisms previously exist (i.e., generic safety rules). However,
no information is given about a method to carry out the determination of the safety data.
The two �rst rules are given below:

/* Rule 1 */
/* Detect any potentially hazardous abnormality and */
/* raise a goal to deal with it. */

if result of enquiry is State and
State is not safe

then goal is remedy State
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/* Rule 2 */
/* If the abnormal state is a known hazard with a known */
/* remedial action then */
/* propose it as a candidate solution to the goal. *//

if goal is remedy State and
known remedy for State is Action

then candidate for remedy of state is Action

In order to facilitate the description of the facts that are managed by the generic rules,
a dedicated modal logic LSafe (see section 4.2.3) has been developped with the relevant
modalities.

4.2.3 Formalization of safety rules
In addition to their identi�cation, or derivation, the safety rules have to be formally ex-
pressed in a language in order to be veri�ed online. In this section, we present what kind
of properties we may need to express, what languages are appropriate and which software
mechanisms are necessary to implement them.

Simple rules may be expressed in propositional logic. Propositional logic is based on
classic operators (and/or/xor/not) applied to boolean variables. A propositional expression
only describes simple situations, such as the state of a system at time t. Propositional logic
is often used with production rules: �if a pattern is detected, then trigger action�. The
expressive power of this class of the propositional logic is thus quite limited. However, all
programming languages implement it and operators are even hardware-coded in processors.
Elektra's Safety Bag rules were expressed with PAMELA (PAttern Matching Expert system
LAnguage), a language for expert system design, based on propositional logic.

More complex rules can be represented in a temporal logic (see section 2.3.1). Temporal
modalities express time relations between propositional formulas. In runtime veri�cation,
Linear Temporal Logic (LTL) is more common than Computational Tree Logic (CTL,
see Section 2.3.1) because the linear aspect of LTL maps well to trace veri�cation. Two
families of LTL are available: past time LTL (ptLTL) and future time LTL (ftLTL). Their
expressive power is quite similar and the choice between them depends on the context.
As their names suggest, ptLTL expresses properties in the past (an acknowledgement is
sent if a request has been previously sent) and ftLTL in the future (a opening parenthesis
has to be followed by a closing parenthesis). LTL may be employed in a safety system to
describe a dynamic behavior, where logical time is an important parameter. For example,
past LTL is used in MaCS to write the monitoring script containing the safety rules. CTL
is used in R2C, though the �tree� aspect of CTL is not really used. Past time LTL is
simple to implement, as the value of a formula only depends on the past and present
values of the boolean variables. On the contrary, future LTL formulas may be unde�ned
since they require waiting for the occurrence of an event in the future. Büchi automata,
alternating automata and binary trees (such as Binary Decision Diagram) are used to design
safety monitors using temporal logic. Temporal logics are suitable to express �detection-
correction� safety rules. For example, the system has to stop if an obstacle was previously
detected may be expressed:

• ftLTL: Obstacle_Detected− > ©System_Stop (© means �at the next step)
• ptLTL:

⊙
Obstacle_Detected− > System_Stop (

⊙
mean: �at the previous step).

However, nothing express what event is perceived, and what event is an action that has to
be carried out. This may be included in the name of the event, but the formalism do not
support this.

To express safety rules that include real-time boundaries, there exists extensions to
temporal logic that introduce time stamps with the temporal modalities. For example,
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MTL (Metric temporal logic) is an extension of ftLTL with time constraints. MaCS past
LTL language has been enriched with time boundaries, as well as the temporal logic used
in the Eagle tool, used for the test of a model-based planner (PLASMA) presented in
section 2.3.2. Time-bounded properties can be implemented with automata such as timed
automata.

The last example found in the literature is LSafe, a kind of deontic logic. Deontic
logic is propositional logic with deontic modalities, which are often used to express a duty,
in a context of morality or laws. This may be useful to express what the system should
avoid (unsafe situation), whether forbidden situation has been reached, and how to return
to a permitted state. LSafe contains the following modalities: <Safe>, <Authorized>,
<Permitted>, <Obligatory>. LSafe only allows deontic facts to be written, which are
then integrated in the generic safety rules (see section 4.2.2). In terms of expressive power,
a property like �This unsafe situation must be avoided by performing one of these obligatory
actions� is semantically more powerful than an �IF detection THEN action� production
rule. Even if the resultant monitoring algorithm might be the same, the management of
properties (for example for checking consistency between the rules) would be easier since
the rules may carry more information.

4.3 Conclusions
Concerning the architecture of a safety system, two main factors have to be considered.
The �rst is related to dependability and concerns fault-coverage. A safety system, in
addition to the monitoring of the functional system, has to be executed independently
such that is not a�ected by the faults in the monitored system. It also has to be safe with
respect to its own faults. The other factor is more speci�c to autonomous systems and
concerns the sharpness of the prevision of the unsafe behavior of an autonomous system.
For example, it may detected in real-time by monitoring the current situation, detected
slightly in advance by checking commands to be sent to the actuators, or detected earlier
by the monitoring of the projected actions of the system. The challenge is thus to be able
to monitor at the desired level(s) in the software architecture, while keeping a full coverage
and full independence of the safety system. The desired level of monitoring is partially
induced by the speci�cation of the behavior of the safety system resulting from a dedicated
development process.

In all of the examples, the development processes of the safety system are not precisely
presented. Hazard analysis as well as rules and requirement derivation are only slightly
mentioned, and are not the primary concerns of the papers presenting the safety systems.
Thus, further work has to be done in the following directions:

• Hazard Analysis for autonomous systems. Extensions to existing approach are re-
quired since the interactions between the system and its environment are complex
and di�cult to foresee exhaustively. In addition to classic situations (for example the
system runs too fast) that can be tackled by existing hazard analysis, new hazardous
situations may emerge from the complexity of the relation between the system and its
environment. To address this problem, classes of situations may be de�ned and a dy-
namic analysis may reveal unsafe scenarios. The obtained high-level properties may
directly determine which level(s) of the software architecture need to be monitored.

• Hazard process dedicated to derivation of executable rules. since our goal is to spec-
ify a safety system, we have to adapt a classic hazard analysis process to a speci�c
analysis only for corrective measures that can be implemented on an online indepen-
dent safety system. This implies the restriction of the analysis to the steps that may
produce executable safety rules, for example with the de�nition of a selection crite-
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rion to �lter executable safety properties among a set a safety corrective measures.
This step may start early since it is partially design independent.

• A re�nement framework that allows a formal speci�cation of the safety system as a
set of safety rules. This framework is aimed at 1) expressing formally the high-level
domain safety properties; 2) deriving the safety properties according to document
issued from the safety analysis process, such as FTA or FMECA, and according to
a hierarchical description of the software architecture, to choose the right monitor-
ing level in the decision process; and 3) performing some consistency checks, with
techniques such as theorem proving or model-checking.

• Utilization of the underlying semantics of the languages of the framework to generate
the software part of the safety system from its formal speci�cation (mainly the set
of safety rules).
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5 Conclusion
After a survey of existing autonomous systems and their dependability features, we con-
clude on the necessity of an independent safety system to ensure the safety of critical
autonomous systems. Indeed, since autonomous systems are expected to evolve in an
open environment, the mechanisms involved in the perception, actuation and reasoning
are an important source of hazards. The current dependability e�ort is mainly carried out
with o�ine techniques such as model-checking or testing, which do not provide absolute
guarantees about online correctness, notably in term of safety.

We have analyzed the architectures and the relevant development processes of several
examples of automatic and autonomous applications. The �rst issue concerns their archi-
tecture, which may be characterized by two main factors: dependability and the desired
fault-coverage, and the sharpness of the monitoring of the software architecture for au-
tonomous system control. It led us to de�ne observation and reaction levels. These levels,
jointly used with an analyse of the hazard coverage of the example, allows us to de�ne
safety system patterns, which may be useful for the development of an independent safety
system. Another issue concerns the development process of the safety system, and partic-
ularly its speci�cation via the de�nition of executable safety rules. Only little information
is given about techniques (such as FTA, FMECA, etc.) used to determine the safety rules,
and more work is needed in this direction.

Consequently, our objective is the de�nition of a structured or partially-automated
process, which could lead to the de�nition of executable safety rules to be veri�ed online
by the independent safety system. This requires the adaptation of existing safety hazard
analysis techniques to obtain speci�c corrective measures (executable properties) and to
cope with the complexity of the interactions between an autonomous system and its en-
vironment. Another interesting area is the design of a re�nement framework that allows
one to 1) choose the adapted formal language to express the desired properties to specify
the rules, and 2) derive them using safety analysis techniques such as FTA or FMECA,
in order to �t to the actual system. Finally, a safety monitor may be generated from this
formal speci�cation.
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