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Abstract

Planners are central to the notion of complex au-
tonomous systems. They provide the flexibility that
autonomous systems need to be able to operate unat-
tended in an unknown and dynamically-changing en-
vironment. However, they are notoriously hard to val-
idate. This paper reports an investigation of how re-
dundant, diversified models can be used as a comple-
ment to testing, in order to tolerate residual develop-
ment faults. A fault-tolerant temporal planner has
been designed and implemented using diversity, and
its effectiveness demonstrated experimentally through
fault injection. The paper describes the implementa-
tion of the fault-tolerant planner and discusses the re-
sults obtained. The results indicate that diversification
provides a noticeable improvement in planning depend-
ability (measured, for instance, by the robustness of the
plans it produces) with a negligible performance over-
head. However, further improvements in dependabil-
ity will require implementation of an on-line checking
mechanism for assessing plan validity before execution.

Introduction
Planning shows promising success as a central deci-
sional mechanism in experimental studies on complex
autonomous systems. However, the dependability of
planners remains a stumbling block to real life utiliza-
tion. Indeed, how can we justifiably trust such mech-
anisms, whose behavior is difficult to predict and vali-
date?

Autonomous systems strive to accomplish goals in
open environments. The space of possible execution
contexts is thus, in essence, infinite, and cannot be ex-
haustively tested during validation. Testing and other
validation techniques are nevertheless necessary in or-
der to obtain planners that are as bug-free as possible.
Even then, as noted by (Fox, Howey, & Long 2005),
“it is inevitable that the abstractions in the [planning]
domain model will fail to match precisely the reality of
the world”. Under such conditions, not only is it im-
possible for a planner to produce plans that are 100%
robust, it is also impossible to decide during planner
validation whether its domain model still contains resid-
ual development faults, or whether the abstractions it
contains are too imprecise. One way to tackle this diffi-
culty is to carry out multiple iterations of domain model
validation and tuning until the planner produces plans
that are “robust enough” for the considered application.
Such an approach relies of course on the existence of a

method for measuring plan robustness with sufficient
confidence. Moreover, there may be a point of dimin-
ishing returns in that additional iterations of planner
validation and model tuning offer no additional gains in
plan robustness. In this paper, we defend the thesis that
planner validation techniques can be usefully comple-
mented by a fault-tolerance approach aimed at making
planners resilient to residual development faults. The
approach uses redundant diversified planning models,
i.e., models based on different abstractions.

First, we introduce basic concepts of dependability
and dependability issues relative to planning. Second,
we present fault tolerance techniques that may be ap-
plied to planning mechanisms and the implementation
of a fault tolerant planner for an autonomous system
architecture. Third, we introduce the validation frame-
work that we developed to assess performance and ro-
bustness of our fault tolerance approach. Finally, we
present our experimental results.

Dependability and Fault Tolerance
Dependability is a major concern in computing systems
controlling critical structures such as railroads, planes
and nuclear plants. We introduce here basic depend-
ability concepts extracted from (Avižienis et al. 2005).
We then discuss validation and other dependability is-
sues relative to planning.

Dependability Basic Concepts
The dependability of a computing system is its ability to
deliver service that can justifiably be trusted. Correct
service is delivered when the service implements the
system function, that is what the system is intended to
do. Three concepts further describe this notion: the at-
tributes of dependability, the threats to dependability,
and the means by which dependability can be attained
(Figure 1).

Dependability encompasses numerous attributes.
Depending on the application intended for the system,
different emphasis may be put on each attribute. We
focus particularly on reliability (the continuous deliver-
ance of correct service for a period of time) and safety
(the absence of catastrophic consequences on the users
and the environment) of a system.

The threats to a system’s dependability consist of fail-
ures, errors and faults. A system failure is an event that
occurs when the delivered service deviates from correct
service. An error is that part of the system state that
can cause a subsequent failure. An error is detected if



Figure 1: Dependability tree (Avižienis et al. 2005)

its presence is indicated by an error message or error
signal. A fault is the adjudged or hypothesized cause
of an error. Here, we focus particularly on development
faults: faults that are unintentionally caused by man
during the development of the system.

The means to make a system dependable are re-
grouped in four concepts: (a) fault prevention, that is
how to prevent the occurrence or introduction of faults,
(b) fault removal , that is how to reduce the number or
severity of faults, (c) fault tolerance, that is how to de-
liver correct service in the presence of faults, and (d)
fault forecasting , that is how to estimate the present
number, the future incidence, and the likely conse-
quences of faults. Fault prevention and fault removal
can together be considered as fault avoidance, that is
the attempt to develop a system without faults. Fault
tolerance and fault forecasting embody the concept of
fault acceptance, in that they attempt to estimate and
reduce the consequences of the remaining faults, know-
ing that fault avoidance is almost inevitably imperfect.
The development of a dependable computing system
calls for the combined utilization of these four tech-
niques.

Planning Validation and other
Dependability Issues

Currently, planning dependability relies almost ex-
clusively on fault avoidance, with only few attempts
to consider fault acceptance as a complementary ap-
proach.

Planner development tools such as Planware (Becker
& Smith 2005) provide a level of fault prevention up
front in that they assist domain analysis and knowledge
acquisition by use of a high-level graphical formalism.
However, it is the notorious problem of planner vali-
dation (i.e., fault removal) that has received the most
attention to date, especially in autonomous systems.

Indeed, the classic problems faced by testing and ver-
ification are exacerbated. First, execution contexts in
autonomous systems are neither controllable nor com-
pletely known; even worse, consequences of the system
actions are often uncertain. Second, planning mecha-
nisms have to be validated in the complete architecture,
since they aim to enhance functionalities of the lower

levels through high-level abstractions and actions. In-
tegrated tests are thus necessary very early in the de-
velopment cycle. Third, the oracle problem1 is partic-
ularly difficult since (a) equally correct plans may be
completely different, (b) non-deterministic action out-
comes and temporal uncertainties can cause otherwise
correct plans to sometimes fail when executed, and (c)
unforeseen adverse environmental situations may com-
pletely prevent any plan from achieving all its goals (for
example, cliffs, or some other feature of the local ter-
rain, may make a position goal unreachable).

The planning engine itself is not much different from
any other software, so traditional software verification
techniques may be applied. For example, (Brat et al.
2006) report successful use of static analysis of the
PLASMA planner engine using the PolySpace C++
Verifier. There has also been work on model-checking
planner executives (systems that execute plans) that
successfully identified serious concurrency problems in
the Deep-Space One spacecraft (Havelund, Lowry, &
Penix 2001).

But the trickiest part of planner software is most
certainly the domain model itself, since it is this that
changes from one application to another and that in fine
dictates what plans are produced. Typically, a plan-
ning domain model and the associated domain-specific
search heuristics are constructed and refined incremen-
tally, by testing them against a graded set of challenges
(Goldberg, Havelund, & McGann 2006). However, a
small change to either can have surprisingly dramatic
changes in the planner’s behavior, both in terms of ac-
curacy and performance. One way to validate a plan-
ning model is to define an oracle as a set of constraints
that characterizes a correct plan: plans satisfying the
constraints are deemed correct. Such a technique was
used for thorough testing of the RAX planner dur-
ing the NASA Deep Space One project (Bernard et
al. 2000), and is supported by the VAL validation
tool (Howey, Long, & Fox 2004). However, extensive
collaboration of application and planner experts is of-
ten necessary to generate the correct set of constraints.
Moreover, when the plans produced by the planner are
checked against the same constraints as those that are
included in the model, this approach only really pro-
vides confidence about the planning engine and not the
domain-specific model.

Automatic static analysis may also be used to as-
certain properties on planning models, allowing detec-
tion of inconsistencies and missing constraints, whereas
manual static analysis requires domain experts to
closely scrutinize models proposed by planning develop-
ers. The development tool Planware (Becker & Smith
2005) offers facilities for both types of analysis.

Some work (Khatib, Muscettola, & Havelund 2001;
Penix, Pecheur, & Havelund 1998) has attempted to
validate domain-specific models by means of model-

1How to conclude on correctness of a program’s outputs
to selected test inputs?



checking approaches. However, (Goldberg, Havelund,
& McGann 2006) reports scalability issues when the
models become large, and suggests instead run-time
verification of plan execution traces against high-level
properties expressed in temporal logic. However, no de-
tails are given about how such high-level properties are
defined.

To the best of our knowledge, not much work has
been done on fault acceptance in planners. Whereas
planner models commonly consider faults affecting do-
main objects (e.g., hardware faults affecting sensors
or actuators), residual development faults affecting the
planner itself are seldom considered.

One exception is (Chen, Bastani, & Tsao 1995),
which proposes a measure for planner software relia-
bility and compares theoretical results to experimental
ones, showing a necessary compromise between tempo-
ral failures (related to calculability of decisional mech-
anisms) and value failures (related to correctness of
decisional mechanisms). Later work (Chen 1997) ad-
dresses this compromise through a fault-tolerance ap-
proach based on concurrent use of planners with diver-
sified heuristics: a first heuristic, quick but dirty, is used
when a slower but more focused heuristic fails to deliver
a plan in time. To our knowledge, no other fault tol-
erance mechanisms have been proposed in this domain.
It is our opinion, however, that such mechanisms are
an essential complement to verification and testing for
planners embedded within critical autonomous systems.

Fault Tolerant Planning

Complementary to testing, diverse redundancy is the
only known approach to improve trust in the behav-
ior of a critical system regarding residual development
faults (e.g., diversification is used in software compo-
nents of the Airbus A320, and in hardware components
of the Boeing B777). We propose here fault tolerant
techniques based on diversity, adapted to planners and
focusing on development faults in the planner knowl-
edge. We first introduce the general principles of the
proposed mechanisms, and then present an implemen-
tation in an existing autonomous system architecture.

Principles

The general principle of the mechanisms that we pro-
pose is similar to that of recovery blocks (Randell 1975)
and distributed recovery blocks (Kim & Welch 1989).
Diversified variants of the planner are executed either
sequentially or concurrently. A recovery choice is made
according to errors detected in the plans produced. We
focus here on planner knowledge : diversity between the
variants is encouraged by forcing the use of different
abstractions, variable domains and parameters in the
models, and different heuristics of the variants. Using
completely diversified planners is also possible, but has
not yet been tested. (Srivastava et al. 2007) also pro-
pose an approach to find diversified plans from the same
model and search engine. This technique could be used,

in conjunction with our mechanisms, to tolerate faults
in planning heuristics.

Detection Implementing error detection for deci-
sional mechanisms in general, and planners in partic-
ular, is difficult. Indeed, there are often many different
valid plans, which can be quite dissimilar. Therefore,
error detection by comparison of redundantly-produced
plans is not a viable option. Thus, we must implement
error detection by independent means. Here, we pro-
pose four complementary error detection mechanisms:
a watchdog timer, a plan analyzer, a plan failure detec-
tor and an on-line goal checker.

A watchdog timer is used to detect when the search
process is too long or when a critical failure such as a
deadlock occurs. Timing errors can be due to faults in
the planner model, in its search engine, or ineffective-
ness of the search heuristics.

A plan analyzer can be applied on the output of the
planner. It is an acceptance test (i.e., an on-line oracle)
that verifies that the produced plan satisfies a number
of constraints and properties. This set of constraints
and properties can be obtained from the system spec-
ification and from domain expertise but it must be di-
verse from the planner model. This mechanism is able
to detect errors due to faults in the planner model or
heuristics, and in the search engine.

A plan failure detector is a classical mechanism used
in robotics for execution control. Failure of an action
that is part of the plan may be due to an unresolvable
adverse environmental situation, or may indicate errors
in the plan due to faults in the knowledge or in the
search engine. Usually, when such an action failure is
raised, the search engine tries to repair the plan. When
this is not possible, it raises a plan failure. We use these
plan failure reports for detection purposes.

An on-line goal checker verifies whether goals are
reached while the plan is executed. This implies that
the checker maintains an internal representation of the
system state and of the goals that have been reached.
Goals can only be declared as failed when every action
of the plan has been carried out.

Recovery We propose two recovery mechanisms,
based on redundant planners using diverse knowledge.

With the first mechanism, the planners are executed
sequentially , one after another. The principle is given
in Figure 2. Basically, each time an error is detected,
we switch to another planner until all goals have been
reached or until all planners fail in a row. Once all the
planners have been used and there are still some unsat-
isfied goals, we go back to the initial set of planners.
This algorithm illustrates the use of the four detection
mechanisms presented in the previous section: watch-
dog timer (lines 8 and 20), plan analyzer (line 13), plan
failure detector (line 15), on-line goal checker (lines 3
and 5).

Reusing planners that have been previously detected
as failed makes sense for two different reasons: (a) a
perfectly correct plan can fail during execution due to



1. begin mission
2. failed_planners ← ∅;
3. while (goals 6= ∅)
4. candidates ← planners;
5. while (candidates 6= ∅ & goals 6= ∅)
6. choose k such as (k ∈ candidates)

& (k /∈ failed_planners);
7. candidates ← candidates \ k;
8. init_watchdog(max_duration);
9. send (plan_request) to k;
10. wait % for either of these two events
11. 2 receive (plan) from k
12. stop_watchdog;
13. if analyze(plan)=OK then
14. failed_planners ← ∅;
15. k.execute_plan();

% if the plan fails goals != empty
% and then we loop to line 5 or 3

16. else
17. send(k.invalid_plan) to operator;
18. failed_planners ← failed_planners ∪ k;
19. end if
20. 2 watchdog_timeout
21. failed_planners ← failed_planners ∪ k;
22. end wait
23. if failed_planners = planners then
24. raise exception "no valid plan

found in time";
% no remaining planner,
% the mission has failed

25. end if
26. end while
27. end while
28. end mission

Figure 2: Sequential Planning Policy

an adverse environmental situation, and (b) some plan-
ners, even faulty, can still be efficient for some settings
since the situation that activated the fault may have
disappeared.

It is worth noting that the choice of the planners,
and the order in which they are used, is arbitrary in
this particular example (line 6). However, the choice of
the planner could take advantage of application-specific
knowledge about the most appropriate planner for the
current situation or knowledge about recently observed
failure rates of the planners.

With the second recovery mechanism the planners
are executed concurrently . The main differences with
respect to the algorithm given in Figure 2 are: (a) the
plan request message is sent to every planning candi-
date, (b) when a correct plan is found, the other plan-
ners are requested to stop planning, and (c) a watchdog
timeout means that all the planners have failed. The
algorithm can be found in (Lussier 2007).

Coordination Detection and recovery are handled
by a middleware level component called FTplan, stand-
ing for Fault-Tolerant PLANner coordinator . To avoid
error propagation from a possibly faulty planner, FT-
plan maintains its own system state representation,
based on information obtained from the execution con-
trol layer.

Whatever the particular recovery mechanism it im-
plements, sequential or parallel, FTplan has to com-
municate with several planners, e.g., for sending plan
requests or for updating their goals and system state
representations before replanning. It also needs to be
able to control their life cycle: start a new instance, or
stop one when it takes too long to produce a plan.

FTplan is intended to allow tolerance of development
faults in planners (and particularly in planning models).
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Figure 3: The LAAS architecture

FTplan itself is not fault-tolerant, but being much sim-
pler than the planners it coordinates, we can safely rely
on classic verification and testing to assume that it is
fault-free.

Implementation

Our targeted architecture, the LAAS architecture, is
presented in (Alami et al. 1998). Some recent modifica-
tions are given in (Lemai & Ingrand 2004). It has been
successfully applied to several mobile robots, some of
which have performed missions in open environments
(including exploration and human interaction). It is
composed of three main components2 as presented in
Figure 3: GenoM modules, OpenPRS, and IxTeT.

The functional level is composed of a set of automat-
ically generated GenoM modules, each of them offering
a set of services, which perform computation (e.g., tra-
jectory movement calculation) or communication with
physical devices (sensors and actuators).

The procedural executive OpenPRS is in charge of
decomposing and refining plan actions into lower-level
actions executable by functional components, and exe-
cuting them. During execution, OpenPRS reports any
action failures to the planner, in order to re-plan or
repair the plan.

IxTeT is a temporal constraint planner that builds
plans by combining high level actions. The description
of actions in the planner model is critical for the gener-
ation of successful plans and thus for the dependability
of the robot as a whole.

The fault tolerance principles presented previously
have been implemented in a fault tolerant planner com-
ponent as presented in Figure 4. The FTplan compo-
nent is in charge of communicating with OpenPRS as
the original planner does (cf. Figure 3).

The current version of FTplan implements the se-
quential redundant planner coordination algorithm pre-

2An additional control component, R2C, is introduced
in (Py & Ingrand 2004). We have not considered it in this
study since its current implementation is not compatible
with our experimentation environment.



Figure 4: Fault tolerant planner

sented in Figure 2, with two IxTeT planners. Currently,
the plan analysis function is empty (it always returns
true) so error detection relies solely on just three of
the mechanisms presented earlier: watchdog timer, plan
failure detection, and on-line goal checker.

The watchdog timer is launched at each start of plan-
ning. As soon as a plan is found before the assumed
worst-case time limit (40 seconds in our implementa-
tion), the watchdog is stopped. If timeout occurs, FT-
plan stops the current IxTeT, and sends a plan request
to the other IxTeT planner, until a plan is found or both
planners have failed. In the latter case, the system is
put in a safe state (i.e., all activities are ceased), and
an error message is sent to the operator.

In the current implementation, FTplan checks every
10ms if there is a message from OpenPRS or one of
the IxTeT planners. In case of an action request from
a planner or an action report from OpenPRS, FTplan
updates its system representation before transmitting
the request. If the request is a plan execution failure
(the system has not been able to perform the actions
of the plan), then FTplan launches a re-plan using the
sequential mechanism. If the request indicates that the
actions are finished, then FTplan checks if the goals
have been reached. Unfulfilled goals are resubmitted to
the planner during the next replanning or at the end of
plan execution.

The first model used by FTplan was thoroughly
tested and used on a real ATRV (All Terrain Robotic
Vehicle) robot. We thus use it as primary model and
as target for fault injection. We specifically developed
the second model through forced diversification of the
first. For example, the robot position is in Cartesian
coordinates in the first model and in symbolic cells in
the second. Similarly, orientation of the robot cameras
is characterized symbolically in the first model and nu-
merically in the second. Other forced diversification re-
sulted in merging some of the model attributes (that are
variables that together describe the system state in the
planning models) and modifying several constraint ex-
pressions. Experiments showed that this second model,
although less time-performant than the first model, had
similar fault-free results considering goal accomplish-
ment for the considered workload (Lussier et al. 2007).

Experiments and Validation

Our validation framework relies on simulation and fault
injection. Simulation (Joyeux et al. 2005) is used since

it is both safer and more practical to exercise the au-
tonomy software on a simulated robot than on a real
one. The autonomous system is based on an existing
ATRV robot, and employs GenoM software modules in-
terfaced with the simulated hardware. Fault injection
is used since it is the only way to test the fault toler-
ance mechanisms with respect to their specific inputs,
i.e., faults in planning knowledge. In the absence of any
evidence regarding real faults, there is no other practi-
cal choice than to rely on mutations3, which have been
found to efficiently simulate real faults in imperative
languages (Daran & Thévenod-Fosse 1996).

Workload

Our workload mimics the possible activity of a space
rover. The system is required to achieve three subsets of
goals: take science photos at specific locations (in any
order), communicate with an orbiter during specified
visibility windows, and be back at the initial position at
the end of the mission.

To partially address the fact that the robot must op-
erate in an open unknown environment, we chose to
activate the system’s functionalities in some represen-
tative situations resulting from combinations of sets of
missions and worlds. A mission encompasses the num-
ber and location of photos to be taken, and the number
and occurrence of visibility windows. A world is a set of
static obstacles unknown to the robot (possibly block-
ing the system from executing one of its goals), which
introduces uncertainties and stresses the system navi-
gation mechanism.

We implemented four missions and four worlds, thus
applying sixteen execution contexts to each mutation.
Missions are referenced as gradually more difficult M1,
M2, M3 and M4: M1 consists in two communications
and three photos in close locations, whereas M4 consists
in four communications and five far apart photos. En-
vironments are referenced as worlds W1, W2, W3 and
W4. W1 is an empty world, with no obstacles to hinder
plan execution. W2 and W3 contains small cylindrical
obstacles, whereas W4 includes large rectangular obsta-
cles that may pose great difficulties to the navigation
module, and are susceptible to endlessly block the robot
path, irrespectively of any replanning or model switch-
ing.

In addition, several equivalent experiments are
needed to address the non-determinacy of the experi-
ments. This is due to asynchrony in the various sub-
systems of the robot and in the underlying operating
systems: task scheduling differences between similar ex-
periments may degrade into task failures and possibly
unsatisfied goals, even in the absence of faults. We thus
execute each basic experiment three times, leading to a
total of 48 experiments per mutation. More repetition
would of course be needed for statistical inference on
the basic experiments but this would have led to a to-

3A mutation is a syntactic modification of an existing
program.



tal number of experiments higher than that which could
have been carried out with the resources available (each
basic experiment lasts about 20 minutes).

Faultload

To assess performance and efficacy of the proposed fault
tolerance mechanisms, we inject faults in a planning
model by random mutation of the model source code
(i.e., in Model1 of Figure 4).

Five types of possible mutations were identified from
the model syntax (Crouzet et al. 2006): (a) substitu-
tion of numerical values, (b) substitution of variables,
(c) substitution of attribute4 values, (d) substitution of
language operators and (e) removal of constraint rela-
tions. All in all, more than 1000 mutants were gener-
ated from the first model.

For better representativeness of injected faults, we
consider only mutants that are able to find a plan in
at least one mission (we consider that models that sys-
tematically fail would easily be detected during the de-
velopment phase). As a simple optimization, given our
limited resources, we also chose to carry out a simple
manual analysis aimed at eliminating mutants that ev-
idently could not respect the above criterion.

Recorded Data and Measurements

Numerous log files are generated by a single experiment:
simulated data from Gazebo (including robot position
and hardware module activity), output messages from
GenoM modules and OpenPRS, requests and reports
sent and received by each planner, as well as outputs of
the planning process.

Problems arise however in trying to condense this
amount of data into significant relevant measures. Con-
trary to more classic mutation experiments, the result
of an experiment cannot be easily dichotomized as ei-
ther failed or successful. As previously mentioned, an
autonomous system is confronted with partially un-
known environments and situations, and some of its
goals may be difficult or even impossible to achieve in
some contexts. Thus, assessment of the results of a
mission must be graded into more than just two levels.
Moreover, detection of equivalent mutants is complex-
ified by the non-deterministic context of autonomous
systems.

To answer these issues to some extent, we chose to
categorize the quality of the result of an experiment
with: (a) the subset of goals that have been success-
fully achieved, and (b) performance results such as the
mission execution time and the distance covered by the
robot to achieve its goals. Due to space constraints, we
focus in the rest of this paper on measurements relative
to the mission goals.

4Remember that, in the IxTeT formalism, attributes are
the different variables that together describe the system
state.

Results

We present in this part several experimental results us-
ing the evaluation framework previously introduced.

Experiments

Experiments were executed on i386 systems with a 3.2
GHz CPU and Linux OS. Fault-free experiments were
first realized to assess the overhead of the proposed fault
tolerance mechanisms. They were conclusive in showing
that the proposed mechanisms did not severely degrade
the system performance in the chosen activities (Lussier
et al. 2007). These experiments also showed that re-
sults in world W4 must be treated with caution, as this
world contains large obstacles that may cause naviga-
tion failures and block the robot path forever. As our
work focuses on planning model faults rather than lim-
itations of functional modules, we consider that success
in this world relies more on serendipity in the choice
of plan rather than correctness of the planner model.
It is however interesting to study the system reaction
to unforeseen and unforgiving situations that possibly
arise in an open and uncontrolled environment.

To test the efficacy of the fault tolerance mechanisms
and the FTplan component, we injected 38 faults in
our first model, realizing more than 3500 experiments
equivalent to 1200 hours of testing. We discarded 10
mutants that were unable to find a plan for any of the
four missions. We believe that five of the remaining
mutants are equivalent to the fault-free model. How-
ever, the non-deterministic nature of autonomous sys-
tems makes it delicate to define objective equivalence
criteria. We thus include the results obtained with these
five mutants, leading to a pessimistic estimation of the
improvement offered by FTplan.

The 28 considered mutations consist of: three sub-
stitutions of attribute values, six substitutions of vari-
ables, nine substitutions of numerical values, four sub-
stitutions of operators, and six removals of constraints.
The mutants were executed on two different robots:
Robot1 uses our first model (with one injected fault),
and Robot1/2 contains an FTplan component that uses
successively our first model (with the same injected
fault) and our fault-free second model.

Behavior in the Presence of Faults

We develop here the results of two mutations as exam-
ples of our experiments. In each case (Figure 5 and
Figure 6), our results present four different measures of
(lack of) robustness: (a-c) three failure proportions to
reach the different types of goals in a mission (resp.
photos, communications, and returns to initial posi-
tion), (d) failure proportion of the whole mission (a
mission is considered failed if one or more mission goals
are not achieved), and a behavior clarification metric
(e) the mean number of replanning operations observed
during an experiment (in the case of Robot1/2, this
number is equivalent to the number of model switches
during the mission).
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Figure 5: Results for mutation 1-39

Note that, in the absence of injected faults, both
Robot1 and Robot1/2 are perfectly robust in worlds W1,
W2 and W3, with zero failure proportions for all objec-
tives and all missions.

Results for the first mutation, identified by the refer-
ence 1-39, are presented in Figure 5. This mutation
causes an overly-constrained robot position during a
camera shot. It thus results in the planner’s inabil-
ity to find plans for missions where photographs have
to be taken in positions that do not respect the overly-
restrictive constraint (this is the case for missions M2
and M4). This example illustrates the significance of
the system activity chosen for the evaluation: numer-
ous different missions are necessary because faults can
remain dormant in some missions. Since testing the
practically infinite execution context is well nigh im-
possible, this example underlines the difficulty of test-
ing and thus the interest of fault tolerance mechanisms
to cover residual faults in the deployed planning models.

Figure 6 presents the results for mutation 1-589. The
fault injected in this mutation affects only a movement
recovery action of the planning model. Thus, contrary
to the previous example, correct plans are established
for all missions. However, as soon as a movement ac-
tion fails, the planner is unable to find a plan allow-
ing recovery of the movement, which causes failure of
the system. This is particularly obvious in the case of
missions M1 and M3, where short distances between
photograph locations lead to a short temporal margin
for the action movement. As the exact motion (tak-
ing into account obstacles) is not considered in the
planning model, “goto” actions are susceptible to take
longer than estimated, and can thus be be interrupted
by the execution controller and considered failed, ne-
cessitating a recovery action. In missions M2 and M4,
movements cover greater distances, resulting in larger
temporal margins and thus fewer movement action fail-
ures. Robot1/2 tolerates this fault to some extent:
completely in mission M2 and partially in mission M4.
The high failure rate of mission M3 for Robot1/2 can
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Figure 6: Results for mutation 1-589

be explained by a domino effect due to communica-
tion goals being given priority over photography goals.
When the fault is activated due to a failed movement
action, FTplan switches to Model2 and requests a plan.
However, a communication goal is now so near that the
planner is unable to find a plan to achieve it, so it aban-
dons goals of lesser priority, but to no avail. This exam-
ple underlines two important issues: First, testing with
numerous diversified missions and environments is once
again pointed out, as the fault is not activated in sev-
eral activities. Second, testing must be realized in an
integrated system. Indeed, the original plans produced
by the planner are correct, as well as the lower levels
of the system. However, the planning model contains a
serious fault that can cause critical failure of the system
in some executions.

Fault Tolerance Efficacy

The general results, including all 28 mutations, are pre-
sented in Figure 7. These results give objective evi-
dence that model diversification favorably contributes
to fault tolerance of an autonomous system considering
the proposed faultload: failure decreases for photo goals
of 62% (respectively, 50% including W4), 70% (64%) for
communication goals, 80% (58%) for return goals, and
41% (29%) for whole missions. Note, however, that
the experiments show that RobotFT in the presence
of injected faults is less successful than a single fault-
free model (some goals are still missed, even when the
constrained world W4 is omitted). This apparent de-
crease in dependability is explained by the fact that, in
our current implementation, incorrect plans are only de-
tected when their execution has at least partially failed,
possibly rendering one or more goals unachievable, even
after recovery. This underlines the importance of plan
analysis procedures to attempt to detect errors in plans
before they are executed.
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Figure 7: Impact of planner redundancy (with injected
faults)

Conclusion

We presented in this paper a component, based on di-
versification, that tolerates software development faults
in planners. This component can use four detection
mechanisms (watchdog timer, plan failure detector, on-
line goal checker and plan analyzer), and two recovery
policies (sequential planning and concurrent planning).
We also described its implementation in an existing
robot architecture, using sequential planning associated
with the first three error detection mechanisms.

To evaluate the performance overhead and the ef-
ficacy of our component, we introduced a validation
framework using simulation of the robot hardware and
fault injection by mutation of the planner declarative
model. Previous experiments showed that the proposed
component does not severely degrade the system per-
formance in the chosen activities. In this article, we
discussed example behaviors of the simulated robot in
the presence of injected faults. In particular, several
experiments demonstrated the necessity of integrated
testing, and numerous missions and environments to
validate models supposed to take decisions in open en-
vironments. We also presented overall results that show
that the proposed component usefully improves the sys-
tem behavior in the presence of model faults.

Several directions are open for future work. First,
implementation of the plan analyzer detection mech-
anisms would allow better goal success levels to be
achieved in the presence of faults, since it should in-
crease error detection coverage and provide lower la-
tency. The state of the art in planning already proposes
several examples for off-line plan validation, but appli-
cation for on-line validation is an open issue. Imple-
mentation of the concurrent planning policy and com-
parison with the sequential planning policy are also of
interest. Moreover, note that the proposed mechanisms
focus principally on the reliability of the system: its ef-
ficacy in goal accomplishment. Other fault tolerance
mechanisms are also needed to guarantee safety of the
system and its direct environment.
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