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Abstract 

In a context of sustainable development, enthusiasm for CSP technologies is increasing. In addition, the CSPIMP (Concentrated 
Solar Power efficiency IMProvement) European project has been recently initiated to achieve a better competitiveness of the CSP 
plants. Its main objective is to develop a new procedure to improve the steam turbine start up cycles, maintenance activities and 
advanced plant control schemes. A challenge in the project is to forecast the solar resource with the aim of improving the 
management of CSP plants. A key parameter when trying to estimate or forecast solar radiation is atmospheric turbidity. Indeed, 
the Direct Normal Irradiance (DNI) under clear sky conditions can be expressed as a function of extraterrestrial irradiation, 
altitude and atmospheric turbidity. So, this paper focuses on forecasting atmospheric turbidity at different time horizons (up to 
3 hours) using side-by-side Adaptive Network-based Fuzzy Inference Systems (ANFIS). First, a Multi-Resolution Analysis 
(MRA) based on the discrete wavelet transform allowed clear sky DNI values to be extracted from the NREL database. In 
addition, a Principal Component Analysis (PCA) has been considered in order to develop the forecasting model using 
uncorrelated input variables and reduce its complexity (and, as a consequence, computation time). Finally, the results we obtained 
about atmospheric turbidity forecasting are satisfactory and validate the proposed approach. 
 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer review by the scientific conference committee of SolarPACES 2013 under responsibility of PSE AG. 

Keywords: Atmospheric turbidity forecasting, adaptive network-based fuzzy inference system, principal component analysis, wavelet-based 
multi-resolution analysis. 

1. Introduction  

Having an accurate knowledge about Direct Normal Irradiance (DNI) is of high interest in many solar energy 
applications like Concentrated Solar Power (CSP). As part of the CSPIMP (Concentrated Solar Power efficiency 
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IMProvement) European project, which focuses on optimizing the performance of CSP plants, the present work is 
related to solar resource forecasting. The project began in may 2012 and includes the PROMES-CNRS laboratory 
and three industrial partners: ACCIONA Energía (one of the world leaders in the renewable sector), Thermodyn 
(which is specialized in the supply of turbomachinery and services for the oil and gas industry) and Nuovo Pignone 
(an industry's supplier of turbo-machinery, compressors, pumps, static equipment and metering systems). A challenge 
in the CSPIMP project is to develop an effective predictive model about solar resource (DNI). In order to improve 
the management of CSP plants, short-term (5-30 minutes) and medium-term (a few hours) forecasting procedures are 
well adapted to large fluctuations in solar radiation. Moreover, changes in the DNI are mainly attributable to two 
factors: the presence of clouds and atmospheric turbidity. Before reaching the surface of the Earth, the extraterrestrial 
solar radiation is attenuated in its passage through the atmosphere and can also be reduced in case of clouds. 

Many works have already been realized about DNI forecasting with short-term or medium-term horizons. Among 
all of these works, one can highlight the two studies realized by Marquez and Coimbra. In the first one [1], the 
authors developed a medium-term solar irradiance forecasting model based on Artificial Neural Networks (ANN). 
Marquez and Coimbra adopted predicted meteorological variables from the US National Weather Service’s (NWS) 
forecasting database as inputs to the proposed model without taking into account the cloud detection (by ground-
based camera images or satellite images). The second study [2] is about the development of an image processing 
methodology (images are provided by a Total Sky Imager (TSI)) to forecast the DNI at short-term horizon and at the 
ground level. The authors focused on forecasting 1-min averaged DNI values for various time horizons (from 3 to 15 
minutes). As a negative point, the DNI under clear sky conditions was supposed to be constant during the considered 
period of time. As a consequence, to obtain a good accuracy when forecasting DNI, we propose a new methodology 
based on efficient models about cloud cover estimation and atmospheric turbidity forecasting. So, the present paper 
deals with a methodology to forecast atmospheric turbidity at different time horizons. As a key point, we used data 
provided by the NREL (National Renewable Energy Laboratory, Golden, Colorado, USA). In addition, complex 
changes in atmospheric turbidity as well as abundant historical data suggest that artificial intelligence techniques are 
good candidates to forecast atmospheric turbidity accurately from meteorological variables. As a result, side-by-side 
Adaptive Network-based Fuzzy Inference Systems (ANFIS) are used. In the field of artificial intelligence, neural 
networks and fuzzy logic can be combined in neuro-fuzzy systems in order to achieve both properties of readability 
and learning ability. Neuro-fuzzy systems synergizes the two techniques by combining the human-like reasoning 
style of fuzzy systems (through the use of fuzzy sets and a linguistic model consisting of a set of if-then fuzzy rules) 
with the learning and connectionist structure of artificial neural networks [3,4]. 

First, a Multi-Resolution Analysis (MRA) based on the discrete wavelet transform allowed DNI values under 
clear sky conditions (clear sky DNI) to be extracted from the NREL database. We generated historical data about 
atmospheric turbidity (TLI) using the empirical formulation proposed by Ineichen and Perez. In addition, a Principal 
Component Analysis (PCA) has been considered in order to develop the forecasting model using uncorrelated input 
variables. PCA is a useful statistical technique based on orthogonal transformation allowing a set of correlated 
variables to be converted into a new set of linearly uncorrelated variables called principal components. As it is well 
known in the field of artificial intelligence, highly correlated input variables impact on learning ability in a negative 
way. Moreover, PCA allows both the complexity of the developed model and computation time to be significantly 
reduced. The considered side-by-side ANFIS allow atmospheric turbidity to be forecasted at different time horizons 
ranging from 1 hour to 3 hours. 

The paper is organized as follows: section 2 is about atmospheric turbidity considerations. Section 3 focuses on 
the materials and methods. All the tools used as well as the proposed forecasting approach are described in this 
section. Section 4 deals with the results about atmospheric turbidity forecasting we obtained. The paper ends with a 
conclusion and outlook on further work. 

2. Considerations about atmospheric turbidity 

The atmosphere is composed of two aerosol particles categories disposed in two dominant layers. The first layer, 
located at 0-3 km of the Earth's surface, is affected by natural phenomena and anthropogenic activities. The second 
one, called stratospheric dust layer and located at 15-25 km, results from volcanic activities and cosmic rays [5]. The 
Linke turbidity coefficient TL [6] is the first formulation proposed for atmospheric turbidity. Such a formulation is 
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based on the number of clean dry atmospheres leading to the observed attenuation of solar radiation. For example, in 
Europe, during summer, the water vapor is often large and the blue sky is close to white: TL is larger than 3. In 
opposition, in turbid atmosphere (in polluted cities), TL is close to 6 or 7. This formulation was widely used since 
1922, because of an easy implementation. However, it is dependent on air mass [7,8,9]. That is why, in 2002, 
Ineichen and Perez proposed a new formulation of the Linke turbidity coefficient in order to avoid its dependence 
upon solar geometry. They developed a simple clear sky model for direct normal irradiance [10]. Introducing the 
Linke turbidity coefficient at air mass 2 (TLK) and a multiplicative coefficient b taking into account the altitude of the 
considered site AS, Ineichen and Perez obtained an empirical formulation of the normal clear sky radiation  (1,2): 

 (1) 

 (2) 

I0 is the extraterrestrial irradiance at normal incidence and  the altitude-corrected air mass [9]. From equation 
(1), one can obtain TLI easily when the normal clear sky radiation  and the geographical characteristics of a given 
site (latitude, longitude and altitude) are known (3): 

 (3) 

3. Materials and methods 

3.1. NREL database 

The database we used to develop and validate the proposed atmospheric turbidity model is composed of data 
collected by the NREL (National Renewable Energy Laboratory) in Golden, Colorado, USA (latitude is 39.74° N, 
longitude is 105.18° W and elevation is 1829 m). Data can be downloaded at http://midcdmz.nrel.gov/apps. An 
exhaustive set of meteorological parameters and irradiances is available, data being collected since July 1981. We 
considered the following variables to forecast atmospheric turbidity: Direct Normal Irradiance (DNI), Dry-Bulb 
Temperature (DBT), Relative Humidity (RH), and Pressure (P). We selected measurements from 2002 to 2013 with a 
time step of one minute. 

3.2. Overall approach 

The study we present in this paper is subdivided into three main parts (Fig. 1). The first one is a preliminary 
analysis (Fig. 1.a) of the selected measurements from the NREL database. What is needed to develop and validate 
the forecasting model about atmospheric turbidity (Fig. 1.c) is first DNI under clear sky conditions (clear sky DNI). 
As a result, we needed a procedure allowing clear sky data to be extracted from the database and we decided for a 
wavelet-based multi-resolution analysis. With such an analysis, based on the Discrete Wavelet Transform (DWT), 
one can detect the presence of clouds in the sky. Basically, a wavelet-based multi-resolution analysis allows a given 
signal to be decomposed into approximations (i.e. low-frequency coefficients) and details (i.e. high-frequency 
coefficients) thanks to a filter bank composed of Low-Pass (LP) and High-Pass (HP) filters. As a result, significant 
changes in the DNI, related to the presence of clouds in the sky, can be highlighted in the detail coefficients. We 
used equation (3) to obtain historical data about  from clear sky DNI values. The second part of the work (Fig. 1.b) 
is related to the search for the best input model variables. As it is well known, highly correlated variables impact on 
learning ability in a negative way. As a consequence, a Principal Component Analysis (PCA) has been considered in 
order to generate a set of linearly uncorrelated (synthetic) variables from the set of NREL (possibly correlated) 
variables. So, PCA  has been applied to the following variables: Day (D), Hour (H), Dry-Bulb Temperature (DBT), 
Pressure (Pu), and Relative Humidity (RH). Finally, the third and main part of the work is about the development 
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and validation of the atmospheric turbidity forecasting model (Fig. 1.c). The proposed model consists in four blocs 
(i.e. four side-by-side ANFIS) with each bloc giving current ( ) and future ( ,  and 

) values of atmospheric turbidity. As previously mentioned in the paper, complex changes in atmospheric 
turbidity as well as abundant historical data available suggest that artificial intelligence techniques are good 
candidates to forecast atmospheric turbidity accurately. As a result, four side-by-side Adaptive Network-based Fuzzy 
Inference Systems (ANFIS) are used. In the field of artificial intelligence, neural networks and fuzzy logic can be 
combined in neuro-fuzzy systems in order to achieve both properties of readability and learning ability. Neuro-fuzzy 
systems synergizes the two techniques by combining the human-like reasoning style of fuzzy systems (through the 
use of fuzzy sets and a linguistic model consisting of a set of if-then fuzzy rules) with the learning and connectionist 
structure of artificial neural networks [3, 4]. Finally, we generated 84000 examples to train (56000) and validate 
(28000) the side-by-side ANFIS, considering an inputs/output time interval of 1 hour (bloc 1), 2 hours (bloc 2) and 3 
hours (bloc 3). 

 

 

Fig. 1. Diagram of the proposed forecasting approach. 

3.3. Wavelet-based multi-resolution analysis  

The wavelet-based multi-resolution analysis allows a signal to be decomposed into approximations and details 
coefficients using a bank of filters composed of Low-Pass (LP) and High-Pass (HP) filters [11]. This process can be 
repeated n times, what produces n levels of decomposition, but decomposing (i.e. downsampling) the approximation 
coefficients (i.e. the low-frequency coefficients) only. The high-frequency coefficients are neglected. Fig.2 shows an 
example of a multi-resolution analysis. A signal x is first decomposed into an approximation  and a detail  
(level 1 of the decomposition). Then,  can be decomposed into an approximation  and a detail  (level 2 of the 
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decomposition) and so on. Considering n levels of decomposition, the reconstruction process allows the initial signal 
x to be recovered by simply summing the n details , , ...,  and the approximation  of level n. 

 

 

Fig. 2. Multi-resolution analysis leading to the decomposition of level 3 of a given signal x. 

Different families of wavelets may be chosen for analyzing sequences of data points. The main criteria are (1) the 
speed of convergence to 0 of these functions when the time  or the frequency  goes to infinity, which quantifies 
both time and frequency localizations, (2) the symmetry, (3) the number of vanishing moments of the mother 
wavelet and (4) the regularity, which is useful for getting nice features, like smoothness of the reconstructed signal. 
The most commonly used wavelets are the orthogonal ones (Daubechies, Symlet or Coiflet wavelets). Because the 
Daubechies wavelets [12]  have the highest number of vanishing moments, this family has been chosen for carrying 
out the wavelet-based multi-resolution analysis of the considered sequences of data points. 

3.4. Principal component analysis 

Principal Component Analysis (PCA) [13,14] uses orthogonal transformation to convert a set of possibly 
correlated (quantitative) variables , , ...,  into a new set of linearly uncorrelated (synthetic) variables , , ..., 

 (with ) called principal components. Basically, PCA allows the principal directions in which the considered 
data varies to be highlighted. The first component has the largest possible variance and, usually, the first two (or 
three) components account for most of the variance in the quantitative variables. As a result, PCA is a mathematical 
procedure allowing the number of variables to be reduced. In other words, it produces a subspace or reasonable 
dimension so that the projection onto this subspace retains as much from the quantitative information as possible. 

Such a procedure is useful in case of a significant number of quantitative variables ( ) and if there is some 
redundancy in those variables. The principal components can be identified by calculating the eigenvectors and the 
eigenvalues of the covariance matrix, what is equivalent to finding the axis system in which the covariance matrix is 
diagonal. So, the eigenvector with the largest eigenvalue is the direction of greatest variation, the eigenvector with 
the second largest eigenvalue is the orthogonal direction with the next highest variation and so on. 

3.5. Neuro-fuzzy theory  

Fuzzy inference systems (FIS) are also known as fuzzy-rule-based systems [15-19]. Basically, a fuzzy inference 
system is composed of five functional blocs [20]: (a) a collection of fuzzy if-then rules; (b) a database which defines 
the membership functions of the fuzzy sets used to design the fuzzy rules; (c) a decision-making unit allowing 
performing the inference operations on the rules; (d) a fuzzification interface which transforms the crisp inputs into 
degrees of match with linguistic values; (e) a defuzzification interface which transforms the fuzzy results of the 
inference into a crisp output. The steps of fuzzy reasoning performed by fuzzy inference systems can be described as 
follows: (a) the fuzzification step during which the input variables are compared with the membership functions on 
the premise part to obtain the membership values of each linguistic label; (b) the combination of the membership 
values on the premise part to get the weight of each rule of the rule base; (c) the generation of the qualified 
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consequent (fuzzy or crisp) of each rule depending on the weight; (d) the defuzzification step during which the 
qualified consequents are aggregated to produce a crisp output [21,22]. 

The acronym ANFIS derives from adaptive network-based fuzzy inference system. A network-type structure, 
similar to that of artificial neural networks, which maps inputs through input membership  functions  and  associated  
parameters  and  then  through output membership functions and associated parameters to output, can be used to 
interpret an input/output map. The parameters associated with the membership functions changes through the 
learning process. The adjustment of these parameters is facilitated by a gradient vector. This gradient vector 
provides a measure of how well the fuzzy inference system is modeling the input/output data for a given set of 
parameters. When the gradient vector is obtained, any of several optimization routines can be applied in order to 
adjust the parameters to reduce some error measure [23].  

For simplicity, we assume, first, that the considered fuzzy inference system has two inputs x and y and one output 
z and, secondly, that the rule base contains only two fuzzy if-then rules of Takagi and Sugeno’s type [19]. The rules 
are designed in the following way: "if x is A1 AND y is B1 THEN z1 = p1x + q1y + r1" (first rule) and "if x is A2 AND 
y is B2 THEN z2 = p2x + q2y + r2" (second rule). Implementing both rules requires a 5-layer ANFIS architecture 
[24]. A membership function  or , specifying the degree of which x satisfies  or y satisfies , with i = 
1,2, is associated with every node in the first layer. Usually  and  are chosen to be bell-shaped with a 
minimum and a maximum equal to 0 and 1 respectively (4,5): 

 

 

 

(4) 
 

 (5) 
 

 
with { , , }and { , , } two parameter sets. As the values of these parameters change, the bell-shaped 

functions vary accordingly, thus exhibiting various forms of membership functions on linguistic label Ai any 
continuous and piecewise differentiable functions, such as commonly used trapezoidal or triangular-shaped 
membership functions, can be used. Nodes in the second layer evaluate the premises of the rules, multiplying the 
incoming signals and sending the product out [25]. So, the ith node output represents the firing strength of rule i. Let 
us note that many other T-norm operators, allowing performing generalized AND, can be used in this layer (6): 

 
 (6) 

 
The ith node in the third layer calculates the ratio of the ith rule’s firing strength to the sum of all rules’ firing 

strengths (i.e. the contribution of the ith rule), such as (7): 
 

 (7) 

  
Nodes in the fourth layer evaluate the conclusions of the rules. So, the ith node evaluates the conclusion of the ith 

rule, with  the output of layer 3 and {pi, qi, ri} a parameter set. Parameters in this layer can be referred as 
consequent or conclusion parameters. So (8): 

 
 (8) 

 
Finally, the single node in the fifth and last layer computes the overall output as the summation of all incoming 

signals. It is observed that given the values of premise parameters, the overall output can be expressed as a linear 
combination of the consequent parameters (9): 
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 (9) 

 
In order to train  an  ANFIS,  a  data  set  that  contains  the  desired input/output data of the system to be modeled 

is used. The modeling approach is similar to many system identification techniques: first, you hypothesize a 
parameterized model structure and next, thanks to an iterative and hybrid optimization method, basically a 
combination of least squares estimation and backpropagation gradient descent method [26], the membership 
function parameters are adjusted, the consequent parameters are identified and a rule base is designed, according to 
a chosen error criterion. The training process stops whenever the maximum iteration number is reached or the 
training error goal is achieved. In general, this type of modeling works well if the training data presented to the 
ANFIS is fully representative of the features of the data the trained system is intended to model. Checking and 
testing data sets allow checking the generalization capability of the resulting fuzzy inference system and avoiding 
overfitting [27]. 

4. Results and discussion 

4.1. Results of data selection 

 
 

Fig. 3. Clear sky data selection (July 25, 2012). 
 
First, let us note that we used equation (3) to generate historical data about atmospheric turbidity from clear sky 

DNI values. Such data are needed to develop and validate the atmospheric turbidity forecasting model we propose. 
So, a decision algorithm has been developed. Such an algorithm allows clear sky data from the NREL database to be 
extracted and, as a result, data related to significant changes in the DNI to be put aside. First, the wavelet-based 
multi-resolution analysis we applied to the data allowed the considered daily time series about DNI to be 
decomposed into  detail coefficients , , ..., .  is the sum of these coefficients. To take a decision, we 
defined two rules. The first one is formulated as follows: , if  (in this case changes in the DNI 
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are significant and, as a result, the presence of clouds is pretty much sure),  is not preserved. The second 
decision rule allows the low DNI values (during nighttime, at sunshine or sunset) to be removed from the base used 
to develop and validate the proposed forecasting approach. The second rule is formulated in the following way: , 
if ,  is not preserved. The two considered threshold have been defined empirically. 

 
Table 1. Impact of both the Decomposition Level (DL) and Wavelet Order (WO) on performance (k/a). 

 
DL\WO 1 2 3 4 5 

1 C/B B/B B/B B/B B/B 
2 B/C C/B C/B B/B B/A 
3 B/C C/B B/B A/A A/A 
4 B/C B/B B/B A/A A/A 

In order to optimize the proposed algorithm, we carried out a parametric study dealing with choice of the mother 
wavelet, its order and the decomposition level. We decided for a wavelet from the Daubechies wavelets, a family of 
orthogonal wavelets characterized by a maximal number of vanishing moments (as a key point, this does not imply 
the best smoothness). We defined two criteria, denoted k and a, allowing the ability of the proposed algorithm in 
keeping good samples (i.e. clear sky data) and putting aside bad ones (i.e. covered sky data) to be quantified. Table 
1 summarizes the optimization results: "A" is for very good results, "B" is for satisfactory results and "C" is for bad 
results. Taking a quick look at the above mentioned table, one can highlight the optimal configuration: the best 
selection of clear sky data is for a Decomposition Level (DL) higher or equal to 3 and a Wavelet Order (WO) higher 
or equal to 4. As a result, we decided for a decomposition of level 3 and used an order-4 Daubechies wavelet. Fig. 3 
shows how the wavelet-based multi-resolution analysis and the proposed decision algorithm allow clear sky data in 
the NREL database to be selected (July 25, 2012). 

4.2. Results of principal component analysis 

 
 

Fig. 4. The first three principal components (C1, C2 and C3) as well as the contribution of day, hour, dry-bulb temperature, and pressure to these 
components. 

 
Table 2 is about the results of the principal component analysis. Let us remember that we carried out such an 

analysis in order to generate uncorrelated ANFIS input parameters from day, hour, dry-bulb temperature, relative 
humidity, and pressure. As previously noted, highly correlated variables impact on learning ability in a negative 
way. When taking a look at the results we obtained, one can observe that the variance of the first principal 
component is 60.83%. In addition, the total variance when considering the three first principal components only is 
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close to 100% (99.68 %). As a result, principal components 4 and 5 do not account for a significant part of this total 
variance. Finally, we decided for the first three principal components as ANFIS inputs. A reduction in the number of 
model inputs leads to a reduction in the number of both parameters to be identified and fuzzy rules to be designed 
during the training phase. As a consequence, the principal component analysis allows both the complexity of the 
developed model and computation time to be significantly reduced.  

 
Table 2. Principal component analysis (day, hour, dry-bulb temperature, relative humidity, and pressure). 

 
Principal component C1 C2 C3 C4 C5 

Variance (%) 60.83 37.86 0.99 0.26 0.06 
Total variance (%) 60.83 98.69 99.68 99.94 100 

Figure 4 depicts the first three principal components we obtained as well as the contribution of day, hour, dry-
bulb temperature, and pressure to these components (99.68% of the total variance). The direction and length of the 
vectors indicate how each quantitative variable contributes to principal components 1 (C1), 2 (C2) and 3 (C3). 

4.3. Forecasting results 

Table 3 is about the results we obtained about atmospheric turbidity forecasting ( (t), ,  
and ). Let us remember that we considered 84000 examples to develop (56000 examples) and validate 
(28000 examples) the proposed approach. As a key point, we carried out a parametric study to find the right number 
of fuzzy sets to be used to split the respective universes of discourse of the three principal components we 
considered as model inputs. We also tried different membership functions. As a result, we decided for Gaussian 
membership functions and three fuzzy sets whatever the principal component. After 25 iterations, the hybrid 
algorithm used during the training phase (basically a combination of least square estimation and backpropagation 
gradient method) allowed 27 rules (per bloc) to be designed (Table 4). The forecasting results are satisfactory and 
validate the proposed methodology. The Mean Absolute Error (MAE) is about 0.25 while the Mean Relative Error 
(MRE) is between 7 and 9%. One can note a slightly increase in both the MAE and MRE with the forecasting 
horizon, what strongly suggest the robustness of the proposed methodology. 

 
Table 3. Forecasting results ( (t), ,  and ) (validation phase). 

 
Atmospheric turbidity Mean absolute error (-) Mean relative error (%) 

(t) 0.23 7.57 
 0.23 7.78 
 0.26 8.54 
 0.25 8.35 

 
Table 4. ANFIS model parameters. 

 
Number of training examples 56000 

Number of validation examples 28000 
Membership functions Gaussian type 

Number of fuzzy sets (per model input) 3 
Number of fuzzy rules (per bloc) 27 

Number of iterations 25 

5. Conclusion and outlook 

The CSPIMP (Concentrated Solar Power efficiency IMProvement) European project focuses on optimizing the 
performance of CSP plants. Because a challenge in the project is to estimate the solar resource, the present work is 
related to atmospheric turbidity forecasting. First, we used data provided by the NREL (National Renewable Energy 
Laboratory, Golden, Colorado, USA) to develop and validate an efficient forecasting methodology. Complex 
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changes in atmospheric turbidity as well as abundant historical data suggest that artificial intelligence techniques are 
good candidates to forecast atmospheric turbidity accurately from meteorological variables. As a result, side-by-side 
Adaptive Network-based Fuzzy Inference Systems (ANFIS) have been used. In the field of artificial intelligence, 
neural networks and fuzzy logic can be combined in neuro-fuzzy systems in order to achieve both properties of 
readability and learning ability. In addition, a Multi-Resolution Analysis (MRA) based on the discrete wavelet 
transform allowed DNI values under clear sky conditions (clear sky DNI) to be extracted from the NREL database. 
We generated historical data about atmospheric turbidity using the empirical formulation proposed by Ineichen and 
Perez. A Principal Component Analysis (PCA) has been also considered in order to develop the forecasting model 
using uncorrelated input variables. In addition, PCA allows both the complexity of the developed model and 
computation time to be significantly reduced. The considered side-by-side ANFIS allow atmospheric turbidity to be 
forecasted at different time horizons ranging from 1 hour to 3 hours. The forecasting results are satisfactory and 
validate the proposed methodology. Over 28000 validation examples, the Mean Absolute Error (MAE) is about 0.25 
while the Mean Relative Error (MRE) is between 7 and 9%. One can note a slightly increase in both the MAE and 
MRE with the forecasting horizon, what strongly suggest the robustness of the proposed methodology. In the next 
months, the proposed methodology will contribute to the development of an advanced control scheme based on a 
MPC controller for CSP plants. MPC is commonly used to control industrial processes in real time and has good 
properties of stability and robustness. 
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