
HAL Id: hal-01292653
https://hal.science/hal-01292653v1

Submitted on 23 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerant Planning for Critical Robots
Benjamin Lussier, Matthieu Gallien, Jérémie Guiochet, Félix Ingrand,

Marc-Olivier Killijian, David Powell

To cite this version:
Benjamin Lussier, Matthieu Gallien, Jérémie Guiochet, Félix Ingrand, Marc-Olivier Killijian, et
al.. Fault Tolerant Planning for Critical Robots. DSN 2007 The 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks , Jun 2007, Edimbourg, United Kingdom.
�10.1109/DSN.2007.50�. �hal-01292653�

https://hal.science/hal-01292653v1
https://hal.archives-ouvertes.fr


Fault Tolerant Planning for Critical Robots

Benjamin Lussier, Matthieu Gallien, Jérémie Guiochet,
Félix Ingrand, Marc-Olivier Killijian, David Powell

firstname.lastname@laas.fr
LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

Abstract

Autonomous robots offer alluring perspectives in numer-
ous application domains: space rovers, satellites, medical
assistants, tour guides, etc. However, a severe lack of trust
in their dependability greatly reduces their possible usage.
In particular, autonomous systems make extensive use of
decisional mechanisms that are able to take complex and
adaptative decisions, but are very hard to validate. This
paper proposes a fault tolerance approach for decisional
planning components, which are almost mandatory in com-
plex autonomous systems. The proposed mechanisms fo-
cus on development faults in planning models and heuris-
tics, through the use of diversification. The paper presents
an implementation of these mechanisms on an existing au-
tonomous robot architecture, and evaluates their impact on
performance and reliability through the use of fault injec-
tion.

1 Introduction

Autonomous systems cover a large range of functionali-
ties and complexities, from robotic pets to space rovers, in-
cluding elderly care assistants, museum tour guides, and au-
tonomous vehicles. As successes arise in autonomous nav-
igation, exemplified by Mars rovers and the clearing of the
DARPA Grand Challenge [14], complex autonomous sys-
tems that are able to choose and execute high-level actions
without human supervision are not yet ready for real life
applications. Indeed, one of the major drawbacks in the
utilization of such systems is the difficulty to predict and
validate their behavior. To increase the confidence that we
may have in such systems so that they may be used in more
critical applications, we consider in this paper the tolerance
of residual development faults in planning models.

First, we introduce autonomous systems and specific as-
pects such as decisional mechanisms, robustness and plan-
ning. Second, we propose error detection and recovery
mechanisms that are appropriate for planning to tolerate de-

velopment faults in their application-dependent knowledge.
Finally, we validate the proposed mechanisms through an
experimental framework based on fault injection.

2. Dependability in Autonomous Systems

This section presents several aspects of autonomous sys-
tems relevant to their dependability. We present a definition
of autonomy and give key aspects of architectures for au-
tonomous robots.

2.1 Autonomy

A dictionary definition of “autonomy” is “the ability to
act independently”. However, in the field of robotics, this
definition is insufficient since it does not enable a distinc-
tion between classic automatic systems, that simply apply
preprogrammed reactions in response to the system’s inputs
(e.g., as in feedback control), and truly autonomous systems
that seek to carry out goal-oriented tasks whose implemen-
tation details are not defined in advance, either by neces-
sity (the input space is unbounded) or as a design strategy
(to simplify the code). We adopt here the definition of au-
tonomy given in [10]: “An unmanned system’s own abil-
ity of sensing, perceiving, analyzing, communicating, plan-
ning, decision-making, and acting, to achieve its goals as
assigned by its human operator(s) through designed human-
robot interaction (HRI). Autonomy is characterized into lev-
els by factors including mission complexity, environmental
difficulty, and level of HRI to accomplish the missions.”

The level of autonomy of an autonomous system is of-
ten discussed in terms of its "robustness". Indeed, au-
tonomous robots are intended to cope with uncertainty and
non-nominal situations. A good or "robust" robot is under-
stood to be one that can survive and fulfill its mission de-
spite partial knowledge about its environment as well as un-
foreseen contingencies such as obstacles, rough terrain and
failures. In this paper, we choose to distinguish between
robustness and fault tolerance as follows:

Robustness is the ability of an autonomous system to



cope with adverse environmental situations (lighting con-
ditions, unexpected obstacles, etc.) while providing an ac-
ceptable service.

Fault Tolerance is the ability of an autonomous system
to provide an acceptable service despite system faults (hard-
ware failures, software bugs, etc.).

2.2. Autonomous System Architectures

Four architectural styles for designing autonomous robot
systems are usually distinguished:

1. The sense-plan-act style is based on a closed loop of
three components devoted respectively to sensing the
environment (including the state of the robot itself),
finding a plan to change the state of the environment
to reach a goal state, and acting on the environment
according to the plan.

2. The subsumption style allows several “behavior” com-
ponents to simultaneously sense and act on the envi-
ronment, with actions that can be prioritized or cross-
inhibited between different components.

3. The hierarchical style defines several abstraction lev-
els with different real-time constraints, resulting in a
layered architecture.

4. The multi-agent style considers a set of autonomous
systems or agents immersed in the same environment
and interacting to achieve their individual or shared ob-
jectives.

Whereas the sense-plan-act style has largely been aban-
doned (at least as the basis for a monolithic architecture)
due to its poor real-time performance, the subsumption style
is still commonly used in entertainment robots, such as
Sony’s Aibo™. The multi-agent style is now receiving con-
siderable attention both as the basis for designing a taskable
robot [15] and in the context of agent swarms with emerg-
ing “intelligence” [18]. However, most practical robots cur-
rently adopt the hierarchical style, usually resulting in an
architecture with three layers [7]: a decisional layer, an ex-
ecutive layer and a functional layer.

• The decisional layer is responsible for elaborating
plans to reach operator-defined mission goals. The
execution time of the decisional layer is often un-
bounded, due to the complexity of the involved solu-
tion space search processes, for which heuristics need
to be used to render them tractable.

• The executive layer is charged selects and sequences
elementary actions that implement the high-level tasks
included with the current plan. It reacts in real-time
to errors raised by the functional layer, but reports un-
foreseen contingencies to the upper, decisional layer.

• The functional layer interfaces with the hardware sen-
sory and action devices. It may contain several reactive

feedback control modules that operate asynchronously
according to requests from the executive layer or in re-
sponse to hardware interrupts.

Sometimes the executive layer is merged into either the de-
cisional layer or the functional layer.

Hierarchical architectures for autonomy include the
RAX architecture developed by NASA as part of its Deep
Space One project [16], Honeywell’s CIRCA [17], JPL’s
CLARATy [20] and the LAAS architecture [1] developed
at LAAS-CNRS (the latter architecture will be described
in more detail in 3.2.1). From a dependability viewpoint,
tolerance of hardware faults is considered in some of these
architectures [13]. For example, the RAX architecture in-
cludes a model-based mode identification and reconfigura-
tion (MIR) component specifically aimed at diagnosing and
recovering from faults affecting hardware resources [16].
Indeed, autonomous system architectures provide an ele-
gant framework for application-specific tolerance of hard-
ware faults since, ideally, they can include the state of hard-
ware resources within the “world state” taken into account
when elaborating high-level plans. For development faults,
apart from on-line checking mechanisms aimed at guaran-
teeing safety [19], the focus has been largely been on fault
avoidance approaches (rigorous design, and thorough veri-
fication and testing). For example, intensive testing was car-
ried out on the RAX architecture [3]: six test beds were im-
plemented throughout the development process, incorporat-
ing 600 tests. The authors of [3] underline the relevance of
intensive testing, but acknowledge particular difficulties re-
garding autonomous systems, notably the problem of defin-
ing suitable test oracles. Given the inherent difficulty of
testing autonomous systems, we believe that a tolerance ap-
proach with respect to residual development faults should
be of considerable interest. Yet, to the best of our knowl-
edge, such an approach has not been previously envisaged.

2.3. Deliberation and Decision

From our perspective, deliberation and decision are the
key features of autonomy. Many different decisional capa-
bilities have been studied and deployed on robots or other
autonomous systems. Here, we discuss what distinguishes
such decisional capabilities from other programmed func-
tionalities.

Most decisional mechanisms boil down to some sort of
search in a very large state space. In general, this search
leads to a decision (a plan to reach a goal, a diagnosis, an
action, etc). This search can be done either off-line or on-
line, that is in advance to produce a precompiled data struc-
ture or on the fly while the system is running. It may reason
about past states (as in diagnostic) or about future states (as
in planning). It may have a limited horizon or, conversely, a
very deep scope. But a key aspect is that the search needs to



be efficiently guided to avoid a combinatorial explosion. As
a result, a decisional mechanism can be complete (it is guar-
anteed to find a solution if one exists) or not (it can “miss
it”), correct (solutions are always valid) or not (they are ap-
proximate), tractable (solutions are found in a polynomial
time and space) or not.

Another important feature of decisional mechanisms is
that they are organized in a way that makes a clear separa-
tion between the knowledge and the inference mechanism.
The aim is to make the inference mechanism (e.g., a search
engine) as generic and as independent as possible from the
application. Conversely, the knowledge is domain-specific
and typically specifies what states are reachable through
the search process and what is the “best” next state from
any given state. However, knowledge and inference mech-
anisms are often tightly linked in practice (e.g., heuristics
that guide a search engine).

The implementation of decisional mechanisms relies on
various formalisms (logic, neural networks, Markov mod-
els, constraints, simple temporal networks, etc.) and com-
putational models (constraint-based programming, logic
programming, heuristic search, dynamic programming,
etc.).

The most common decisional functionalities deployed
on autonomous systems are the following: planning, execu-
tion control, diagnosis, situation recognition and learning.
In this paper, we focus particularly on planning, which is
the activity of producing a plan to reach a goal from a given
state, using given action models (e.g., the activity plan for
the day of an exploration rover).

2.4. Planning

Planning is necessary in complex autonomous systems
as a means to select and organize the robot’s future actions
to achieve specified high-level goals. We introduce here
some generalities on planning in autonomous systems, be-
fore presenting dependability issues.

2.4.1. General Principle. Planning can be implemented in
several ways but, in practice, two approaches are preferred:
search in a state space and constraint planning.

Search in a state space manipulates a graph of actions
and states. It explores different action sequences from an
initial state to choose the most suitable one to achieve given
goals.

Constraint planning uses CSP1 solving to determine a
possible evolution of the system state that satisfies a set of
constraints, some of which specify the system objectives.
CSP solving is commonly an iterative algorithm assigning
successively possible values to each variable and verifying
that all constraints remain satisfied.

1Constraint Satisfaction Problem

Two robustness mechanisms are commonly imple-
mented to recover from a plan failure caused by adverse
environmental situations:

• Replanning consists in developing a new plan from the
current system state and still unresolved goals. De-
pending on the planning model complexity, replanning
may be significantly time costly. Other system activi-
ties are thus generally halted during replanning.

• Plan repair may be attempted before replanning, with
the aim of reducing the time lost in replanning. It uses
salvageable parts of the previous failed plan, that are
executed while the rest of the plan is being repaired.
However, if reducing the salvaged plan conflicts with
unresolved goals, plan repair is stopped and replanning
is initiated.

2.4.2. Dependability Issues. Planning, like other deci-
sional mechanisms, poses significant challenges for valida-
tion. Classic problems faced by testing and verification are
exacerbated. First, execution contexts in autonomous sys-
tems are neither controllable nor completely known; even
worse, consequences of the system actions are often uncer-
tain. Second, planning mechanisms have to be validated in
the complete architecture, as they aim to enhance function-
alities of the lower levels through high level abstractions
and actions. Integrated tests are thus necessary very early
in the development cycle. Third, the oracle problem2 is
particularly difficult since (a) equally correct plans may be
completely different and (b) an unforeseen adverse environ-
mental situation may completely prevent some goals from
being achieved, thus ineluctably degrading the system per-
formance, however well it behaves3.

One way to address the latter issue is to define an ora-
cle as a set of constraints that necessarily and sufficiently
characterizes a correct plan: plans satisfying the constraints
are deemed correct. Such a technique was used for thor-
ough testing of the RAX planner during the NASA Deep
Space One project [3], or in the VAL validation tool [9].
Extensive collaboration of application and planner experts
is necessary to generate the correct set of constraints. A
Failure Recovery Analysis tool is proposed in [8] to ease
model corrections during development.

Automatic static analysis may also be used to ascertain
properties on planning models, whereas manual static anal-
ysis requires domain experts to closely scrutinize models
proposed by planning developers. For example, the devel-
opment tool Planware [2] offers facilities for both types of
analysis.

Some work has also been done on evaluating planning

2How to conclude on correctness of a program’s outputs to selected test
inputs?

3For example, cliffs, or some other feature of the local terrain, may
make a position goal unreachable.



dependability. A measure for planner reliability is proposed
in [5], which compares theoretical results to experimen-
tal ones, showing a necessary compromise between tem-
poral failures (related to calculability of decisional mech-
anisms) and value failures (related to correctness of deci-
sional mechanisms). Later work [4] proposes concurrent
use of planners with diversified heuristics to answer this
compromise: a first heuristic, quick but dirty, is used when
a slower but more correct heuristic fails to deliver a plan
in time. To our knowledge, no other fault tolerance mech-
anisms have been proposed in this domain. We strongly
believe, however, that such mechanisms are essential to pro-
vide more dependability in autonomous systems.

3. Fault Tolerant Planning

We investigate here how to tolerate design and imple-
mentation faults in planner models and heuristics. These
mechanisms are particularly well adapted to hierarchical
autonomous systems with a centralized planner at the de-
cisional layer.

3.1 Principles

The general principle of the mechanisms we propose is
to execute concurrently or sequentially several variants of
the planner. The diversity lies in the different models and
heuristics used by the variants.

3.1.1. Detection. Implementing error detection for deci-
sional mechanisms in general, and planners in particular, is
difficult [13]. There are often many different valid plans,
which can be quite dissimilar. Therefore, error detection
by comparison of redundantly-produced plans is not a vi-
able option. Thus, we must implement error detection by
independent means. Here, we propose four complementary
error detection mechanisms: watchdog timer, a plan ana-
lyzer, a plan failure detector and an on-line goal checking.

A watchdog timer is used to detect when the search pro-
cess is too slow or when a critical failure such as a deadlock
occurs. Timing errors can be due to faults in the planner
model, in its search engine, or ineffectiveness of the search
heuristics.

A plan analyzer can be applied on the output of the plan-
ner. A plan analyzer is an acceptance test (i.e., an on-line
oracle) that verifies that the produced plan satisfies a num-
ber of constraints and properties. This set of constraints
and properties can be obtained from the system specifica-
tion and from domain expertise but it must be diverse from
the planner model. This mechanism is able to detect errors
due to faults in the planner model or heuristics, and in the
planner itself.

An action failure detector is a classical mechanism used

1. begin mission
2. #consecutive_failures = 0;
3. while (goals 6= ∅)
4. candidates ← planners;
5. while (candidates 6= ∅ & goals 6= ∅)
6. choose k in candidates;
7. candidates ← candidates \ k;
8. init_watchdog(max_duration);
9. send (plan) to k;
10. wait % we wait any of these two events
11. 2 receive (plan_found) from k
12. stop watchdog;
13. if analyze(plan)=OK then
14. #consecutive_failures ← 0;
15. k.execute_plan();

% if the plan fails objectives != empty
% and then we loop line 3

16. else
17. send(invalid_plan) to operator;
18. #consecutive_failures ++;
19. end if
20. 2 watchdog timeout
21. #consecutive_failures ++;
22. end wait
23. if #consecutive_failures == card(planners) then
24. raise exception "no valid plan found in time";

% no remaining planner, the mission has failed
25. end if
26. end while
27. end while
28. end mission

Figure 1. Sequential Planning Policy

in robotics for execution control. Failure of an action which
is part of the plan may be due to an unresolvable adverse
environmental situation, or may indicate errors in the plan
due to faults in the knowledge or in the decisional mech-
anism. Usually, when such an action failure is raised, the
decisional mechanisms tries to repair the plan. When this
is not possible, it raises a plan failure. We use these plan
failure reports for detection purposes.

On-line goal checking verifies, when a plan has been
executed, that every goal has been reached. These checks
must be performed on-line but can be validated only when
every action of the plan has been accomplished. This im-
plies that the checker maintains an internal representation
of the system state and of the goals that have been reached.

3.1.2. Recovery. We propose two recovery mechanisms,
both using different planners based on diverse knowledge.

With the first mechanism, the planners are executed se-
quentially, one after another. The principle is given in Fig-
ure 1. Basically, each time an error is detected, we switch
to another planner until all goals have been reached or until
all planners fail in a row. Once all the planners have been
used and there are still some unsatisfied goals, we go back
to the initial set of planners. This algorithm illustrates the
use of the four detection mechanisms presented in Section
3.1.1: watchdog timer (lines 8 and 21), plan analyzer (line
13), plan failure detector (line 15), on-line goal checking
(line 3).

Reusing planners that have been previously detected as
failed makes sense for two different reasons:



1. A perfectly correct plan can fail during execution due
to an adverse environmental situation.

2. Some planners, even faulty, can still be efficient for
some settings since the situation that activated the fault
may have disappeared.

It is worth noting that the choice of the planners, and the
order in which they are used, is arbitrary in this particular
example (line 6). However, the choice of the planner could
take advantage of application-specific knowledge about the
most appropriate planner for the current situation or knowl-
edge about recently observed failure rates of the planners.

With the second recovery mechanism, the planners are
executed concurrently. The main differences with respect
to the algorithm given in Figure 1 are:

1. The plan request message is sent to every planning
candidate.

2. When a correct plan is found, the other planners are
requested to stop planning.

3. A watchdog timeout means that all the planners have
failed.

In this case, the choice of planner order is implicit: the
first planner obtaining a plan is chosen. However, this could
lead to the repeated selection of the same faulty but rapid
planner. Some additional mechanism is thus required to cir-
cumvent this problem. For example, the planner selected
during the previous round can be withdrawn from the set of
candidates for the current round.

3.1.3. Coordination. From a dependability point of view,
the fault-tolerance mechanisms have to be as independent as
possible from the decisional layer, i.e., in this case from the
planners. This is why we propose to handle both the detec-
tion and recovery mechanisms and the services necessary
for their implementation in a middle-ware level component
called FTplan, standing for Fault-Tolerant Planning.

This component has to integrate the fault tolerance
mechanisms into the robot architecture. This implies es-
sentially two features: providing communication and syn-
chronization for the fault tolerance mechanisms, and coor-
dinating the redundant planners.

To avoid error propagation from a possible faulty plan-
ner, FTplan should not take any information that comes
from or depends on the planner themselves. The watchdog
can easily be implemented from the operating system tim-
ing primitives. Action failure detection is performed at the
execution control layer, so error reports can be obtained and
reused at the FTplan level. A plan analyzer performs sim-
ple acceptance checks using rules expressed independently
from the planners and their knowledge.

However, implementing an on-line goal checker without
relying on information obtained through the planner is more
tricky. FTplan maintains for this purpose its own system

N

S

EW

 Planner

(IxTeT)

Procedural Executive

(OpenPRS)

Environment

Functional

modules

(GenoM)

Physical layer

Figure 2. The LAAS architecture

state representation, based on information gathered from the
lower layers. Ideally, it gets this information from the exe-
cution control layer; whose abstraction level is near to that
of the decisional layer. Starting from this system state rep-
resentation, FTplan can thus implement on-line goal check-
ing.

Whatever the particular recovery mechanism it imple-
ments, sequential or parallel, FTplan has to manage several
planners. It needs to communicate with them, e.g., for send-
ing plan requests or for updating their objectives and system
state representations before replanning. It also needs to be
able to control their life cycle: start a new instance or even
stop one when it takes too long to produce a plan.

3.2. Implementation

We present here the implementation of the proposed
mechanisms. We introduce the target architecture and then
give some implementation details about the FTplan compo-
nent.

3.2.1. LAAS architecture. The LAAS architecture is pre-
sented in [1], and some recent modifications have been pro-
posed in [12]. It has been successfully applied to several
mobile robots, some of which have performed missions in
real situations (human interaction or exploration). It is com-
posed of three main components4 as presented in Figure 2:
GenoM modules, OpenPRS, and IxTeT.

The functional level is composed of a set of GenoM mod-
ules (which are automatically generated), each of them of-
fering a set of services, which perform computation (e.g.,
trajectory movement calculation) or communication with

4An additional robustness component, R2C, is introduced in [19]. We
have not considered it in this study since its current implementation is not
compatible with our experimental environment.



IxTeT1

Model1

Objectives
FTPlanWatchdog

IxTeT2

Model2
Procedural

Executive

(OpenPRS)

Fault tolerant planner

Figure 3. Fault tolerant planner

physical devices (sensors and actuators). After delivering
the service, a report is sent to the requester to report success
or failure of the action, along with other action-specific in-
formation. Data exchange between modules is performed
through the use of “posters”, each of which is a shared
memory space attached to a module, and readable by the
others.

The procedural executive, OpenPRS, is in charge of de-
composing and refining plan actions into lower-level ac-
tions executable by functional components, and executing
them. This component links the decisional component (Ix-
TeT) and the functional level. During execution, OpenPRS
reports any action failures to the planner, in order to re-plan
or repair the plan. As several IxTeT actions can be per-
formed concurrently, it has also to schedule sequences of
refined actions.

This higher level includes the deliberative capability of
producing task plans. IxTeT , is a temporal constraint plan-
ner as presented in Section 2.3.1. To build a plan, the plan-
ner combines high level actions. Each action is described
in a model file used by the planner as a set of constraints on
attributes (e.g., robot position), resources (e.g., energy con-
sumption), numeric or temporal data (e.g., action duration).
Then, a valid plan is calculated combining a set of actions
in such a way that they are conflict-free and they fulfill the
goals. The description of actions in the planner model is
critical for the generation of successful plans and thus for
the dependability of the robot as a whole.

3.2.2. Fault Tolerant Planner Implementation. The fault
tolerance principles presented in Section 3.1 have been im-
plemented in a fault tolerant planner component as pre-
sented in Figure 3. This component replaces the original
component “Planner” presented in Figure 2. The FTplan
component is in charge of communicating with OpenPRS
as the original planner does. To be consistent with the cur-
rent implementation, FTplan uses the same technologies as
OpenPRS and IxTeT for communication (i.e., a client li-
brary of a MessagePasser component).

The current version of FTplan implements the sequential
redundant planner coordination algorithm presented earlier
(Section 3.1, Figure 1) with two IxTeT planners. A se-

:watchdog

:FTplan :IxTeT1 :IxTeT2

init()
init()

start() plan()

thePlanstop()

executionFailure
start()

timeout() stop()

create()

execute(thePlan)

plan()

init()
start()

thePlanstop()

executionSuccess

plan()

execute(thePlan)

Figure 4. A fault tolerance scenario

quence diagram illustrating implemented principles is pre-
sented in Figure 4. Currently, the plan analysis function
is empty (it always return true) so error detection relies
solely on just three of the mechanisms presented in Sec-
tion 3.1.1: watchdog timer, plan failure detection, and on-
line goal checking.

The watchdog timer is launched at each start of planning.
As soon as a plan is found before the time limit (40 seconds
in our implementation), the watchdog is stopped. If timeout
occurs, FTplan stops the current IxTeT, and sends a plan
request to the other IxTeT planner, until a plan is found or
all planners have failed.

On-line goal checking is performed after each action suc-
cessfully executed by OpenPRS and that can result in a goal
being reached (for instance a camera shot). This checking
is carried out by analyzing the system state at the end of an
action, and checking that no inconsistent actions have been
executed simultaneously.

In the actual implementation, FTplan checks every 10ms
if there is a message from OpenPRS or one of the IxTeT
planners. In case of an action request from a planner or
an action report from OpenPRS, FTplan updates its system
representation before transmitting the request. If the request
is a plan execution failure (the system has not been able
to perform the actions of the plan), then FTplan launches
a re-plan using the sequential mechanism. If the request
indicates that the actions are finished, then FTplan checks if
the goals have been reached.



4. Mechanism Validation

We present here the validation process we have followed
to assess the performance and efficacy of the proposed fault
tolerant mechanisms. We discuss first a validation frame-
work that extensively uses simulation and fault injection,
then present experimental results.

4.1. Framework for Validation

Our validation framework relies on fault injection and
simulation. Fault injection is needed to confront the system
with representative faults in planning knowledge. There are
no extensive studies of faults in autonomous system knowl-
edge, but previous work on imperative languages [6] has
demonstrated that mutations5 may efficiently simulate real
software faults. The autonomous software is exercised on a
simulated robot rather than a real one. This is motivated by
two main reasons:

• A large number of experiments is required to perform
a significant evaluation; experiments on real systems
usually need more time to be executed, and are more
difficult to automate.

• The behavior of the robot may be hazardous during
an experiment; as we inject faults into it, we cannot
predict its behavior, which may cause damage to itself
or its direct surroundings.

We now introduce successively the targeted software ar-
chitecture, the workload, the faultload, and the readouts and
measurements we obtain from system activity.

4.1.1. Software Architecture. Our simulation environment
is represented in Figure 5. It incorporates three elements:
an open source robot simulator named Gazebo, an interface
library named Pocosim, and the components of the LAAS
architecture already presented in section 3.2.1.

The robot simulator Gazebo6 is used to simulate the
physical world and the actions of the autonomous system; it
takes as input a file describing the environment of the simu-
lation (mainly a list of static or dynamic obstacles contain-
ing their position, and the physical description of the robot)
and executes the movement of the robot and dynamic obsta-
cles, and possible interactions between objects.

The Pocosim library [11] is a software bridge between
the simulated robot (executed on Gazebo) and the software
commands generated by the GenoM modules: it transforms
commands to the actuators into movements or actions to
be executed on the simulated robot, and relays the sensor
inputs that Gazebo produces from the simulation.

5A mutation is a syntactic modification of an existing program.
6“The player/stage project”, http://playerstage.sourceforge.net

Description

Environment

Pocosim

Gazebo

GENOM Modules

RFLEX

ASPECTPOM

NDDCAMERA PLATINE ANTENNA

SICK

LAAS 
ARCHITECTURE

SIMULATION 
ENVIRONMENT

OpenPRS

Fault tolerant 

planner

Model1

Objectives

Model2

Figure 5. Simulation environment

Our autonomous system, based on an existing ATRV
robot, employs eight GenoM modules, that can be catego-
rized into three groups:

• SICK and RFLEX are modules compiled with the
Pocosim library and interfaced with Gazebo simulated
hardware. SICK commands the laser proximity sensor
of the robot, while RFLEX controls wheels and odom-
etry.

• NDD, ASPECT and POM are software modules that
make use of SICK and REFLEX to implement naviga-
tion and obstacle avoidance.

• CAMERA, PLATINE and ANTENNA are modules
controlling components that are not simulated in
Gazebo: their code source has been modified to pro-
vide a simple behavioral simulation. CAMERA con-
trols the stereo-cameras of the robot, PLATINE con-
trols the pan and tilt unit on which the cameras are
fixed, and ANTENNA simulates a communication
unit.

The upper layer of the LAAS architecture executes as pre-
sented in the previous chapter. Two different models are
used with the IxTeT planners. The first model was thor-
oughly tested and used on a real ATRV robot; we use it as
primary model and as target for fault injection. We specifi-
cally developed the second model through diversification of
the first: for example, the robot position is characterized nu-
merically in the first model and symbolically in the second.



4.1.2. Workload. Our workload mimics the possible activ-
ity of a space rover. The system is required to achieve three
subsets of goals: take science photos at specific locations
(in any order), communicate with an orbiter during speci-
fied visibility windows, and be back at the initial position at
the end of the mission.

To partially address the fact that the robot must oper-
ate in an open unknown environment and to activate the
system’s functionalities as broadly as possible, we com-
bine several sets of mission and worlds. A mission encom-
passes the number and location of photos to be taken, and
the number and occurrence of visibility windows. A world
is a set of static obstacles unknown to the robot (possibly
blocking the system from executing one of its goals), which
introduces uncertainties and stresses the system navigation
mechanism.

We implemented four missions and four worlds, thus ap-
plying sixteen execution contexts to each mutation. Mis-
sions are referenced as gradually more difficult M1, M2,
M3 and M4: M1 consists in two communications and three
photos in close locations, whereas M4 consists in four com-
munications and five far apart photos. Environments are
referenced as worlds W1, W2, W3 and W4. W1 is an
empty world, where no unspecified obstacles hinder plan
execution. W2 and W3 contains small cylindrical obsta-
cles, whereas W4 includes large rectangular obstacles that
may pose great difficulties to the navigation module, and
are susceptible to endlessly block the robot path.

In addition, several equivalent experiments are needed
to address the non-determinacy of the experiments. This is
due to asynchrony in the various subsystems of the robot
and in the underlying operating systems: task scheduling
differences between similar experiments may degrade into
task failures and possibly unsatisfied goals, even in the ab-
sence of faults. We thus execute each basic experiment three
times, leading to a total of 48 experiments per mutation.
More repetition would of course be needed for statistical in-
ference on the basic experiments but this would have led to
a total number of experiments higher than that which could
have been carried out in the time available (each basic ex-
periment lasts about 20 minutes).

4.1.3. Faultload. To assess performance and efficacy of the
proposed fault tolerance mechanisms, we inject faults in a
planning model by mutation of the model source code. Five
types of possible mutations were identified from the model
syntax:

• Substitution of numerical values: each numerical value
is exchanged with members of a set of real numbers
that encompasses (a) all numerical variables in all the
tasks of the model, (b) a set of specific values (such as
0, 1 or -1), and (c) a set of randomly-selected values.

• Substitution of variables: since the scope of a variable

is limited to the task where it is defined, numerical
(resp. temporal) variables are exchanged with all nu-
merical (resp. temporal) variables of the same task.

• Substitution of attribute values7: values are exchanged
with other possible values in the range of the attribute.

• Substitution of language operators: in addition to clas-
sic numerical operators on temporal and numerical val-
ues, the IxTeT formalism employs specific operators,
such as “nonPreemptive” (that indicates that a task
cannot be interrupted by the executive).

• Removal of a constraint relation: a randomly selected
constraint on attributes or variables is removed from
the model.

Substitution mutations were automatically generated us-
ing the SESAME tool [?]. Using an off-line compilation,
this tool detects and eliminates binary equivalent or syntac-
tically incorrect mutants. Removal of random constraint re-
lations was carried out through a PERL script and added to
the mutations generated by SESAME. All in all, more than
1000 mutations were generated from the first model.

For better representativeness of injected faults, we only
choose to consider mutants:

• that are able to find a plan in at least one mission
(we consider that models that systematically fail would
easily be detected during the development phase),

• whose results (with and without FTplan) are different
to those of the fault-free original model (if the results
are similar, we consider that the fault had no impact in
the chosen execution contexts).

To augment the number of relevant mutants in our experi-
ments, mutant selection was carried out in two phases: first
a random selection in one of the five considered types of
mutation, second a simple manual analysis aimed at elimi-
nating mutants that trivially do not respect the above crite-
ria.

4.1.4. Records and Measurements. Numerous log files
are generated by a single experiment: simulated data from
Gazebo (including robot position and hardware module ac-
tivity), output messages from GenoM modules and Open-
PRS, requests and reports sent and received by each plan-
ner, as well as outputs of the planning process.

Problems arise however in trying to condense this
amount of data into significant relevant measures. Contrary
to more classic mutation experiments, the result of an ex-
periment cannot be easily dichomotized as either failed or
successful. As previously mentioned, an autonomous sys-
tem is confronted with partially unknown environments and
situations, and some of its objectives may be difficult or

7In the IxTeT formalism, attributes are the different variables that to-
gether describe the system state.



100%
66%
33%

m
is

si
on

�

#replan
Robot1
Robot2

RobotFT 0
0
0

0
0
0

0
0
0

1.3
2.3
1

0
0
0

0
0
0

0
0
0

0
0
0

0
0.3
0

0
0
0

0
0.3
0

2
0
0

0
1
0

0
0
0

0.3
0

4.3

1.3
0.6
1

100%
66%
33%

pl
an

ni
ng

100%
66%
33%

re
tu

rn
s

�

100%

75%

50%

25%co
m

m
s

�

100%

75%

50%

25%

W4W3W2W1W4W3W2W1W4W3W2W1W4W3W2W1

ph
ot

os

�

M1 M2 M3 M4Robot1
Robot2

RobotFT

Figure 6. Impact of FTplan on performance

even impossible to achieve in some contexts. Thus, assess-
ment of the results of a mission must be graded into more
than just two levels. Moreover, detection of equivalent mu-
tants is complexified by the non-deterministic context of au-
tonomous systems

To answer these issues to some extent, we chose to cate-
gorize the quality of the result of an experiment with: (a) the
subset of goals that have been successfully achieved, and (b)
performance results such as the mission execution time and
the distance covered by the robot to achieve its goals. Due
to space constraints, we focus in the rest of this paper on
measurements relative to the mission goals.

4.2. Results

We present in this part several experimental results using
the evaluation framework previously introduced. Experi-
ments were executed on i386 systems with 3.2 GHz CPU
and the Linux OS. We first study the performance cost of the
proposed mechanisms, then present their efficacy in tolerat-
ing injected faults. We focus particularly on two systems: a
non-diversified LAAS robot using just our first model (re-
ferred to as Robot1), and a diversified LAAS robot with
FTplan using our first and second model (referred to as
RobotFT).

4.2.1. Performance. To determine the overhead of the pro-
posed fault tolerance mechanisms, we first concentrate on
supposed fault-free models, and study the impact of FTplan
on the system behavior and temporal performance. Figure 6
shows the observed failure proportions for Robot1, Robot28

and RobotFT.
First, the mean numbers of replanning operations ob-

8Same as Robot1, but using the second model instead of the first.

served during one experiment are listed9 Second, five failure
proportions are represented graphically: failure of the mis-
sion (that indicates that one or more mission goals was not
achieved), failure of the planner (that is a crash or a process
hang), and failure to reach the three different types of goals
(photos, communications, return to initial position).

Note that results in W4 must be treated with caution,
as this world contains large obstacles that may completely
block the robot path. As such, success in this world relies
more on serendipity in the choice of plan rather than cor-
rectness of the planner model. It is however interesting to
study the system reaction to unforeseen and unforgiving sit-
uations that possibly arise in an open and uncontrolled envi-
ronment. Note that these results show that different models
give rise to different failure behaviors: particularly in W4,
the three systems fail differently.

W4 set aside, results are globally very good: Robot1
and RobotFT succeed in all their objectives, while Robot2
fails a few objectives in M3, and all its return objectives in
M4W1. These failures may be attributed to a larger set of
constraints in this model that may be costly in performance,
and underestimated distance declarations. The mean activ-
ity time of the systems (that is the time until the system
stops all activity in a mission) are 404 seconds for Robot1,
376 seconds for Robot2, and 405 seconds for RobotFT.
Time performance-wise, the three systems are thus roughly
equivalent.

Although the results are globally positive, showing that
FTplan’s main execution loop does not negatively impact
goal achievement or performance, they are still insufficient
to assess the overhead of planner switches as very few oc-
curred in these fault-free experiments. To stress this aspect,
we used a version of IxTeT without the optimizing function-
ality of plan repair: any failed action systematically leads to
complete replanning, with an additional planner switch in
the case of FTplan. This version was tested on two systems:
Robot1NR and RobotFTNR10. Model 1 was used as both
models of FTplan, in order to focus on the cost of the coor-
dination mechanisms rather than on actual recovery. Results
are presented in Figure 7.

We effectively see that there are many more replan-
nings (and thus planner switches) than in the previous ex-
periments (a mean per experiment of 8.3 against 0.3 for
Robot1NR, and 8.9 against 0.4 for RobtFTNR). M1W2 ap-
pears as a singularity for RobotFTNR as after a few minutes
of execution, the IxTeT planner finds no solution in its cur-
rent situation. We believe that this is to an elusive bug in
either the model, FTplan, or the IxTeT planner11.

9In the case of RobotFT, this number is equivalent to the number of
planner switches during the mission.

10Robot1 No Repair and RobotFT No Repair
11However, the same experiment with a RobotFTNR using the first and

second models gives successful executions, suggesting that the bug lies in
our modified version of IxTeT.



100%
66%
33%

m
is

si
on

�

#replan
Robot1NR

RobotFTNR
3

3.6
6.3
2

6.3
4.6

14.6
25.6

5.6
4

4.3
2

2.3
6.3

5.6
13.6

10
10

9
9.6

10
8.3

25
20.6

4.6
6.6

6.3
4.3

8
9.3

11
12.6

100%
66%
33%

pl
an

ni
ng

100%
66%
33%

re
tu

rn
s

�

100%

75%

50%

25%co
m

m
s

�

100%

75%

50%

25%

W4W3W2W1W4W3W2W1W4W3W2W1W4W3W2W1

ph
ot

os�

M1 M2 M3 M4Robot1NR
�

RobotFTNR

Figure 7. Effect of additional replanning

Apart from this singularity, RobotFTNR only fails more
objectives than Robot1NR in the over-stressing W4 exe-
cution contexts, as well as the complex M4W3. Setting
aside W4 (and the M1W2 singularity), the mean activity
time of the systems is this time 4194 seconds for Robot1NR
and 4744 seconds for RobotFTNR, indicating an overhead
of 13%. Including W4, the time is 6837 seconds for
Robot1NR and 8027 seconds for RobotFTNR, indicating
an overhead of 17%. We deem these results as quite ac-
ceptable considering the negative impact of discarding plan
repair.

4.2.2. Efficacy. To test the efficacy of the proposed mech-
anisms and the FTplan component, we injected 39 faults
in our first model, realizing more than 3500 experiments
equivalent to 1200 hours of testing. We discarded 10 mu-
tants that were unable to find a plan for any of the four
missions12 We believe that five of the remaining mutants
are equivalent to the fault-free models. However, the non-
deterministic nature of autonomous systems makes it del-
icate to define objective equivalence criteria. We thus in-
clude the results obtained with these five mutants, leading
to a conservative measure of the efficacy of model diversi-
fication.

The 29 considered mutations are categorized in the fol-
lowing manner: three substitutions of attribute values, six
substitutions of variables, ten substitutions of numerical val-
ues, four substitutions of operators, and six removals of
constraints. The mutants were executed on Robot1 and
RobotFT. The results are presented in Figure 8.

These results give objective evidence that model diver-
sification favorably contributes to fault tolerance of an au-
tonomous system: improvement of 48% for photo goals,
32% for communication goals, and 27% for returns goals.

12In this case, FTplan gives the same results as the fault-free model2:
nearly perfect success rates in W1, W2 and W3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

photos comms returns

Robot1 RobotFT

Figure 8. Goal success levels (29 mutations)

Note, however, that RobotFT in the presence of injected
faults is less successful than a single fault-free model. This
apparent decrease in dependability is easily explained by
the fact that incorrect plans are only detected when their
execution has failed, possibly rendering one or more goals
unachievable, despite recovery. This underlines the impor-
tance of studying appropriate plan analysis procedures to
attempt to detect errors in plans before they are executed.

5. Conclusion

To our knowledge, the work presented in this paper is the
first proposition of fault tolerant mechanisms based on di-
versified planning models. We proposed a component pro-
viding error detection and recovery appropriate for fault-
tolerant planning, and implemented it in the LAAS archi-
tecture. This component can use four detection mechanisms
(watchdog timer, plan failure detector, on-line goal check-
ing and plan analyzer), and two recovery policies (sequen-
tial planning and concurrent planning). Our current imple-
mentation is that of sequential planning associated with the
first three error detection mechanisms.

To assess the performance overhead and the efficacy
of the proposed mechanisms, we developed a validation
framework that exercises the software on a simulated robot
platform, and carried out what we believe to be the first ever
mutation experiments on declarative models. These experi-
ments were conclusive in showing that the proposed mech-
anisms do not severely degrade the system performance, yet
significantly improve the system behavior in the presence of
model faults.

There are many directions for future research. First, im-
plementation of a plan analyzer should allow better goal
success levels to be achieved in the presence of faults since
it should increase error detection coverage and provide
lower latency. Implementation of the concurrent planning
policy and comparison with the sequential planning policy
are also of interest. Moreover, we would like to evaluate
diversification on planning heuristics rather than just mod-



els and investigate also the additional detection capabilities
of recent additions to the LAAS architecture [19]. Finally,
many more experiments are needed to improve the statisti-
cal relevance of the results. As experiments are time and
performance costly, the use of a large computer grid would
drastically improve the number of experiments that could
be executed in reasonable time.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand.
An Architecture for Autonomy. The International Journal
of Robotics Research, 17(4):315–337, April 1998.

[2] M. Becker and D. R. Smith. Model Validation in Planware.
In ICAPS 2005 Workshop on Verification and Validation of
Model-Based Planning and Scheduling Systems, Monterey,
California, June 6-7, 2005.

[3] D. E. Bernard, E. B. Gamble, N. F. Rouquette, B. Smith,
Y. W. Tung, N. Muscettola, G. A. Dorias, B. Kanefsky,
J. Kurien, W. Millar, P. Nayal, K. Rajan, and W. Taylor. Re-
mote Agent Experiment DS1 Technology Validation Report.
Ames Research Center and JPL, 2000.

[4] I. R. Chen. On the Reliability of AI Planning Software in
Real-Time Applications. IEEE Transactions on Reliability,
46(1):81–87, March 1997.

[5] I. R. Chen, F. B. Bastani, and T. W. Tsao. On the Reliability
of AI Planning Software in Real-Time Applications. IEEE
Transactions on Knowledge and Data Engineering, 7(1):14–
25, February 1995.

[6] M. Daran. Modélisation des comportements érronés du logi-
ciel et application à la validation des tests par injection
de fautes. PhD thesis, Institut National Polytechnique de
Toulouse, 1996. Rapport LAAS No. 96497.

[7] E. Gat. On Three-Layer Architectures. In Artificial Intelli-
gence and Mobile Robots, D. Kortenkamp, R. P. Bonnasso,
and R. Murphy editors, MIT/AAAI Press, pages 195-210,
1997.

[8] A. E. Howe. Improving the Reliability of Artificial Intelli-
gence Planning Systems by Analyzing their Failure Recov-
ery. IEEE Transactions on Knowledge and Data Engineer-
ing, 7(1):14–25, February 1995.

[9] R. Howey, D. Long, and M. Fox. VAL: Automatic Plan Vali-
dation, Continuous Effects and Mixed Initiative Planning us-
ing PDDL. In 16th IEEE International Conference on Tools
with Artificial Intelligence, Boca Raton, Florida, November
15-17, 2004.

[10] H. M. Huang, editor. Autonomy Levels for Unmanned Sys-
tems (ALFUS) Framework. Number NIST Special Publica-
tion 1011. 2004.

[11] S. Joyeux, A. Lampe, R. Alami, and S. Lacroix. Simulation
in the LAAS Architecture. In Proceedings of Principles and
Practice of Software Development in Robotics (SDIR2005),
ICRA workshop, Barcelona, Spain, April 18, 2005.

[12] S. Lemai and F. Ingrand. Interleaving Temporal Planning
and Execution in Robotics Domains. In Proceedings of
AAAI-04, pages 617–622, San Jose, California, July 25-29,
2004.

[13] B. Lussier, A. Lampe, R. Chatila, F. Ingrand, M. O. Kil-
lijian, and D. Powell. Fault Tolerance in Autonomous
Systems: How and How Much? In Proceedings of the
4th IARP/IEEE-RAS/EURON Joint Workshop on Technical
Challenge for Dependable Robots in Human Environments,
Nagoya, Japan, June 16-18, 2005.

[14] M. Monterlo, S. Thrun, H. Dahlkamp, D. Stavens, and
S. Strohband. Winning the DARPA Grand Challenge with
an AI Robot. In American Association of Artificial Intelli-
gence 2006 (AAAI06), Boston, MA, July 17-20, 2006.

[15] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and
C. Plaunt. IDEA: Planning at the Core of Autonomous Re-
active Agents. In AIPS 2002 Workshop on On-line Plan-
ning and Scheduling, Toulouse, France, April 22, 2002.
http://citeseer.nj.nec.com/593897.html.

[16] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Re-
mote Agent: To Boldly Go Where No AI System Has Gone
Before. Artificial Intelligence, 103(1-2):5–47, 1998.

[17] D. J. Musliner, E. H. Durfee, and K. G. Shine. World Mod-
eling for the Dynamic Construction of Real-Time Control
Plans. AI Journal, 74(1):83–127, March 1995.

[18] J. L. Pearce, B. Powers, C. Hess, P. E. Rybski, S. A.
Stoeter, and N. Papanikolopoulos. Using virtual pheromones
and cameras for dispersing a team of multiple miniature
robots. Journal of Intelligent and Robotic Systems, 45:307–
21, 2006.

[19] F. Py and F. Ingrand. Real-Time Execution Control for Au-
tonomous Systems. In Proceedings of the 2nd European
Congress ERTS, Embedded Real Time Software, Toulouse,
France, January 21-23, 2004.

[20] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and
H. Das. CLARAty: Coupled Layer Architecture for Robotic
Autonomy. Technical Report D-19975, NASA - Jet Propul-
sion Laboratory, 2000.


