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Abstract. Two nonlinear regimes, depending on the magnetic Prandtl number Prm,

are identified for magnetic islands described by resistive MHD equations. The frontier

between these two regimes is sharp, and has the characteristics of a phase transition

controlled by plasma viscosity. In the low Prm regime, a new form of the so-called flip

instability, consisting of a sudden change of the island phase, is identified. Already

known in the context of a forcing by external magnetic perturbations and localized

current drive, it occurs spontaneously at low Prm. The main characteristics of this

new structural instability are described. The low Prm regime is well described by

the slab visco-resistive model in the linear phase, and is characterized by both a large

saturation of the island and strong nonlinearly driven zonal flows (that do not impact

significantly the island dynamics however), while curvature physics strongly impacts

the viscous regime.
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1. Introduction

The saturation of magnetic islands in tokamak plasmas causes a confinement degradation

that increases with the island size, so that the prediction of the nonlinear regime is a

key issue in fusion research. Although high performance regimes can only be modelled

by taking into account the destabilizing contribution of the bootstrap current [1], it is

of interest to consider the nonlinear behavior of magnetic islands in the pure resistive

MHD framework, as a basis for the understanding of more complex models. A key

point is the role of dissipative effects in the saturation. Indeed, simulations are usually

performed at a resistivity that is much larger than the experimental one, so that it

is crucial to understand how this affects the saturation prediction. Also, the viscosity

of tokamak plasmas is not well known, in particular in the direction perpendicular to

the magnetic field, so that the role of a dimensionless parameter like the magnetic

Prandtl number (Prm≡ µ0ν/η in SI units, with ν the viscosity and η the resistivity)

needs to be clarified. For example, the threshold for mode locking due to residual
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Resonant Magnetic Perturbations is an area where the amplitude of plasma viscosity

could have important implications [2, 3, 4, 5]. While viscosity reduces the linear growth

rate of tearing modes [6] and introduces a threshold in the stability parameter ∆′ [7, 8],

numerical investigations in cylindrical geometry using a reduced MHD model showed

that the nonlinear regime could consist of an oscillation of the island width at low Prm,

while the saturation becomes independent of the viscosity above some value [9]. This

oscillating regime at low Prm was also observed in slab geometry [10].

In the present work, we address this issue for a single tearing mode in toroidal

geometry, with finite perpendicular and parallel transport, using the XTOR code [11].

We find that, depending on plasma viscosity (or magnetic Prandtl number Prm), the

island can follow two distinct nonlinear regimes, separated by a sharp transition. In

the low viscosity regime, the island enters into a transitory limit oscillation cycle before

growing to saturation, and the saturation width does not depend on Prm. This limit

cycle is due to a ”flip instability” [12], already known in the litterature in the context

of external magnetic perturbations [13] or current drive [14]. Above a critical Prm, the

island grows regularly (no flip instability) and its saturation size depends strongly on

plasma viscosity.

These results have both similarities and differences with previous studies performed

in cylindrical and slab geometries [9, 10]. We also identify two nonlinear regimes, with

oscillations of the island width at low Prm, but we find that the island always escapes

from the oscillating regime. We also find that the saturation is large and does not

depend on Prm in the low viscosity regime, while it was reported that the saturation

was small at low Prm and large, as well as independent of viscosity, at high Prm.

In the present work, we identify the mechanisms that are at play in the two

nonlinear regimes and impact both the linear and nonlinear phases. At low viscosity, the

tearing mode is qualitatively well described by the slab visco-resistive model [7] because

curvature stabilization is not sensitive to plasma viscosity. In the viscous regime, on

the contrary, curvature physics plays an essential role, both in the linear and nonlinear

phases, because the perturbed pressure is influenced by plasma viscosity through the

convection of plasma density.

The paper is organized as follows: in section 2, the resistive MHD model is

presented, as well as the magnetic equilibrium. A description of the two nonlinear

regimes is given in section 3, both for their specific nonlinear dynamics and for the

magnetic island saturation dependence on the magnetic Prandtl number Prm. A

detailed description of the spontaneous flip instability is given in section 4, evidencing

the phase transition when approaching the viscous regimes. The role of plasma viscosity

in the linear and nonlinear properties of the tearing mode, and the implication of

magnetic curvature, is explained in section 5, and a conclusion follows.
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2. MHD model and magnetic equilibrium

For the purpose of our study, we use the single fluid model implemented in the nonlinear

MHD code XTOR [11]. It solves the following equations:

[∂t + V · ∇] ρ = − ρ∇ ·V −∇ · Γan + Σ (1)

[∂t + V · ∇] p = − Γp∇ ·V + (Γ− 1) [H −∇ · q] (2)

ρ (∂t + V · ∇) V = J×B−∇p+ ν∇2V (3)

∂tB = −∇× E (4)

E + V ×B = η (J− J0) (5)

with V = VE + V‖i, VE = E×B/B2, ν the plasma viscosity, η the plasma resistivity

and J0 the equilibrium current density. The ratio of specific heat is Γ = 5/3, H is the

heat source and q = −ρχ‖∇‖T−ρχ⊥∇⊥T is the heat flux, with T = p/ρ and p = pe+pi.

The anomalous particle flux is defined as Γan = −D⊥∇ρ + ρVpinch with D⊥ the

perpendicular diffusion coefficient, and a prescribed pinch velocity Vpinch = D⊥∇ρ0/ρ0

inside
√
ψ = 0.97, so that the particle source is cancelled in the plasma core. Here, ρ0

is the initial density profile and ψ is the normalized poloidal magnetic flux. This pinch

is decreased to zero at the edge (
√
ψ > 0.97), and the particle source term Σ then drive

the density gradient:

Σ = ∇ · (−D⊥∇ρ0 + ρVpinch) (6)

We set up a tokamak magnetic equilibrium with circular cross-section and inverse

aspect ratio ε = 0.3, using the equilibrium code CHEASE [15]. The pressure profile is

given by ∂ψp ∝ (1− ψ) and the current density profile by I∗ ∝ (1−ψ)2 (see [15] for the

definition of I∗). The position of q = 2 is prescribed at
√
ψ = 0.5, which corresponds to

x ≡
√

Φ ≈ 0.34 and the magnetic shear there is s = 0.585. The initial density profile is

prescribed in the following analytical form

ρ0(ψ) =
1− d1ψ

d2

1 + d3ψd4
(7)

with (d1, d2, d3, d4) = (0.32, 1, 0.1, 4). The resulting equilibrium has a monotonic q-

profile with q(0) = 1.56, and it is characterized by βp = 1.12, βt = 0.15%, βN = 0.84

and li = 1.58.

3. The two nonlinear regimes

The nonlinear dynamics of the unstable equilibrium has been investigated in a wide

range of plasma viscosities, with a magnetic Prandtl number Prm≡ ν/η ∈ [0.1, 100].

Diffusivities are chosen so that η/χ⊥ = 150, D⊥ = (2/3)χ⊥ and χ‖/χ⊥ = 108.

An overview of the numerical simulations is given in figure 1, with the evolution

of the island size on q = 2 for a Lundquist number at magnetic axis S0 = 107. Cases

corresponding to the low viscosity regime are on the left plot, while cases corresponding

to viscous tearing modes are on the right plot. The figure shows that these nonlinear
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Figure 1. Dynamics of the magnetic island size at q = 2 for Prm∈ [0.1, 1] (left),

Prm∈ [1, 100] (right).

Figure 2. Zoom on the phase diagram (dW/dt,W ) close to saturation for Prm∈
[0.1, 0.9] (S0 = 107).

regimes are extremely different. At low Prm, the saturation size is Wsat ≈ 7−8%, and it

is weakly dependent from the magnetic Prandtl number. Note that, at the latest stage of

the island dynamics, the progress in the simulations is extremely slow. But although the

saturation is not fully completed, the traces of the island decay suggest that it will not

increase much above the value that has been reached, in the range Wsat ≈ 0.075− 0.08

(figure 2).

In this low viscosity regime, the island size experiences multiple rebounds before

reaching its final saturated state, a phenomenon known as the flip instability (see
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Figure 3. Dynamics of n = 0 kinetic energies (left); profiles of n = 0 poloidal and

toroidal flows at the end of the simulations (right) for Prm∈ [0.1, 1].

section 4). The end of the cycling behaviour coincides with the development of strong

(m = 0, n = 0) (zonal) flows (figure 3). In the toroidal direction, these zonal flows are

essentially bipolar relative to the resonant surface q = 2 located at
√
ψ = 0.5, but it can

take indifferent directions as shown by the case at Prm= 0.6, depending presumably on

small differences in the initial noise-level state. The shear of the zonal flows, evaluated

in the island region at the end of the simulation, is decreasing with Prm, and vanishes

at Prm= 1, where the zonal flow generation is insignificant (figure 4). We observe that

the slight increase of the saturated island width as this shear decreases is reminiscent

of experimental and heuristic indications that flow shear could reduce the saturation of

magnetic islands [16, 17].

Simulations where the n = 0 component of the flow is artificially suppressed can

answer the question of the role of flow shear in the island dynamics. Due to the long

duration of nonlinear simulations close to saturation in this low Prm regime, we only

focus here on the dynamics before saturation. This exercice has been done for the case

Prm= 0.1. We observe that, qualitatively, the characteristics of the nonlinear evolution

remains nearly unchanged: the flip instability occurs as before, and the island still exits

the flip cycle (figure 5). The generation of zonal flows therefore coincides with the end

of the flip cycle without causing it. The only change is a slower initiation of the flip,

and a characteristic flip time (as defined later) that is about three times longer: the flow

shear clearly acts in the direction of a faster, more unstable dynamics [18, 19]. Then,

the island grows towards a large saturation as before. We can therefore conclude that

although nonlinearly driven zonal flows are specific to the low viscosity regime, they do

not impact significantly the island dynamics.

An abrupt change occurs above a critical Prm, somewhere in the range Prm∈
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Figure 4. Absolute value of the zonal flow shear in the island region at saturation,

as a function of Prm.

Figure 5. Evolution of the island width with and without zonal flows (ZF), for the

case Prm= 0.1.

[0.9, 1]. At Prm=0.9, just below the threshold, we observe an intermediate regime

where the island slowly oscillates around the low saturation value obtained at Prm=1,

without any flip, before rising to the high saturation value of about 8%. Just above

the critical value, the island saturates at a much smaller value, around Wsat ≈ 2.4%,

and no bouncing of the island size is observed. But the island saturation is no longer

independent from viscosity in this viscous regime, and as Prm is further increased, it

gradually increases. Note also that the level of zonal flows remains extremely low in

this regime.

The dependence of the saturation size of the (2,1) island on Prm is summarized in

figure 6. The saturation can be compared with two important characteristic widths: the

visco-resistive width and the curvature width. The visco-resistive width δην ∝ Prm1/6η1/3

[6] is evaluated from the computed fields as the distance between inflexion points of the

perturbed poloidal magnetic field, as described in [20]. At S0 = 107, it is very well

fitted by δην = 0.0172 Prm1/6, and the saturated island width is always above this
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Figure 6. Saturation size as a function of Prm for increasing Lundquist number S0.

The critical width for curvature WD is shown, as well as the visco-resistive width δην
for S0 = 107. Note that low Prm cases at S0 > 107 are not fully saturated.

size. The critical size above which curvature effect decreases is given by WD = 0.81 Wχ

[21] where Wχ = 2
√

2
(
χ⊥/χ‖

)1/4√
x/(εns), x =

√
Φ the radial co-ordinate with Φ the

normalized toroidal magnetic flux, ε = a/R0 the inverse aspect ratio, n the toroidal

mode number, s = d(log q)/d(log x) the magnetic shear and q the safety factor. In

our case, WD ≈ 0.03 for the (2,1) mode. Note that the saturation width is mostly

larger than the critical size WD above which curvature effect becomes weaker, so that

the importance of curvature stabilization [22, 23] is expected to be generally moderate.

However, viscosity does affect this critical size, as we will see in section 5, so that in the

viscous regime (Prm> 1) curvature stabilization is progressively modified.

4. The low viscosity regime and the spontaneous flip instability

One of the particularities of the low viscosity regime is the spontaneous flip instability,

and we will show that the transition to the viscous regime is characterized by a

singularity in the flip properties, so that the change of regime can be associated with a

bifurcation in the nonlinear dynamics of the tearing mode.

4.1. Phase diagram of the flip instability

The flip instability can be described as follows: the regular island growth starts at some

stage (around 2.5% of the minor radius here) to turn into decay until it reaches a small

size (less than 1% of the minor radius). Then the decay is moved to a symmetric growth

within a very short time (in the range 1000−1500 τA at S = 107). This time is evaluated

by considering the duration between two maxima of the island growth dW/dt (see figure
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Figure 7. Evolution of the (2,1) island growth S0dW/dt at Prm= 0.3, showing the

sudden changes corresponding to the spontaneous flips. The zoom shows the flip time

scale of about 1000τA.

7). The flip occurs several times before the island finally leaves this cycle and reaches

saturation. But the number of such cycles increases with Prm as the transition to the

viscous regime is approached (see figure 1).

The representation of this flip cycle in terms of phase diagram (dW/dt,W ) (figure 8)

or (M,K) withM the magnetic energy andK the kinetic energy of the (2,1) mode (figure

9), suggests that as viscosity is increased to a critical value Prmcrit ∼ 0.9, the system

has not enough power to enter the limit cycle, a phenomenology that is reminiscent of a

pendulum oscillating in a viscous medium. This nonlinear dynamics is exactly similar to

that modelled in [13] for the flip induced by an external magnetic perturbation, where it

could be modelled by a system of coupled differential equations relating the island width

W to its phase Φ relative to that of the external field. The drive for the spontaneous

flip instability has been investigated in cylindrical geometry where it was attributed to

the contribution of the inertia term ρv · ∇v in the momentum equation [9]. Repeating

the same test, we find that this term does contribute to increase the number of flips,

but the flip instability does not rely on this nonlinearity to exist (figure 10). Other

nonlinear terms therefore play a role in this phenomenon, which remains specific to the

low viscosity regime.

The characterization of the flip in terms of time scale and period is shown in

figure 11 (left plot). The flip time is weakly dependent on Prm, and of the order of

1000τA, while the flip period progressively increases like ∆T flip ∝
∣∣Prmflip − Prm

∣∣−0.3

with Prmflip ≈ 0.9. The properties of the flip instability therefore show a bifurcation

when approaching the transition to the viscous regime. Note also that the flip time

increases with both the central Lundquist number S0 and Prm value (figure 11, right).
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Figure 8. Phase diagram (W, dW/dt) for Prm= 0.1, 0.3 and 0.87 (close to the critical

Prm). The case Prm= 1 is shown (dotted line) for comparison.

Figure 9. Phase diagram (M, K) with M the magnetic energy and K the kinetic

energy of the (2,1) mode, for Prm= 0.1, 0.3 and 0.6. The case Prm= 1 is shown

(dotted line) for comparison.

4.2. Reconnection pattern during the flip instability

The evolution of the island topology during the spontaneous flip is followed by computing

Poincaré maps. This is shown in the region of q = 2 in figure 12 for the second flip of the

case Prm= 0.6. At the initial X-point positions, small islands form and progressively

grow, while the main islands decrease. At the end of the flip, the secondary islands have

entirely replaced the initial ones.

The positions of island X-points are recorded at q = 2, q = 3, q = 4 and q = 5 (figure

13). We recognize on q = 2 the two initial X-points that split around t = 288× 103τA,

and the secondary islands that are growing there while the initial ones progressively
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Figure 10. Effet of term (ρv · ∇v) on the spontaneous flip.

Figure 11. Left: Flip time (left scale) and flip period (right scale) as the critical Prm

is approached (vertical dashed line). Right: Time duration of the flip as a function of

the central Lundquist number S0 for different Prm values.

shrink. After about 3000τA, around t ≈ 291 × 103τA, the new islands have entirely

replaced the previous ones. Note that this phenomenon is not equivalent to a rotation

of the mode, so that the situation is different from that of an island interacting via

viscous forces with a rotating plasma [24, 2]. This is a structural change, and once it is

completed, the X-points do not move.

An interesting feature of the flip at the main unstable resonance, q = 2, is that

it is influenced by other flips occurring at neighbouring resonant surfaces, through the

coupling of poloidal harmonics in toroidal geometry. If we consider q = 3, q = 4 and
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Figure 12. Poincaré maps around q = 2 during the second spontaneous flip at

Prm= 0.6.

Figure 13. X-point positions at q = 2, q = 3, q = 4 and q = 5 during the flip (top),

island size at q = 2 (determined from the magnetic energy of the (2,1) mode) and onset

times (arrows) for flips at q = 2, 3, 4 and 5 (bottom).
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Figure 14. Two possible configurations for (2,1) and (3,1) islands, at ϕ = 0 (left) and

ϕ = 180◦ (right).

q = 5, we notice that the first flip occurs at q = 4, that its starts at q = 5 at the

same time as at q = 3, before that of the dominant (2, 1) mode. The spontaneous

flip instability that we observe on q = 2 is therefore the last of a series of earlier flips

occurring on subdominant poloidal harmonics of the n = 1 mode to which the (2, 1)

mode is coupled via toroidal curvature. In fact, the flip on q = 2 is likely a consequence

of the flip occurring at q = 3. Indeed, the relative position of magnetic islands on both

surfaces is not arbitrary. We display in figure 14 the two simplest configurations for the

respective positions of (2, 1) and (3, 1) islands. The configuration noted ”A” is the one

that the n = 1 mode chooses naturally in simulations, probably because it corresponds

to a lower energy state. On the temporal evolution of the X-point positions, we observe

that the (3, 1) island changes its phase before the (2, 1) island, so that we move from

configuration A-1 at ϕ = 0◦ to configuration B-1. The system remains in configuration

B-1 during less than 2400 τA, and then the flip of the (2, 1) island starts so that the

system is back to the original configuration A. The flip on q = 2 could well be driven

so as to minimize the potential energy state of the plasma by returning to its natural

configuration with respect to its poloidal sidebands.
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Figure 15. From top to bottom: Linear growth rate of n = 1 mode and analytical

fit following [7], half-width of perturbed radial velocity compared with the measured

visco-resistive width δην , half-widths of perturbed pressure and temperature, and

contribution of side-band magnetic energies, as a function of the magnetic Prandtl

number Prm. The vertical dashed line separates the two saturation regimes.

5. Relation with linear stability properties and curvature stabilization

The two nonlinear saturation regimes have in fact strong connection with the linear

properties of the tearing mode. We display in the first three plots of figure 15 the

linear growth rate of the n = 1 mode, and the half-width of radial velocity, pressure

and temperature perturbations, as a function of the magnetic Prandtl number Prm.

These quantities are determined in the linear phase of the mode evolution, prior to any

deviation from the exponential growth.
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We first note that the width of the radial velocity perturbation, i.e. of the

electrostatic potential, follows that of the visco-resistive width δην in all the viscosity

domain considered. The low viscosity regime is characterized by a growth rate that

strongly decays with Prm, and a pressure perturbation that slightly decays. The

dependence of the linear growth rate with Prm can be fitted (for S0 = 107) with

λfitS
3/5
0 = 4.44

(
Prm−1/6 − 0.8

)
, thus yielding a good agreement with the analytical

dependencies obtained from slab analytical theory [7]. The tearing mode should become

linearly stable for Prm of order unity, in agreement with the transition value observed in

our simulations. We note that a transition in the linear properties of the tearing mode

has also been found around a magnetic Prandtl number of unity in [25].

The viscous regime, above Prm=1, is therefore of a different nature. The main

difference is on the structure of the pressure perturbation, which now increases with

Prm. There are two components in the pressure perturbation: one is driven by the

temperature part, and the other by the density contribution. Due to the large parallel

diffusivity, the structure of the temperature follows that of the magnetic perturbation,

and is not sensitive to plasma viscosity, as shown in figure 15. But the density is

mainly convected by the flow, and will be affected by the increase of Prm in a similar

way as the radial velocity perturbation shown in figure 15. Thus the change of the

pressure perturbation width around Prm=1 means that pressure moves from a regime

that is essentially driven by diffusion (low Prm) to a regime where convection takes a

larger part. The role of the pressure perturbation in the tearing dynamics comes from

curvature physics. In the linear regime, it has a stabilizing influence that is all the more

important as the perturbation is localized [26, 23]. In the low viscosity regime, the

radial extent of the pressure perturbation does not vary significantly so that curvature

physics is expected to be nearly independent of Prm, a situation that explains the good

agrement with slab theory that is found. In the viscous regime, the broadening of δp

weakens curvature stabilization and therefore tends to make the mode more unstable.

At S0 = 107, this trend is balanced by the viscous stabilization, resulting in a growth

rate that decays slowly with Prm, but at S0 = 2× 107 and above, the loss of curvature

stabilization results in the destabilization of the tearing mode at increasing Prm (see

top plot of figure 15, dotted line).

It is also interesting to consider the magnetic energies of poloidal harmonics coupled

to the (2,1) mode, which is another signature of toroidal curvature. A larger coupling

to adjacent poloidal harmonics would reinforce curvature effects. In the bottom plot of

figure 15, we show the magnetic energies of the (1,1) and (3,1) modes normalized to that

of the (2,1) mode, in the linear phase, as a function of Prm. Note that the (1,1) mode

is non-resonant since q > 1. In the low viscosity regime, toroidal mode coupling evolves

with an increased coupling to the m = 1 non-resonant mode, and a lower coupling to

m = 3. It is difficult to extract, from these two opposite variations, the overall effect

of the modification of magnetic structure due to viscosity, but it is remarkable that

such a modification does appear given the low Prm. In the viscous regime, the mode

coupling to adjacent poloidal harmonics decreases for both m = 1 and m = 3, thus
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Figure 16. Nonlinear regimes in (Prm,S0) plane: island saturation (left), and number

of flips (scale limited to 10) (right). The MHD stable region is separated by a dotted

line for a better visibility.

indicating a lower effect of curvature in the dynamics of the (2,1) mode. This variation

leads to a conclusion that is consistent with that obtained from the change in the

perturbed pressure, although the relation between the two approaches could be rather

complex. From the elements shown here, we obtain that the broadening of the velocity

perturbation, which is the key parameter for the modification of curvature physics, is

directly related to Ohm’s law, as confirmed by the similar variation of ∆HW (δV ) and

δην . The magnetic energy coupled to poloidal side-bands characterizes the structure

of the perturbed magnetic field, and therefore relates to the same Ohm’s law. The

correlation between a local approach through the width of the perturbed velocity at the

resonant surface, and a global approach via the coupling to adjacent modes, tells us

that a stronger magnetic coupling is associated to a narrower velocity perturbation at

the resonance.

In the nonlinear regime, curvature physics tend to vanish when the island overcomes

a size given by WD [21, 22]. This is represented in a Rutherford-like framework by:

dW/dτη = a∆′(W )− 6.35DR/
√
W 2 +W 2

D (8)

with τη = 1.22 t/S. The characteristic width WD has been determined from a

pure diffusive model for the pressure dynamics by considering only the temperature

perturbation [27]. Both the weakening of curvature physics in the linear regime and

the increase of the saturation size with Prm indicate that convection should be part

of the threshold WD. Another indication that claims for a role of curvature physics in
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Figure 17. Dynamics of (2, 1) island at increasing Lundquist number S0 for Prm=0.3

(with Sref = 107).

the increase of saturation with Prm is that this variation is not observed in cylindrical

models [9]. The progressive increase of the saturation size with Prm is therefore the

consequence of a weaker impact of curvature stabilization, due to the broadening of the

pressure perturbation through its density contribution that is sensitive to convection.

For the understanding of nonlinear MHD simulations, the transport width WD can in

fact be evaluated more properly as being proportional to the half width of the pressure

perturbation in the linear phase.

The map of the island saturation and nonlinear behaviour in the (S0, Prm) plane

is shown in figure 16. The flip instability is observed at low Prm, in particular when

the stability threshold is approached. This translates into an increase of the number of

flips close to to the stable region. They occur also in the linear growth phase at higher

Lundquist numbers (figure 17), and even in the stable domain (Prm= 0.6, S0 = 4×107),

the island decay from the initial perturbation shows spontaneous flips. This means that

when dissipation is low, small deviations from pure linear physics are able to trigger a

flip of the island phase. This condition of marginal instability was also observed in the

reduced MHD model [9]. Far from the stable domain, even at low Prm, the number of

flips decreases, and only one occurrence is observed at Prm= 0.1 and S0 = 5× 106.

6. Conclusion

We show in this work the existence of two linear and nonlinear regimes for tearing modes,

controlled by plasma viscosity. The low viscosity regime is characterized by a growth rate

that strongly decreases with the magnetic Prandtl number Prm, as expected from linear

theory, and a nonlinear dynamics where the phases of the poloidal harmonics coupled
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by toroidal geometry change several times before saturation is reached. It first occurs

on poloidal sidebands of the dominant instability on q = 2, and seems to propagate to

the (2,1) mode so as to minimize the potential energy of the plasma. This adjustment

of the island phase, known as the flip instability in situations where reconnection is

imposed by an external system such as magnetic coils or localized current drive, occurs

spontaneously in this low viscosity regime, and becomes all the more frequent as the

linear stability threshold is approached. Strong zonal flow shear is driven in the island

region, but it does not appear to impact the flip instability, the exit from the flip cycle

nor the saturated size. The transition to the viscous regime occurs when curvature

physics starts being affected by viscosity. This takes place when convection takes a

sufficient part in the pressure perturbation so that the broadening of the electrostatic

potential by viscosity also broadens the perturbed pressure. The linear stability of

the tearing mode is then a balance between the stabilizing influence of Prm in the

absence of curvature and a lower curvature stabilization at increasing Prm. In the

nonlinear regime, the flip instability is absent, and the saturation increases with Prm

as a consequence, again, of a weaker curvature stabilization. Previous works performed

in slab or cylindrical geometry could not capture this viscous regime, which only exists

because toroidal curvature stabilization is modified by viscosity. But they could find the

flip instability when considering tearing modes sufficiently close to marginal stability.

This effect of plasma viscosity on tearing mode dynamics could manifest itself

in experiments, and affect projections to future tokamaks. Indeed, the dimensionless

scaling of the magnetic Prandtl number with respect to β ≡ µ0p/B
2, ρ∗ ≡ ρs/a and

ν∗ = νia/vTe differs whether it is controlled by collisional or turbulent processes (here

ρs is the sound Larmor radius, a is the minor radius of the torus, νi is the ion collision

frequency and vTe =
√

2Te/mi is the electron thermal velocity). In the collisional case,

Prm∝ β [28] and remains of order unity or below in standard tokamak discharges. In

the turbulent case, ν ∼ χ⊥ and Prm∝ β/ν∗, would lead to very large Prm in performant

weakly collisional plasmas like in ITER.
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