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A stress-controlled shear cell for small-angle light scattering and microscopy

S. Aime,∗ L. Ramos, J. M . Fromental, G. Prévot, R. Jelinek, and L. Cipelletti†

Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, F-France
(Dated: March 22, 2016)

We develop and thoroughly test a stress-controlled, parallel plates shear cell that can be coupled
to an optical microscope or a small angle light scattering setup, for simultaneous investigation of
the rheological properties and the microscopic structure of soft materials under an imposed shear
stress. In order to minimize friction, the cell is based on an air bearing linear stage, the stress is
applied through a contactless magnetic actuator, and the strain is measured through optical sensors.
We discuss the contributions of inertia and of the small residual friction to the measured signal and
demonstrate the performance of our device in both oscillating and step stress experiments on a
variety of viscoelastic materials.

I. INTRODUCTION

Complex fluids such as polymer solutions, surfactant
phases, foams, emulsions and colloidal suspensions are
ubiquitous in everyday life and industrial applications.
Their rheological properties are often of paramount im-
portance both during the production process and for the
final user [1]. They are also a topic of intense funda-
mental research in fields as divers as the physics of poly-
mers [2], the glass transition [3, 4], foams dynamics [5],
and biological fluids and tissues [3, 6]. Conventional
rheology is widely used as a powerful characterization
tool [1], providing valuable information on the macro-
scopic mechanical properties of a system. As early as in
the 1934 study of shear-induced emulsification by G. I.
Taylor [7], however, it was recognized that coupling rhe-
ology to measurements of the sample structure and dy-
namics at the microscopic scale tremendously increases
our insight in the material behavior. Most experiments
rely on optical and scattering probes of the microstruc-
ture, although other methods have also been introduced,
e.g. acoustic velocimetry [8] and nuclear magnetic res-
onance [9]. Indeed, in the last 40 years a large num-
ber of apparatuses have been developed, which use mi-
croscopy, static and dynamic light scattering, neutron
and X-ray scattering to investigate the microstructure of
driven samples. The wide spectrum of topics that have
benefitted from such simultaneous measurements demon-
strates the importance and success of this approach: a
non-exhaustive list includes the investigation of the ori-
entation dynamics and deformation of individual objects
such as emulsion drops, polymers, liquid crystals and pro-
tein clusters [7, 10–14], the influence of shear on demixing
and critical phenomena [15, 16], shear-induced structure
distortion and non-equilibrium phase transitions [17–35],
the dynamics of foams [36, 37] and that of defects in col-
loidal crystals [38–42], shear banding [43–49] and non-
affine deformation in polymer gels and glasses [50, 51],
and creep and yielding in amorphous, dense emulsions
and colloids, and surfactant phases [3, 52–63].
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Previous works may be classified according to the
probe method, the deformation geometry and the rhe-
ological quantities that are measured. In a first group
of experiments, mostly performed in the last 30 years
of the past century, small angle static light scattering
(SALS) was used to monitor the change of the sam-
ple structure [10–12, 15–17, 20–22, 25]. Small angle
X-ray (SAXS [13, 14, 24, 27, 29, 31, 33, 38, 41, 55])
and neutron (SANS [23, 32, 34, 35, 40, 43, 45, 46, 48]
and [64] and references therein) scattering have also been
used [61, 65], although they require large scale facil-
ities and are therefore less accessible than microscopy
and light scattering. Quite generally, these experiments
were performed under strain-imposed conditions, often
using custom-designed shear cells. Stress measurements
(or stress-imposed tests) were available in just a few
cases [11, 16, 21], where a commercial rheometer was cou-
pled to a scattering apparatus.

With the development of advanced microscopy meth-
ods, in particularly laser scanning confocal microscopy,
many groups have developed apparatuses that couple
rheology and microscopy [20, 26, 28, 30, 42, 44, 47, 50, 56,
57, 59, 60, 62, 63, 66–70]. Apparatuses based on a com-
mercial rheometer usually give access to both the shear
stress and the strain [63, 67]. With confocal microscopy,
both a plate-plate and a cone and plate geometry are
possible, since in confocal microscopy the sample is illu-
minated and the image is collected from the same side.
This allows one to avoid any complications in the opti-
cal layout due to the wedge-shaped sample volume of the
cone and plate geometry. Note that for rotational motion
the cone and plate geometry is preferable to the plate-
plate one when a uniform stress is required, e.g. for yield
stress fluids or in the non-linear regime. Custom shear
cells have also been used in conjunction to microscopy.
As for scattering-based setups, custom cells are in general
strain-controlled, with no measurement of the stress (see
however Ref. [70] for a notable exception). In spite of this
limitation, custom cells may be an interesting option in
terms of cost and because they allow valuable features to
be implemented: a fine control and a great flexibility on
the choice of the surfaces in contact with the sample, the
creation of a stagnation plane through counter-moving
surfaces [28, 44, 69], which greatly simplifies the obser-
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vation under a large applied shear, and the implemen-
tation of non-conventional shear geometries, e.g. small
channels for investigating confinement effects [47, 66, 67]
or large-amplitude shear with linearly translating parallel
plates [30].

Real-space microscopy data are unsurpassed in that
they provide full knowledge of both the structure and the
dynamics of the sample at the particle level. However,
microscopy suffers from several limitations: it is quite
sensitive to multiple scattering, making turbid samples
difficult to study; it requires specifically designed, fluo-
rescently labelled particles if confocal microscopy is to be
used; only quite small sample volumes can be imaged; a
high resolution, a large field of view and a fast acquisi-
tion rate are mutually exclusive, so that a compromise
has to be found between these conflicting requirements.
Scattering methods, while not accessing the single parti-
cle level, do not suffer from these limitations. Further-
more, advanced scattering techniques such as the Time
Resolved Correlation [71] (TRC) and the Photon Corre-
lation Imaging [72, 73] (PCI) methods can fully capture
temporally and spatially varying dynamics, yielding in-
stantaneous coarse-grained maps of the dynamical activ-
ity. Thus, scattering techniques are a valuable alternative
to real-space methods not only for measuring the sam-
ple structure, as in the early works mentioned above, but
also to probe its dynamics.

Dynamic light scattering in the highly multiple scat-
tering limit (diffusing wave spectroscopy, DWS [74]) has
been used since the Nineties of the past century to mea-
sure the microscopic dynamics associated with the affine
deformation in the shear flow of a simple fluid [75] and
the impact of shear on foam dynamics [36]. In a subse-
quent series of works, the so-called ‘echo-DWS’ method
has been introduced: here, DWS is used to measure the
irreversible rearrangements occurring in amorphous vis-
coelastic solids such as emulsions [52], foams [37], or col-
loidal gels and glasses [53, 54, 58] subject to an oscillating
shear deformation. More recently, space-resolved DWS
has been applied to the investigation of the microscopic
rearrangements in polymeric solids under compression or
elongation [51, 76]. Dynamic light scattering in the sin-
gle scattering regime [77] (DLS), by contrast, has been
much less used as a probe of the microscopic dynamics
of a driven system [42], perhaps because single scatter-
ing conditions require greater care than multiple scatter-
ing ones in designing a scattering apparatus, due to the
sensitivity of DLS to the scattering angle at which light
is collected and its vulnerability to stray light scattered
by any imperfections in the optics [78]. In spite of its
greater complexity, DLS has several appealing features,
such as its ability to probe the dynamics on a large range
of length scales (by varying the scattering angle), the ex-
cellent overlap between the probed length scales (from a
few tens of nm up to several tens of µm) and the char-
acteristic structural length scales of most complex fluids,
and the possibility to extend it to the X-ray domain (X-
photon correlation spectroscopy, XPCS [79]).

In this paper, we introduce a novel, custom made shear
cell that can be coupled both to an inverted or upright
conventional or confocal microscope and to a static and
dynamic small angle light scattering apparatus, such as
that described in Ref. [78]. The shear cell is composed
by two parallel plates, one of which can undergo trans-
lational motion; the cell can be placed both in an hori-
zontal or vertical plane, which makes it particularly ver-
satile. In contrast to other custom shear cells previ-
ously reported in the literature, for which a shear de-
formation is imposed and no stress measurement is avail-
able [7, 10, 12, 17, 22–28, 34, 36–43, 45, 46, 48, 50, 52–
54, 56, 57, 59, 60, 62, 68, 69], our cell is stress-controlled
and the strain is accurately measured. This opens the
way to the full characterization of the rheological behav-
ior of a sample, simultaneously to its structural and dy-
namical evolution at the microscopic level. It moreover
allows one to investigate in detail fascinating phenomena
of great current interest [80], such as the microscopic be-
havior of yield stress fluids in the creep regime, prior to
fluidization, which are only accessible in stress-controlled
experiments.

The rest of the paper is organized as follows: in Sec. II
we briefly present the shear cell, before discussing in
Sec. III its main features independently of the inves-
tigated sample (stress calibration, strain measurement,
plate parallelism, effects of inertia and residual friction).
Section IV demonstrates the cell performances through a
series of tests on model systems, representative of a New-
tonian fluid, a perfectly elastic solid, and a viscoelastic
Maxwell fluid. An overview of the characteristics of the
shear cell, with an emphasis on its strengths and limits
concludes the paper, in Sec. V.

II. SETUP

A scheme of the setup is shown in fig. 1. The sample
is confined between two crossed microscope slides, whose
surfaces are separated by a gap e, typically of the order
of a few hundreds of µm. The gap can be adjusted us-
ing spacers and a set of precision screws to ensure the
parallelism of the plates, as described in more detail in
Sec. III C. One of the two slides is fixed to an opti-
cal table, while the second one is mounted on a mobile
frame that slides on a linear air bearing. The air bearing
avoids any mechanical contact between the sliding frame
and the optical table, therefore minimizing friction. In
order to avoid spurious contributions due to gravity, the
horizontal alignment of the air bearing rail can be ad-
justed to within a few 10−5 rad using a finely threaded
differential screw. To impose the desired shear stress,
a controlled force is applied to the mobile frame using
a magnetic actuator (see fig. 1), powered by a custom-
designed, computer-controlled current generator. A con-
tactless optical sensor measures the displacement of the
moving frame and thus the sample strain. The imple-
mentation of the strain sensor is discussed in Sec. III B.
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Figure 1. Top: scheme of the experimental setup. Bottom
left: the shear cell. Bottom right: the shear cell coupled
to the small angle static and dynamic light scattering setup
described in Ref. [78].

The linear air bearing (model RAB1, from Nelson Air
Corp.) is guided by air films of thickness ∼ 10 µm, which
confine its motion in the longitudinal x direction. The
viscous drag of the air films can typically be neglected,
whereas a small residual friction, most likely due to dust
particles, is seen when a force smaller than 1 mN is ap-
plied, as it will be shown in Sec. III D. The maximum
linear travel of the system is 75 mm, set by the length
of the moving plate. However, we typically restrain the
travel distance to 5-10 mm, over which the imposed force
is virtually independent of position (see Sec. III A). This
typically corresponds to a strain γ ≤ 10. The nominal
straightness of the sliding bar (provided by the manufac-
turer) is better than 1 µm over the whole travel length,
whereas the nominal thickness of the plates is constant
to within 10 µm throughout their entire surface. There-
fore, the gap e can be considered to be uniform over the
typical working distance. More details on the plates par-
allelism will be given in Sec. III C. The sliding part of the
setup has a relatively small mass, M ' 335 g, including
the mass of the sliding bar itself, 288.0 g. This allows
inertial effects to be kept small, as shown in Sec. IV.

III. SETUP CHARACTERIZATION

In this Section, we describe the characterization of
the empty shear cell, discussing in particular the force-
current calibration of the stress actuator, the optical
measurement of the strain, the control and measurement
of the plate parallelism, and the effects of inertia and
residual friction.

A. Calibration of the applied force

The shear stress imposed to the sample is controlled
using a magnetic actuator (Linear Voice Coil DC Motor
LVCM-013-032-02, by Moticont), consisting of a perma-
nent magnet and a coil winded on an empty cylinder.
The magnet is fixed to the sliding part of the appara-
tus; it moves with no contact within the empty cylinder,
which is mounted on the fixed part of the apparatus. The
device can be easily controlled via a PC, which allows one
to synchronously apply a given stress and acquire strain
and optical data. Due to the small coil resistance (5.9
Ω) and inductance (1 mH), the magnetic actuator re-
sponse is very fast and its characteristic time (less than
1 ms) will be neglected in the following. The force ex-
erted by the voice coil is proportional to the current fed
to the device. We use a custom-designed current gener-
ator, which outputs a controlled current I that can be
adjusted over a very large range by selecting the appro-
priate full scale value, between 10−5 A and 1 A, in steps of
one decade. The current generator noise is smaller than
10−4 of the full scale. The current generator is in turn
controlled through a voltage input: by feeding different
voltage waveforms to the current generator, it is there-
fore possible to impose a stress with an arbitrary time
dependence. In our implementation, the voltage signal is
generated by a D/A card (USB-6002 by National Instru-
ments) controlled by a PC. We calibrate the voice coil
by measuring the force, F , resulting from the imposed
current. The force is measured using a balance, with a
precision of 1 mg. The F vs. I curve is shown in fig. 2.
F is remarkably proportional to I over 4.5 decades, with
a proportionality constant k = (0.916± 0.003) NA−1.

An important issue in designing the shear cell appara-
tus is the requirement that the applied stress be constant
regardless of the resulting strain. To check this point,
we have measured several calibration curves similar to
that shown in fig. 2, each time slightly changing d, the
relative axial position between the magnet and the coil,
with d = 0 the position of the magnet when it is fully
inserted in the coil. The d dependence of the propor-
tionality constant k is shown in the inset of fig. 2. In
the range 7 mm < d < 15 mm, we find that k changes
by less than 0.5%. In our experiments we typically work
in this range, thus ensuring that the applied force is es-
sentially independent of sample deformation. In order to
convert the applied force to a stress value, we measure
the surface S of the sample by taking a picture of the
shear cell after loading it. The surface is calculated from
the image using standard image processing tools. Typ-
ical values of S and its uncertainty are 250 mm2 and a
few mm2, respectively. When taking into account both
the uncertainty of the F − I calibration (0.3%) and that
on S, the stress σ = F/S is known to within about 1%.
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Figure 2. Calibration of the magnetic actuator: force (mea-
sured by a precision balance) as a function of the applied
current. The symbols are the experimental data and the line
is the best fit of a straight line through the origin, yielding
a proportionality constant k = (0.916 ± 0.003) NA−1. The
upper limit of the imposed current is set by the coil specifica-
tions, whereas the smallest current chosen here is limited by
the balance precision. Inset: variation of k with the relative
axial position between the magnet and the coil, d. The main
plot has been measured for d = 7 mm.

B. Strain measurement

In order to measure the displacement of the mobile
frame and hence the sample strain, we use two differ-
ent optical methods, based on a commercial sensor and
on a scattering technique, respectively. The former is
a commercial laser position sensor (model IL-S025, by
Keyence) that can acquire and send to a PC up to 1000
points per second with a nominal precision of 1 µm. This
sensor is very convenient to follow large, fast deforma-
tions. However, its precision sets a lower bound on the
error on the strain measurements of at least 0.5% for a
typical gap e = 200 µm; moreover, we find that the sen-
sor output tends to artifactually drift over time. When
more precise, more stable strain measurements are re-
quired, we use a custom optical setup, inspired by [73]
and schematized in fig. 3a. A frosted glass is fixed to
the mobile frame of the shear cell. A laser beam illu-
minates the frosted glass, which is imaged on a CMOS
camera (BU406M by Toshiba Teli Corp). The camera
has a 2048 × 2048 pixel2 detector, with a pixel size of
5.5 µm; its maximum acquisition rate at full frame is 90
Hz. The image is formed by a plano-convex lens with a
focal length f = 19 mm, placed in order to achieve a high
magnification, m = 20.5, such that the pixel size corre-
sponds to 268 nm on the frosted glass. Due to the coher-
ence of the laser light, the image consists of a highly con-
trasted speckle pattern (see fig. 3a), which translates as
the mobile part of the cell, and hence the frosted glass, is

displaced. Using image cross-correlation techniques [81]
the speckle drift and thus the sample shear can be mea-
sured. In practice, a speckle image acquired at time t is
spatially cross-correlated with an image taken at a later
time t′. The position of the peak of cross-correlation as
a function of the spatial shift yields the desired displace-
ment between times t and t′. An example is shown in
fig. 3b, which shows a cut of the cross-correlation func-
tion along the x direction. The line is a Gaussian fit to
the peak: when taking into account the magnification,
the fit yields a speckle size σsp = 16.5 µm in the plane of
the sensor. The speckle size is controlled by the diameter
D of the lens and the system magnification; it has been
optimized in order to correspond to a few pixels, which
minimizes the noise on the cross-correlation [82].

To estimate the typical noise on the measurement of
the displacement, we take a series of full-frame images
of the speckle pattern over a period of 60 s, while keep-
ing the frosted glass immobile. The displacement with
respect to the first image (t = 0), as measured from
the position of the cross-correlation peak, is shown in
fig. 3c. The displacement fluctuates around a zero av-
erage value; the standard deviation of the signal over
the full acquisition time, σn, may be taken as an esti-
mate of the typical noise on the measured position. We
find σn = 23 nm, more than 40 times smaller than the
nominal precision of the commercial laser sensor. For a
typical gap e = 200 µm it is therefore possible to reliably
measure strains as small as 10−4. The main limitations
of this technique are its time resolution and the largest
displacement speed that can be directly measured. The
former is limited by the camera acquisition rate and the
image processing time: in practice, the position can be
sampled at a maximum rate of about 50 Hz. The latter
is limited by the acquisition rate and size of the field of
view, lv ≈ 0.5 mm: if the frosted glass translates by more
than lv between two consecutive images, the speckle pat-
tern is completely changed and no cross-correlation peak
is observed. In practice, displacement speeds as high as
1mm s−1 can be measured, corresponding to strain rates
up to γ̇ = 2 s−1 or γ̇ = 5 s−1 for gaps of 500 µm and
200 µm, respectively. Since the commercial sensor and
our custom device have complementary strengths and
limitations, we typically use both of them simultaneously.
A final point concerns the conversion of the displacement
to strain units, for which the gap thickness is required.
We determine it after adjusting the plates parallelism (see
Sec. III C below), by placing the empty shear cell under
an optical microscope and by measuring the vertical dis-
placement required to focus the inner surface of the fixed
and moving plates, respectively.

C. Adjusting the parallelism between the moving
and fixed plates

The parallelism between the two plates is tuned using
two differential screws (model DAS110, by ThorLabs),
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Figure 3. (a) Optical scheme of the speckle imaging system for
measuring the strain: D = 12.7 mm, z = 20 mm and z′ = 410
mm. (b) Cut along the x direction of the crosscorrelation
between two speckle images taken at time t and t′. The peak
position, ∆x = 1.34 µm, corresponds to the translation of
the mobile part of the cell between t and t′. The line is a
Gaussian fit to the peak, yielding a speckle size (in the sensor
plane) σsp = 16.5 µm. (c) Time dependence of the measured
displacement while the cell is at rest. The standard deviation
σn = 23 nm of the measured position yields an estimate of
the measurement error.

which control the position of the upper side of the fixed
plate (see the pictures in fig. 1). The quality of the align-
ment is checked by visualizing the interference fringes
formed by an auxiliary laser beam reflected by the two
inner surfaces of the plates. A change in the local separa-
tion between the two plates modifies the relative phase of
the two reflected beams, thus changing the fringe pattern.
When the plates are parallel, no fringes should be visi-
ble. The fringes are imaged on a CMOS camera (DMM
22BUC03-ML, by The Imaging Source, GmbH) with a
744× 480 pixel2 detector, the pixel size being 6 µm, cor-
responding to 31 µm in the sample plane (magnification
factor m = 0.19). Figure 4b shows the fringe pattern ob-
served when a tilt angle of 8× 10−4 rad between the two
plates is imposed on purpose, using the two differential
screws. In addition to the finely spaced fringes, due to the
tilt, some larger-scale, irregular fringes are also observed,
due to slight deviations of the plates from perfectly flat
surfaces. When optimizing the alignment (fig. 4a), only
the irregular, large-scale fringes are visible. To gauge the
precision with which the plates can be aligned, we impose
a series of increasingly large tilt angles αimposed, acting
on the two differential screws. αimposed is estimated from
the length of the plate, the nominal thread of the screws,
and the imposed screw rotation. For each αimposed, we
measure the tilt angle αmeasured = Nλ/2L, where N is
the number of fine fringes observed over a distance L
and λ = 633 nm is the laser wavelength. Figure 4c shows
the measured tilt angle as a function of the imposed one:

the data are very well fitted by a straight line with unit
slope and a small offset, σα ∼ 0.3 mrad, most likely due
to the difficulty of finding the optimum alignment since
the plate surfaces are not perfectly flat. We conclude
that the plates can be tuned to be parallel to within a
tilt angle of about 0.3 mrad, a value comparable to or
even better than for commercial rheometers [83]. Once
the plates have been aligned, they can be removed and
placed again in the setup (e.g. for cleaning them) with
no need to realign the setup. In this case, we checked
that the parallelism is preserved to within 1 mrad.
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Figure 4. (a) and (b): images of the interference fringes
observed when the plates are parallel or tilted by an angle
αimposed = 8 × 10−4 rad, respectively. The size of the field of
view is 15× 22 mm2. (c) Measured tilt angle as a function of
the manually imposed tilt angle. The symbols are the data
and the line is a linear fit with slope 1.

D. Effects of inertia and friction

Inertia and friction effects may lead to spurious results
if they are neglected in the modelling of the setup re-
sponse. Both effects are best characterized by measuring
the cell motion under an applied force in the absence
of any sample. Under these conditions, the equation of
motion for the moving part of the cell reads:

Mẍ(t) = F (ext)(t) + Ffr [x(t), ẋ(t)] , (1)

where M is the mass of the moving part, x its position
(with x(0) = 0 the position before applying any force),
F (ext) the (time-dependent) force applied by the elec-
tromagnetic actuator, and Ffr a friction term that may
depend on both the position (in the case of solid friction)
and the velocity (for viscous-like friction). To character-
ize the friction term, we measure x(t) after imposing a
step force, F (ext) = F0Θ(t), with Θ(t) the Heaviside func-
tion. Figure 5a shows that x(t) follows remarkably well a
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quadratic law, suggesting that the friction contribution,
if any, is independent of both x and ẋ. We perform the
same experiment for a variety of applied forces and ex-
tract, for each F0, the acceleration a from a quadratic
fit to x(t). The results are shown in fig. 5b: while at
large F0 one finds a ∝ F0, as expected if friction is neg-
ligible, for F0 < 1 mN the data clearly depart from a
proportionality relationship, suggesting that friction re-
duces the effective force acting on the moving part of
the cell. The line in fig. 5b is a fit to the data of the
affine law a = (F0 − Ffr)/M , yielding M = 335 g and
Ffr = 0.12 mN. The fit captures very well the behavior
of a over 4 decades, showing that a static friction term
accounts satisfactorily for the experimental data. Slight
deviations are observed for large forces, presumably due
to the large uncertainty in the measurement of the dis-
placement, a consequence of the very fast motion in this
regime. Some small deviations are also observed at low
forces, possibly because the friction term may slightly de-
viate from the simple position- and velocity-independent
expression that we have assumed. Since the sample sur-
face is typically A ∼ 2 cm2, the friction term sets a lower
bound of the order of 1 Pa on the stress that may be
applied in our apparatus.

To probe the frequency dependence of the setup re-
sponse, we apply an oscillatory force to the empty cell,

F (t) = Re
(
F̃ωe

iωt
)

, where the tilded variables are com-

plex quantities. Assuming x(0) = ẋ(0) = 0 and neglect-
ing friction, the expected response is

x̃(t) = x̃ω
(
eiωt − 1− iωt

)
, (2)

with x̃ω = −F̃ω/(Mω2). Note that, because the physical
equation of motion is given by the real part of Eq. 2, in-
ertial effects yield either a nonzero offset F̃ω/(Mω2) (for
a cosine-like applied force), or a nonzero drift velocity

iF̃ω/(Mω) (for a sinusoidal force), or both of them if the

real and imaginary parts of F̃ω are nonzero. Thus, in os-
cillatory shear experiments inertia effects add a constant
or linearly growing strain to the sample, whose contribu-
tion may or may not be negligible depending on the sam-
ple rheological properties and the excitation frequency.
To test Eq. 2, we apply a cosinusoidal force to the empty
cell, varying the driving frequency from 0.75 rad s−1 to
62.8 rad s−1. For each ω, we adjust Fω so as to keep
the amplitude of the oscillations roughly constant and
measure both the modulus and the phase of x̃ω from the
time dependence of the displacement in the stationary
regime. Figure 5c shows that the magnitude of the oscil-
lations has the expected value up to 4 rad s−1, beyond
which it drops, due to the frequency dependence of the
response of the current generator and magnetic actuator.
The phase of x̃ω is close to zero, as expected, except for
the lowest frequencies, for which the applied force is too
small for friction effects to be neglected.
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Figure 5. (a) time-dependent translation x(t) following the
application of a step force F0 = 0.9 mN to the empty cell.
The line is a quadratic fit. (b) Acceleration of the empty
cell vs. the amplitude of the step force applied. Symbols
are the data point and the line is the best fit of an affine

law, a =
F0−Ffr

M
, with M = 335 g the mass of the sliding

frame, yielding a residual friction force Ffr = 0.12 mN. (c)
Normalized amplitude (black, left axis) and phase (red, right
axis) of the oscillating part of the response to a cosinusoidal
external force. The symbols are the data points and the lines
are the theoretical behavior.

IV. TESTS WITH MODEL SAMPLES

Having characterized the response of the empty cell, we
test its performances on standard rheological samples in
oscillatory and step stress experiments. We use a purely
viscous fluid, a purely elastic solid, and a viscoelastic
material well described by a Maxwell model. For each
sample, we briefly discuss the expected behavior in the
presence of inertia and compare it to the outcome of ex-
periments, in order to asses the sensitivity and limits of
our setup. For the sake of simplicity, we will not intro-
duce the friction term in the equations, but its effects
will be highlighted in discussing the experiments.

When a sample is loaded in the shear cell, Eq. 1 has
to be modified in order to take into account the force
exerted by the sample on the cell, F (s)(x, ẋ):

Mẍ(t) = F (ext)(t) + Ffr [x(t), ẋ(t)] + F (s) [x(t), ẋ(t)] .
(3)

In principle, F (s)(x, ẋ) can be divided into an elastic (x-
dependent) and a viscous (ẋ-dependent) parts. To recast
Eq. 3 in a form suitable to describe the sample rheological
properties, we divide both sides by the sample surface A
and express position and velocity as strain γ = x/e and
strain rate γ̇, respectively:

Iγ̈(t) + σ [γ(t), γ̇(t)] = σ(ext)(t) (4)
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Here, I = eM/A is the inertia term, σ(ext) the applied
stress and σ = −F (s)/A the sample stress, which has
opposite sign with respect to F (s) since we adopt the
usual notation where σ is the stress exerted by the setup
on the sample. This is the general equation that has to
be solved given a constitutive equation for σ [γ(t), γ̇(t)],
an experimental protocol (i.e. the temporal profile of
σ(ext)), and the initial conditions. In the following, we
will systematically assume γ(0) = γ̇(0) = 0, and will
only consider either creep tests, σ(ext)(t) = σ0Θ(t), or
oscillatory stresses, σ(ext)(t) = σ̃ωe

iωt.

A. Newtonian fluid

1. Theoretical background.

For a Newtonian fluid of viscosity η, σ = ηγ̇. Equa-
tion 4 therefore reads:

Iγ̈ + ηγ̇ = σ(ext) , (5)

which, for a step stress test with stress amplitude σ0 ,
has as solution

γ(t) = γ̇∞

[
t+ τv

(
e−

t
τv − 1

)]
, (6)

where τv = I/η is a characteristic time arising from the
interplay between inertial and viscous effects and γ̇∞ =
σ0/η. For t � τv, inertia dominates and γ ≈ σ0t

2/(2I).
In the opposite limit t � τv, the usual simple viscous
flow γ = γ̇∞t is recovered. Typical values of the crossover
time may be estimated from τv [s] ≈ (2η[Pa s])−1, where
we have assumed M = 0.3 kg, e = 300 µm and A =
2 cm2. Thus, the inertial regime lasts less than 1 s if the
viscosity exceeds 0.5 Pa s−1.

For an oscillatory stress, the solution to Eq. 5 is

γ(t) = γ̃ω

[
eiωt − 1 + iωτv

(
e−

t
τv − 1

)]
, (7)

with

γ̃ω = − σ̃ω
ηω

i+ ωτv
1 + ω2τ2

v

. (8)

The frequency-dependent complex modulus extracted
from the oscillating part of γ(t), G∗ = σ̃ω/γ̃ω, has mag-
nitude and phase given by

|G∗| = ηω
√

1 + ω2τ2
v

argG∗ = δ = arctan 1
ωτv

.
(9)

At short times t � τv, viscous dissipation is always
negligible and γ(t) ≈ γ̃ω

(
eiωt − 1− iωt

)
, as in Eq. 2,

which was derived for an empty cell. At larger times,
Eq. 7 simplifies to γ(t) ≈ iσ̃ω/(ηω)

[
1− eiωt/ (1 + iωt)

]
:

in the high frequency regime ωτv � 1 inertial effects are
still relevant, but in the opposite regime ωτv � 1 the
usual behavior for a viscous fluid is recovered: the cell
oscillates around a negligible equilibrium position γ̃ωωτv,
with an amplitude γ̃ω ≈ −iσ̃ω/(ηω), and the strain lags
the stress by an angle δ = π/2.

2. Experimental tests
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Figure 6. Main plot: steady shear rate γ̇∞ as a function of
the applied stress in a step stress test, for a silicon oil with
nominal viscosity η = 1.02 Pa s. Empty and filled symbols
refer to two independent measurements. The line is a fit of
γ̇∞ = (σ − σfr)/η where the offset σfr ∼ 0.25 Pa is due to
friction. Inset: time evolution of the strain following a step
stress of amplitude σ0 = 1.58 Pa. The symbols are the data
and the line is a fit of Eq. 6, with τv = 0.7 s and γ̇∞ = 1.18 s−1,
in good agreement with (σ0 − σfr)/η = 1.27 s−1 as obtained
from the nominal viscosity.

Measurements for step-stresses have been performed
with 3 different silicon oils, with viscosity 1.02, 11.98 and
91.68 Pa s respectively (nominal values at 25◦C). As an
example, we show in fig. 6 results for the less viscous
oil, for which the applied stress is varied between 0.3
and 100 Pa. The inset shows the time evolution of the
strain following the application of a step stress with σ0 =
4.5 Pa. At large times, a pure viscous flow is found,
γ(t) = γ̇∞t. Deviations at short times from this linear
behavior are due to inertia. The data are in excellent
agreement with the theoretical expression, Eq. 6 (line),
where τv = eM/(ηA) and γ̇∞ are fitting parameters. We
plot in the main figure the steady-state shear rate γ̇∞ vs
σ0, obtained by fitting γ(t) for all applied stresses. At
large stresses, data are in excellent agreement with γ̇ =
σ0/η using the nominal value of the viscosity, whereas
friction causes deviations from this linear dependence for
the smallest stresses. Note that friction becomes relevant
for σ0 . 1 Pa, in agreement with the lower bound on the
stress estimated in Sec. III D. Data over the whole range
of applied stresses are very well accounted for by Eq. 6
(line in fig. 6), with τv as the only fitting parameter and
using the nominal viscosity. The fit yields τv = 0.7 s, in
good agrement with the expected value eM/(ηA) = 0.8 s.

Measurements for oscillating stresses have been per-
formed with the same 3 samples and two different values
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Figure 7. Main graph: magnitude of the complex modulus
of Newtonian viscous fluids measured by oscillatory rheology,
as a function of angular frequency. Solid (open) symbols are
experiments performed with a gap e = 300 µm (e = 600 µm).
The data are labelled by the nominal viscosity. The dashed
lines are the theoretical predictions, Eq. 9, using the nominal
viscosity and the inertia term issued from measurements on
the empty cell. Inset: phase δ, as a function of angular fre-
quency normalized by the visco-inertial time τv. The line is
the theoretical prediction, Eq. 9.

of the gap: e = 300 µm and e = 600 µm (solid and
open symbols of fig. 7, respectively). The stress ampli-
tude was chosen in order to keep the strain amplitude
|γ̃ω| fixed at 20% for all ω. In fig. 7 the magnitude of
the complex modulus |G∗| (main plot) and its phase δ
(inset) are plotted as a function of angular frequency, to-
gether with the theoretical expectations given by Eq. 9.
The data are in very good agreement with the theory for
applied stresses with |σ̃ω| > 1 Pa. By contrast, when
lower stresses are applied to obtain the same strain am-
plitude (20% γ) –i.e. for the less viscous samples and
the lowest frequencies–, deviations are observed due to
the residual friction discussed above. Some deviations
are also observed at the highest ω, due to the response
of the current generator and voice coil, as mentioned in
Sec. III D. For the more viscous sample (η = 100 Pa s),
no inertial regime is observed: |G∗| scales as ω, as ex-
pected for a Newtonian fluid. This is consistent with the
fact that for this sample inertial effects should become
significant only for ω & 1/τv = 100 rad s−1, which is
beyond the range of probed frequencies. For the sample
with intermediate viscosity (η = 10 Pa s), a crossover be-
tween |G∗| ∼ ω (viscous regime) and |G∗| ∼ ω2 (inertia-
dominated regime) is observed at ω ≈ 10 − 15 rad s−1,
consistent with 1/τv = 10 − 20 s−1 (depending on e).
Finally, for the less viscous sample we estimate 1/τv =
2 s−1: for this sample, all data for which friction is neg-
ligible lay in the high frequency regime ωτv > 1 where

inertia dominates, leading to the observed |G∗| ∼ ω2 scal-
ing. The inset of fig. 7 shows the argument of the complex
modulus as a function of the normalized frequency ωτv.
The data nicely exhibit the transition between the low
and high frequency regimes predicted by Eq. 9, charac-
terized by δ = π/2 (viscous regime) and δ = 0 (inertial
regime), respectively. The discrepancy seen for the fluid
with η = 1 Pa s is again due to residual friction.

B. Purely elastic solid

1. Theoretical background

The constitutive law for a purely elastic sample is σ =
Gγ, with G the elastic shear modulus. Equation 4 then
becomes

Iγ̈ +Gγ = σ(ext) , (10)

whose solution involves the characteristic frequency Ω =√
G/I, related to an inertial time scale. Inertia is ex-

pected to dominate on time scales smaller than Ω−1,
whose typical value for our setup, using M = 0.3 kg,
e = 300 µm, and A = 2 cm2, is given by Ω−1 [s] ≈
0.7/

√
G [Pa].

In a step stress experiment with σ(ext) = σ0Θ(t), the
solution to Eq. 10 is

γ(t) = γ∞ [1− cos (Ωt)] , (11)

with γ∞ = σ0/G. In the inertial regime Ωt � 1 one
finds the characteristic quadratic time dependence of the
strain, γ(t) ≈ 1

2
σ0

I t
2, while at later times the cos (Ωt)

term leads to a distinctive “ringing” behavior. Note how-
ever that when friction is included, the strain oscillations
eventually are damped.

For an oscillatory imposed stress, the solution to Eq. 10
reads

γ(t) = γ̃ω

[
eiωt − cos (Ωt)− i ω

Ω
sin (Ωt)

]
, (12)

with γ̃ω = σ̃ω
G

[
1−

(
ω
Ω

)2]−1

. This corresponds to a com-

plex modulus whose magnitude and phase are

|G∗| = G
[
1−

(
ω
Ω

)2]
δ = 0 .

(13)

At small times t � Ω−1 we have again γ(t) ≈
γ̃ω
(
eiωt − 1− iωt

)
, whereas at large t the strain exhibits

oscillations at the frequency Ω associated to inertia, su-
perimposed to the elastic response at the forcing fre-
quency ω: their amplitude is |σ̃ω|/G and they are in
phase with the driving force, a distinctive feature of elas-
ticity.
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2. Experimental tests

We use polydimethylsiloxane (PDMS; Sylgard 184 by
Dow Corning), a popular elastomer whose elastic mod-
ulus can be conveniently tuned by varying the crosslink
density [84], as a model elastic solid. Using a commercial
rheometer, we check that the linear regime extends up to
at least γ = 40%, larger than the largest strain probed
in our tests. A sample with a crosslinker/base v/v ratio
1:60 is used for the step stress measurements. In order
to maximize the adhesion to the glass plates, the sample
is prepared in situ: after adding the crosslinker, the fluid
solution is placed between the two plates and cured in
an oven at 90◦C for 90 minutes. The two plates with the
cured sample are then mounted on the shear cell. Dur-
ing this operation, care is taken not to stress nor damage
the sample. Control measurements are run in a com-
mercial rheometer, with the sample cured in situ under
similar conditions. We perform a series of step stress
experiments, with a gap e = 570 µm (as measured be-
fore the experiment) and a sample surface A = 3.3 cm2.
Stresses of various amplitude σ0 are applied, the result-
ing strain being recorded over time. Figure 8a shows a
typical time series of strain data acquired simultaneously
with the commercial laser sensor (symbols) and with our
custom made optical setup (line), for σ0 = 275 Pa: note
the excellent agreement between the two devices. After
an initial transient, lasting a few seconds, γ reaches a
constant value γ∞ dictated by the elastic modulus. Note
that the oscillations due to inertia predicted by Eq. 11
are not seen here, indicating that the (small) dissipation
of PDMS is sufficient to overdamp them. In fig. 8b, γ∞
estimated by averaging γ(t) over 5 minutes is plotted as
a function of the imposed stress. Each data point is an
average over 8 experiments, the error bars representing
data dispersion. The experimental data are very well fit-
ted by an affine law (red line): γ∞ = (σ0 − σoff )/G,
with G = 1620 Pa the elastic modulus of the sample and
σoff = 13 mPa an offset stress due to friction. We note
that σoff is smaller than the typical friction stress esti-
mated from the experiments with an empty cell, which
is of the order of 1 Pa. This discrepancy suggests that
the exact value of the friction term depends sensitively
on several factors (cleanness of the air bearing, alignment
with respect to the vertical direction...) and that 1 Pa
should be regarded as a higher bound on its magnitude.

A second series of experiments is performed by im-
posing oscillating stresses. The sample is prepared at a
higher crosslinker density (1:40 v/v), with e = 590 µm
and A = 2.5 cm2. After curing the PDMS as described
above, an oscillating stress is applied and the amplitude
of the strain oscillations is extracted from a sinusoidal fit
to γ(t). Figure 8c shows the frequency dependent elastic
modulus obtained from G(ω) = |σω/γω|, as a function of
angular frequency. Experiments performed at different
stress amplitudes spanning two decades within the lin-
ear regime nicely overlap in the whole frequency range.
Additionally, data taken in the custom shear cell over-

lap reasonably well with data acquired in a commercial
rheometer for a similar sample, thus validating the new
setup. The slight differences that are seen are most likely
due to the different protocols for preparing and loading
the sample in the two devices.
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Figure 8. (a) Time evolution of the strain following a step
stress applied at t = 0, measured with both the commercial
laser meter (black dots) and the home made optical setup
(red line). (b) Response to a step stress. The asymptotic
strain γ∞ is plotted against the amplitude of the applied step
stress. Data are averaged over 8 experiments, the error bars
are the standard deviation over the experiment repetitions.
The solid line is an affine fit, yielding an elastic modulus G =
1620 Pa. (c) Frequency dependence of the elastic modulus
in an oscillatory test, as measured in the custom shear cell
at different stress amplitudes (symbols) and in a commercial
rheometer (line).

C. Maxwell fluid

1. Theoretical background

As an example of a viscoelastic fluid, we consider a
Maxwell fluid, for which γ̇ = σ̇/G + σ/η. Here G is the
plateau modulus and η = GτM the viscosity, with τM the
Maxwell relaxation time. Using this constitutive law, the
equation of motion, Eq. 4, yields:

I
d2γ̇

dt2
+

I

τM

dγ̇

dt
+Gγ̇ = σ̇(ext) +

σ(ext)

τM
, (14)

whose solutions again involve the characteristic frequency
Ω =

√
G/I.

The general solution for a step stress is

γ(t) =
σ0

G

(
c0 +

t

τM
+ c+e

−λ+t + c−e
−λ−t

)
, (15)



10

where c0 = 1 − 1
τ2
MΩ2 , c± = − 1

2

(
c0 ∓ c0+2√

1−4τ2
MΩ2

)
, and

λ± = 1
2τM

(
1±

√
1− 4Ω2τ2

M

)
. The regime of slowly re-

laxing Maxwell fluids (as compared to the inertial time)
corresponds to ΩτM � 1. In this limit, one recovers
γ ≈ σt2/(2I), as for a purely viscous fluid (see Eq. 6). In
the opposite limit ΩτM � 1, the solution is:

γ(t) =
σ0

G

[
1 +

t

τM
− exp

(
− t

2τM

)
cos(Ωt)

]
, (16)

for which three regimes may be distinguished. For
t � Ω−1, inertia dominates and γ = σ0t

2/(2I). For,
Ω−1 � t � τM , the typical oscillations due to the elas-
tic part of the sample response are observed: γ(t) ≈
σ
G [1− cos(Ωt)]. Finally, at long times t� τM the sample
flows as a purely viscous fluid: γ(t) ≈ σ0t/η.

For the sake of completeness, we report here the equa-
tions for an applied oscillating stress, although in the
following we test the Maxwell fluid only in step stress ex-
periments. Focussing on the complex modulus calculated
from the oscillating part of the cell response, one finds:

|G∗| = G

(
1−ω2

Ω2

)2
+ ω2

Ω4τ2
M√(

1−ω2

Ω2− 1

τ2
M

Ω2

)2

+ 1

ω2τ2
M

tan δ = 1
ωτM

Ω2

Ω2−ω2− 1

τ2
M

.

(17)

In the Ω � τ−1
M and Ω � ω limit where inertia is negli-

gible Eq. 17 simplifies to yield the usual expressions for
a Maxwell fluid:

|G∗| = G
(

1 + 1
ω2τ2

M

)− 1
2

tan δ = 1
ωτM

.
(18)

2. Experimental tests

As a model Maxwell fluid, we use a self-assembled
transient network, comprising surfactant-stabilized mi-
croemulsions reversibly linked by triblock copolymers,
described in detail in [85]. After loading the sample in the
shear cell, we wait 5 minutes before applying a step stress,
in order to let the sample fully relax. Similarly, after each
creep experiment a waiting time of 2 minutes is applied
before starting the next one. Creep experiments are per-
formed for different stress amplitudes, ranging from 1.5
to 150 Pa. The time evolution of the strain amplitude is
shown in fig. 9 for several applied stresses σ0. The data
are very well fitted by the theoretical expression (Eq. 16)
using the viscoelastic parameters of the Mawxell fluid,
τM and G, as fitting parameters. As shown in the inset
of fig. 9, we find over the whole range of applied stresses a
nearly constant value of the elastic plateau (G = 165±20
Pa), in excellent agreement with the one measured in a
frequency sweep test in a conventional rheometer (180
Pa). A somehow poorer agreement between the shear cell

data and conventional rheometry is seen for the charac-
teristic relaxation time, which is found to decrease by a
factor of almost 2 as the applied stress increases. This
is most likely due to the fact that, for this sample, the
relaxation time τM is close to the characteristic ringing
time due to inertia, 2π/Ω ≈ 0.3 s, which makes it diffi-
cult to independently and reliably retrieve the two times
when fitting the data to Eq. 16.
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Figure 9. Main plot: strain for a Maxwell sample as a func-
tion of time following a step stress with amplitude σ0 as given
by the labels. Open and filled symbols represent two consec-
utive measurements on the same sample; lines are best fits
to the data using Eq. 16, where the fitting parameters are
the characteristic relaxation time, τM , and the plateau mod-
ulus, G. Inset: Maxwell parameters extracted from the fits of
the experimental creep curves shown in the main plot, plot-
ted against the applied stress. Squares and left axis: plateau
modulus; circles and right axis: relaxation time. The symbols
are experimental data obtained in the custom shear cell, the
lines are τM and G as measured in a commercial rheometer,
in a frequency sweep test at 10% strain amplitude.

V. CONCLUSION

We have presented a custom-made stress-controlled
shear cell in the linear translation plate-plate geometry,
which can be coupled to both a microscope and a static
and dynamic light scattering apparatus. The setup has
been successfully tested on a variety of samples represen-
tative of simple fluids, ideal solids and viscoelastic fluids.
The main features of the cell include a gap that can be ad-
justed down to 100 µm keeping the parallelism to within
0.3 mrad, the acquisition of strain data at up to 1000 Hz
with very good precision (typically better than 0.01%)
and for strains as large as 104%, and the possibility of im-
posing a user-defined, time-varying stress, ranging from
0.1 Pa (limited by residual friction) to 10 kPa, with a
frequency bandpass 0 ≤ ω ≤ 4 rads−1. Most of these
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specifications meet or even exceed those of a commercial
rheometer. Among the limitations intrinsic to the setup,
the most stringent is probably inertia, which restricts vis-
cosity measurements to η & 1 Pa s. Other limitations in
the current implementation could be improved: for ex-
ample, the upper stress limit could be pushed to 100 kPa
by changing the magnetic actuator and the cutoff fre-
quency ω ≈ 4 rads−1 could be increased by modifying
the current generator design. Finally, we remind that
care must be taken in aligning both the plate parallelism
and the horizontality of the setup, which makes its use
less straightforward than that of a commercial rheome-
ter. These drawbacks are more than offset by the advan-
tages afforded by our shear cell: the possibility of easily
changing the plates, e.g. to optimize them against slip-
page or to replace them when the surface quality doesn’t
meet anymore the stringent requirements for microscopy
or light scattering; the open design that leaves full access

on both sides, thus making it suitable for both inverted
and upright microscopes and for small angle light scat-
tering; the linear translation geometry that insures uni-
form stress in the (optically optimal) parallel plate con-
figuration; the flexibility provided by the choice of the
orientation in the vertical or horizontal plane; and, last
but least, the reduced cost as compared to a commercial
rheometer (about 4000E including a PC and an air filter
for the air bearing rail).
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[32] C. R. López-Barrón, L. Porcar, A. P. R. Eberle, and
N. J. Wagner, Phys. Rev. Lett. 108, 258301 (2012).



12

[33] R. Akkal, N. Cohaut, M. Khodja, T. Ahmed-Zaid, and
F. Bergaya, Colloids and Surfaces A: Physicochemical
and Engineering Aspects 436, 751 (2013).

[34] L. Gentile, M. A. Behrens, L. Porcar, P. Butler, N. J.
Wagner, and U. Olsson, Langmuir 30, 8316 (2014).

[35] J. M. Kim, A. P. Eberle, A. K. Gurnon, L. Porcar, and
N. J. Wagner, Journal of Rheology (1978-present) 58,
1301 (2014).

[36] A. D. Gopal and D. J. Durian, Physical Review Letters
75, 2610 (1995).
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