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Calibration-free match finding between vision and LIDAR¥*

Egor Sattarov', Alexander Gepperth?, Sergio A. Rodriguez F.! and Roger Reynaud'

Abstract— We present a learning approach that allows to
detect correspondences between visual and LIDAR measure-
ments. In contrast to approaches that rely on calibration,
we propose a learning approach that will create an implicit
calibration model from training data. Our model can provide
three functions: first of all, it can convert a measurement
in one sensor into the coordinate system of the other, or
into a distribution of probable measurements in case the
transformation is not unique. Secondly, using a correspondence
observation that we define, the model is able to decide if two
visual/LIDAR measurements are likely to come from the same
object. This is of profound importance for applications such as
object detection or tracking where contributions from several
sensors need to be combined. We demonstrate the feasibility
of our approach by training and evaluating our system on
tracklets in the KITTI database as well as on a small set of
real-world scenes containing pedestrians, in which our method
finds correspondences between the results of real visual and
LIDAR-based detection algorithms.

I. INTRODUCTION
A. Context of this work

This article is in the context of multisensory information
processing, in particular vision and LIDAR. As these sensors
take their measurements independently, it is a priori not
clear whether two measurements originate from the same
object (or more generally: from the same physical position).
To find these correspondences, standard algorithms like
object detection and tracking (i.e. DATMO) usually make
use of a calibration procedure which allows to transform
measurements of one sensor into the reference frame of
the other. Such transformations are often quite sensitive [1]
to the used measurement models (e.g., pinhole model for
camera) and calibration parameters. Moreover, because of
the very nature of the measured quantities, sometimes a
one-to-one transformation does not even exist. This is for
example the case when transforming 2D image points into a
3D coordinate system of a LIDAR device.

B. Proposed approach

While calibration approaches are often quite precise, the
calibration procedure itself is complex and error-prone and
requires considerable expertise. Furthermore, a calibration
procedure intrinsically depends on the common data rep-
resentation (e.g. calibration pattern, features), and needs
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Fig. 1.  Illustration of the multisensory correspondence problem: LIDAR
(left) and visual (right) measurements, e.g., provided by independent object
detection algorithms, live” in completely different spaces and are thus very
difficult to associate without applying prior knowledge.
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Block architecture of the proposed correspondence detection

to be re-designed every time a change is made. On the
other hand, it is often rather easy and cheap to obtain a
large number of sample measurements from both sensors.
Assuming the existence of such a sample database, we
propose a simple method to extract an implicit calibration
model between vision and LIDAR sensors. We pursue a
data-driven approach where the statistics of each sensor are
used to optimally project both measurements (i.e. object-
level) onto a standardized representation format to which
generic probabilistic methods can be applied. In this way,
our approach is completely independent of the intrinsic
characteristics of the measurements, and in particular of their
dimensionality (i.e. n-d observations), leading to a strong
reduction of design and re-design effort for the conception
of multi-modal processing system in vehicles.

C. Related work

State-of-the-art approaches for IV such as [2],[3] rely on
the explicit need of a common frame where all sensors
observations can be referenced (i.e. data alignment). This
assumption greatly simplifies the association problem of
multiple data sources (e.g. LIDAR, Radar, vision). However,
in practice, a calibration procedure is required in order to
precisely determine all sensors rigid-body transformations
(i.e. extrinsic parameters) into the reference frame and their



uncertainties.

Recent works on the 3D sensor calibration have consid-
erably simplified the procedure for determining the relative
position of sensors using a set of natural features [4] or using
a single observation of a set of calibration patterns ( covering
different distances and orientations of the multi sensors field
of view)[5].

Automatic calibration approaches can also infer the extrin-
sic parameters by the means of an optimization framework
which registers sensors data in a common space (typically
2D/3D Cartesian space). Recently in [6],[7] and [8], online
strategies were proposed to achieve data registration between
a vision system and a ranging sensor by optimizing the
extrinsics following a mutual information criterion of the
sensing sources.

As an alternative to the classical approaches , the presented
work is intended to perform multi-sensor data alignment
through a probabilistic learning based framework. This ap-
proach not only provides a data alignment solution but also
models the probability accorded to the observation transfer.
Moreover, this method can provide an integrity measure of
the data alignment using extrinsic parameters in a cross-
validation scheme.

D. Contributions and novelty

This article presents a new way of detecting multimodal
correspondences for the important vision/LIDAR sensor
combination that is becoming a standard in the intelligent
vehicle domain. A main contribution of the used learning
approach is that the “calibration” procedure is much simpler
and can in fact be handled by a non-expert regardless
of the precise type of measurements that are conducted.
Furthermore, we show that the resulting data alignment is
very computationally efficient and sufficiently accurate for
most applications. Performing all experiments using the pub-
licly available KITTI benchmark database adds significant
credibility to our results.

II. METHODS
A. Architecture overview

The complete model is composed of several components,
as visualized in Fig. 2}
o LIDAR and vision sensors
e means to measure interesting quantities in both
o Self-organized Maps (SOM) for vision and for LIDAR,
which learn to represent the inputs coming from the
respective (synchronous) measurements
o an algorithm for learning a correspondence model be-
tween SOMs
o a module for deciding when two measurements corre-
spond, based on the SOMs and the learned correspon-
dence model
Within the scope of this article, we will use both actual
measurements proposed by Honda experimental vehicle in
form of object positions, and annotated tracklets from the
KITTI database[9] as ideal data without noise. They are
used separately. As we wish not to complicate the clean

and simple algorithm we propose by details of unimodal
processing in each modality.

B. Model training

1) Learning sensor statistics with self-organizing maps:
The self-organizing map algorithm, while originally pro-
posed as a model cortical information processing, is a genera-
tive machine learning algorithm that aims to approximate the
distribution of high-dimensional data, and to represent it in
a topology-preserving way on a two-dimensional manifold.
It is in fact quite related to K-Means[10] except that the
preservation of topology makes it interesting for incremental
learning scenarios.

SOM defines a fixed N x N grid of nodes ("neurons”) n;,
each of which is associated with a so-called prototype vector
p;. For a given input &, each node gets assigned an activity
z; based on the distance of its prototype to the input:

d(@,b) = /(@ —b)? (D

As a distance measure, the euclidean distance is often used,
and so shall we. In most cases, the calculation of activity is
followed by a learning step where the prototypes are adapted
to better fit the current input:

1" = argmin z;
i

pi(t+1) =pi + ()G (i*,4,0(1) (i —pi) (D)

G(i,j,0 = exp(—%)) is a Gaussian with standard
deviation o which is based on the euclidean distance between
node ¢ and node j on the two-dimensional grid of nodes. For
faster convergence, the algorithm demands to gradually lower
the learning rate €(¢) and their neighbourhood radius o (t)
from initially large values €y, oo until the minimal values
€s0, Ooo are reached.

2) Learning of conditional distributions between sensors:
Supposing the SOMs are trained using the algorithm de-
scribed in Sec. [[I-B.1] correspondences between visual and
LIDAR SOMs are detected using a simple probabilistic
counting approach. Assuming that two sets of weights
wf, wy; exist between nodes i, j in visual and LIDAR
SOMs, both are updated as follows for each simultaneously

presented pair of visual and LIDAR measurements 2", #:
x 1 if ¢ = argmin z,i(
Zr = k
0 else
1 if ¢+ = argmin 2X
X k o
Z; =< 0.5 if i is neighbour to argmin z;*
k
0 else
¥ e
wiy = wi + 228 3)

where we have used a shorthand notation X = L.V (X
denoting the other modality, ie., L if X = V and V
otherwise). After a sufficient amount of samples has been
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Statistical models of sensory spaces acquired by self-organizing maps (SOM) for visual (left) and LIDAR sensors (right). The points represent

the position of SOM prototypes in the space of each sensor. The local density of prototypes is guided by average local density of data points.

processed, we normalize the weight matrices in order to
obtain normalized probabilities:

X _ b'e
> _E wi;
J

X
w;s
w¥ > 24 (4)

It has to be noted that the visual and LIDAR measurements
do not need to come from the same objects. Indeed, if
this were the case, it would mean that we already know
the correspondences we wish to identify. When working
on a benchmark database like KITTI, this is the case but
when training the system on recorded data not containing
any annotations, evidently the correct correspondences are
unknown except when there is always just a single object
in sight. Therefore, the strategy we adopt is to present all
combinations of visual and LIDAR measurements taken at
a certain point in time (e.g. a single, synchronized image
and LIDAR recoding, both for real sensors and in the case
for KITTI) when learning conditional probability distribution
between sensors. This assumes there is a sufficient amount
of training data, because the ”correct” correspondences will
appear together far more often than random incorrect ones.

As we supposed that SOMs are already converged, we
disable SOM learning during the whole phase of learning
conditional distributions by setting €(¢) = 0 for both SOMs.

3) Overall training procedure: The overall training pro-
cedure is given in Alg. |1} It consists of a SOM training step
and a step that determines conditional probabilities between
the SOM representations of both measurements.

C. Unimodal detection of correspondences

After training is completed, the model can be used for
detecting whether a given combination of visual and LI-
DAR measurements is likely caused by the same object. To
this end, we develop a criterion that depends on a single
parameter, the probability threshold 6. Assuming that each
measurement has generated activities zlx in both SOMs,
the criterion first computes a single binary measure ¢X =
{0,1} for each conditional probability matrix w;}, using the
shorthand notation X = L,V for a certain modality, and

Algorithm 1 Model Training: Overview over the two-stage
model training procedure consisting of learning distributions with
SOMs, and learning multi-sensory conditional probabilities.

1: fort: 1 — Tsom do

2: Draw a random image ¢ from Dy,

3: Draw random visual measurement [ 7}, from i

4: Draw a random image ¢ from Dy,

5: Draw a random LIDAR measurement m 7% from i
6:  Update visual SOM with ] acc. to Sec.
7. Update LIDAR SOM with Z},, acc. to Sec.
8: end for

9: Disable learning in SOMs by setting €(t) = 0

10: for ¢t :1 — Ty do

11: Draw a random image ¢ from Dy,

12: for (I,m) = all permutations of measurements do
13: Feed visual SOM with ¥ — 2V (¢)

14: Feed LIDAR SOM with 7L — 7L (¢)

15: Update wiLj, w}; acc. to Sec. m

16: end for

17 Normalize w;, w); acc. to Sec. [[I-B.2
18: end for

”other” for the other one:

X

= argmin z; 5)
4% = argmin ZJX (6)
J
PX = {jlw; > 6} (7
e v~ DX
X = 1 ifj*eP ®)
0 else

The two quantities ¢X express whether a best-matching unit
(BMU) at position ¢* in X can predict the best-matching unit
at index j* in the other modality X based on the learned
conditional probabilities. Given a best-matching unit in X,
6 is used for selecting a set of nodes PX with conditional
probabilities that exceed 6. If the BMU of X is an element
of the selected set, we conclude that there is a match and
set ¢ = 1. Thus, the threshold 6 governs the strictness
of the matching: if it is high, only a small (or empty) set
of nodes PX will be selected and the probability of match
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distributions are used to detect correspondences.
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Fig. 5. The KITTI database we use for our experiments is recorded from a
moving car equipped with several cameras, a GPS device and most notably
a Velodyne LIDAR device.

diminishes. On the other hand, if 6 is low, the probability
of match increases, up to the point where there will always
be a match at # = 0. As it is often not necessary to detect
all correspondences correctly but rather to exclude unlikely
combinations, a more relaxed value of 6 can help avoid
missed correspondences while still being able of reducing
the combinatorial space of correspondences.

D. Fused correspondence detection

Apart from the unidirectional mutual sensor activity pre-
dictions, one can also use a cross-verified decision of im-
proved quality. For that, the criterion of acceptance in eqn. (8]
changes to:

wX o xwk. >0 )
W +wik,. >0 (10)
(11)

X X X X
E Wi 2 X E wispzj; >0
k k

where 2;X is again the activity at node i in SOM X (which
can be LIDAR or vision, whereas X represents the other
modality), and the indices ¢*, j* are the indices of the BMU’s
in both sensor’s SOMs. The last eqn. (TT) takes into account
not only the BMU of each SOM, but also its neighbouring
nodes plus their associated, learned conditional probabilities.

E. Training and evaluation data

For the training stage and the evaluation of the proposed
methods, two datasets are used:

Example of conditional probability distributions PX for vision (given a LIDAR node, left) and LIDAR (given a vision node, right). These

o Dataset A is composed of annotated tracklets from the
public KITTI benchmark database[9] (see also Fig. E[)

o Dataset B is composed of real detections captured
from dash camera and four-layer lidar on-board an
experimental platform. Visual pedestrian detections are
obtained with the ’daimer’ detector provided with the
OpenCV vision library, and LIDAR ones are from
connectivity based clustering.

From Dataset A: we employ the center positions of objects
in 2D image coordinates as well as corresponding 3D laser
coordinates as measured by a Velodyne laser scanner (i.e.
tracklets). As the height-over-ground of a tracklet’s center is
often irrelevant for safety applications, we take a birds-eye
perspective and just consider two of the three 3D coordinates,
excluding height-over-ground. Due to the synchronized na-
ture of visual and LIDAR recordings in the Dataset A, each
tracklet can be assigned a unique visual image and therefore
a corresponding LIDAR sweep. We use all types of objects
provided by the database A, making the total number of
considered tracklets 23497. For training the model, we use
70% of this data, performing a random split of available
tracklets into train and test databases.

From Dataset B: we employ the center positions of objects
in 2D image coordinates as well as corresponding 3D laser
point cluster center positions. Vision-based objects and lidar-
based detection were manually associated so as to obtain
a ground-truth reference. This sequences is composed of
pedestrians filmed in 9 short scenarios of about 2 minutes,
making a total number of 8613 visual detections, and 5476
lidar detections. Due to the small size of this data base, we
performed a cross-validation, that is, for each scenario the
SOM are trained with 8 other scenarios and tested with the
chosen one.

F. Evaluation

In order to quantify the capacity of the trained model
to identify visual/LIDAR correspondences, we use the test
database as described in Sec. [[I-E] In order to prevent the
SOMs from adapting during the evaluation phase, we set
€(t) = 0 for both SOMs.

Assuming a trained model (SOMs plus conditional prob-
abilities), we process all images in the test database in a



Algorithm 2 Evaluation: Overview over the evaluation proce-
dure.

1: Disable learning in both SOMs by setting €(t) =0

2: for i : 1 — (images in D) do

3 Draw image ¢ from Diegt

4 for (I,m) = combinations of measurements do

5: Feed visual SOM with Z}] — 2V (t)

6: Feed LIDAR SOM with 7}, — ZL(t)

7 Generate bin. measures ¢, ¢X acc. to. Sec.
8 end for

9: end for

—

0: Plot precision/recall curves

sequential manner. For each image, we present all combi-
nations of visual and LIDAR measurements and compute
the scores ¢y, cy for each combination. A binary decision
on the presence of a correspondence is taken according
to eqn.(3). As this decision depends on a single threshold
0 we can re-cast this evaluation in the form of a ROC
analysis by varying 6 in the interval [0,1] and measuring
the precision/recall rates.

An overview over the complete evaluation procedure is
given in Alg. [

III. EXPERIMENTS
A. Organization of training and evaluation

Model training is performed in two steps: initially, the
SOMs are trained independently of one another by drawing
random samples from the train database, see Sec. and
adapting each individual SOM according to Sec. with
the input vector provided by the unimodal part of the drawn
sample. Training parameters are: N = 30, €, = 0.01 0 =
1, g = 0.6, g9 = % Neighbourhood radius and learning
rate develop according to

o(t) = max (000, 00 €Xp(—Ast)) (12)

€(t) = max (exo, €9 eXp(—Act)) (13)

with —A. = 0.002 and A\, = 0.004.

SOM training duration is limited to Tsom = 20000 iter-
ations. Subsequently, correspondences are trained according
to Sec. for another Teo = 20000 iterations, randomly
drawing images from the training database and feeding all
possible combinations of visual/LIDAR measurements to the
two SOMS as well as updating the two sets of weights wz‘g ,
wiLj based on the resulting SOM activities 22X X = LV.
Evaluation is conducted according to Sec. by iterating
over all images in the test database and measuring preci-
sion/recall rates when presenting to the model all possible
combinations of visual/LIDAR measurements in each image.

B. Results

For KITTI base we first plot a separate ROC for LIDAR-
vision and vision-LIDAR correspondence detection, given in
Fig. [6] As can be expected, the LIDAR-vision-based corre-
spondence detection gives better results, very likely because
the vision-LIDAR transformation is one-to-one but not the
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Fig. 6. ROC:s for vision-LIDAR (red curve) and LIDAR-vision (green

curve) correspondence detection. As can be expected, LIDAR-vision pro-
vides slightly better performance as the associated transformation is one-to-
on
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Fig. 7. ROCs for vision-LIDAR (red curve) and LIDAR-vision (green

curve) correspondence detection, where laser measurements are augmented
by object size. By comparison to Fig. [} we observe that this irrelevant
information is ignored.

other way round. We observe as well that performance is
acceptable given that no prior knowledge was used at all
but it is not an ideal ROC either. In a further experiment,
we wish to back the claim made in Sec. [[] that the proposed
method was able to handle arbitrary measurements without
requiring explicit models. To this end, we repeat the previous
experiment while tracklet width and tracklet height to the
laser measurement, bringing up its dimensionality to 4. The
ROC:s obtained in this way are shown in Fig. [/ We see that
the addition of additional information does not impair the
ability of our system to detect correspondences. On the other
hand, performance is not improved either, because the added
information is irrelevant to the transformation to be com-
puted. This experiment therefore shows that our model, due
to the learning approach, is able to process very diverse types
of measurements, and automatically extracts the information
required for finding correspondences. Lastly, we evaluate the
three fusion strategies proposed in Sec. which means
that for a pair of visual and LIDAR measurements, there will
now be only one decision on correspondence, not two as
in previous experiments. The overall performance is shown
in Fig. |8| and show that the fused decision outperforms
any single unimodal one, boosting the already satisfactory
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performance even further.

For real sensors the ROCs are calculated using only
complex activity predictions as the most effective. The
results are seen in Fig. [J]. One can observe low quality
for unidirectional correspondences detections and very high
quality for fused one. It can be explained by non-symmetrical
detections nature and small number of detected objects per
frame.

IV. DISCUSSION AND CONCLUSIONS

We have presented a learning approach to solve the prob-
lem of finding visual/LIDAR correspondences and validated
its performance on a widely accepted benchmark database.
In this section, we will review and justify the components
of our model and outline principal conclusions and further
research works.

A. Model justification

The hybrid SOM-based architecture we propose here is
based on two necessities: first, to have a generic model that
will work with any kind of visual/laser measurements. This
means that the model must be able to work regardless what
is actually measured by each sensor. For a camera, this could
be, e.g., pixel position of interest points, but also center
position, size and identity if an object detection algorithm is
used, or center position, size and speed if tracking is added.
By using the self-organizing map architecture, every mea-
surement is down-projected to a 2D image-like representation
in a way that is statistically optimal and respects a certain
topological constraint that allows to easily visualize and

interpret a SOM’s activity. For ensuring statistical optimality,
we use a variant of the SOM model that has a well-defined
energy function[11], which makes it actually very easy to
detect measurement outliers that should be ignored.

Secondly, we want a model that will not fail even when
the transformation between modalities is not one-to-one in
both directions. To this end, we adapted a purely probabilistic
approach, on top of the SOM mechanism, that will simply
respond by a multi-peaked probability distribution in case
there is inherent ambiguity due to non-unique transforma-
tions.

B. Discussion of results

As seen in Sec. the quality of correspondence finding
is very satisfactory given that we did not bring in any specific
expert knowledge. In addition, the threshold 6 allows us to
smoothly change the behavior of the system, from a point
where there are few correct correspondences but also few
incorrect ones, to a point where there are many correct cor-
respondences but also some incorrect ones. For example, for
a multimodal tracking system a higher false positive rate can
be acceptable if no correspondences are incorrectly rejected,
since tracking can take into account past information and thus
correct the occasional incorrect correspondence. Another
very encouraging fact is that the quality of correspondence
detection can be significantly improved by considering not
only both unidirectional correspondences in isolation, but a
fusion of both. As a proper fusion should be, it is indeed
better-performing than any single contribution to it.

C. Conclusion

We have shown that a learning-based approach
can successfully solve the problem of multimodal
correspondence detection, in particular between visual
and LIDAR sensors. The only prerequisite is a collection of
(unlabeled) data which is usually easy to obtain. No expert
effort is required at all, and in particular no detailed models
of the data acquisition process by the used sensors. The
technique is very computationally efficient, and consumes
no significant computational load, thus making it suitable
for embedded operation. We hope to make this technique
even more appealing by better exploiting the structure of
conditional probabilities for even better-performing fusion
strategies.
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