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Abstract

In this paper, we investigate the coupling of reduced models for the simulation
of structures involving localized geometrical details. Herein, we use the Arlequin
method, originally designed to deal with multimodel and multiscale analyses of
mechanical problems, to mix reduced models built using the Proper Generalized
Decomposition. Instead of solving the global coupled problem in a monolithic
way, the LATIN strategy is used to propose a decoupled algorithm. The nu-
merical examples demonstrate the feasibility of the approach and in particular
its potentiality in terms of flexibility.

Keywords: reduced-order modeling, PGD, multimodel, multiscale, Arlequin,
LATIN

1. Introduction

In engineering design, the numerical simulation of very large multiscale mod-
els is becoming increasingly important because of the need to describe realistic
scenarios and to derive tools to facilitate the virtual design of new structures.
However, the incredible evolution of computing resources over the last decade
is balanced by the increasing complexity of the models that engineers want
to address in their efforts to design, control and optimize innovative products.
Solving several problems with very large number of degrees of freedom, with
the presence of multiscale and multiphysics aspects, or with the need to take
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into account uncertainties or parameter variations cannot be handled by stan-
dard solution techniques. In this context, model reduction methods have a
huge potential to develop innovative tools for intensive computation and allow
a “real time” interaction between the user and the simulations, which gives the
opportunity to explore a large number of scenarios in the design office.

Several approaches of reduced-order modeling have been proposed, many of
them relying on the assumption of a separated form of the unknowns. A first
family of algorithms starts by a learning phase (performing some preliminary
computations, called snapshots) to build a reduced-order basis that allows to
capture the principal characteristics of the solution of the problem to be solved.
It is the case of the methods based on the Proper Orthogonal Decomposition
(see e.g. [1, 2, 3, 4]) or of the Reduced Basis method (see e.g. [5, 6]). The
latter adds an automatic selection of the snapshots by a greedy algorithm based
on some efficient error indicators. Another family follows a different path as
it builds progressively an approximate separated representation of the solution,
without assuming any basis or selecting any snapshots. It is the case of the
Proper Generalized Decomposition (PGD, see e.g. [7, 8] or [9] for a review of the
method) which was considered in our former works, in particular for the analysis
of elastic-viscoplastic problems [10], multiscale problems [11] or parametrized
studies [12]. This method has also been widely developed by Chinesta and
coauthors who proposed very efficient implementations of the approach and a
large variety of applications (see [13] for an overview). To focus only on some
recent examples, one can cite real-time simulations in surgery [14, 15], real-time
monitoring of thermal process [16] or the simulation of viscoelastic models [17].

However, to move a step forward, a major issue which is addressed herein
is the coupling of reduced-order models to mix several models within the same
simulation. This point is exemplified by Figure 1, which represents a holed
square structure with different shapes. The brute force classical approach to
evaluate the influence of the shape of the hole is to mesh the structure for each
geometry and run the simulation, possibly using a reduced modeling strategy
that generates modes specific to this particular geometry.

The approach which is explored in this paper is different. We propose to
superpose two reduced models: one for the global structure and one for the local
detail (see Figure 2). This would allow a considerable increase in the flexibility
of the solution and provide new opportunities in terms of design, such as:

• the ability to consider a complete system as an assembly of components,
each represented by its own model;

• the possibility of handling reduced models arising from several actors in-
volved in the design of the same product;

• the ability to take into account the critical phenomena, which occur locally
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in time and space, with a finer numerical model that could be adapted
automatically during the simulation;

• the flexibility to change some local data (geometry, topology, material,
architecture ...) in order to change the global structure.

Figure 1: Remeshing global structure involving a local geometrical detail

Figure 2: Superposition of local models in a single global model

The issue of coupling reduced models is essentially the possibly different
natures of the mathematical models to “marry”, that is the management of
incompatibilities between the models. This question was addressed in [18, 19]
for multiphysics problems such as thermo-poroelasticity. In these works, based
on the concept of “interface between physics”, the LATIN method was used to
solve in a decoupled manner the problems corresponding to the different physics,
and the PGD was applied to reduce the computational cost of the models.

In this paper, we propose to use the Arlequin technique [20]. This technique
has been designed to deal with problems in which several “zones” of interest
can be distinguished and require different levels of analysis. The term “zones”
should be understood in the broad-sense, as it concerns different numerical
models whose fields can be mixed and glued together. For that, a superposi-
tion technique based on a weak formulation, in which the energy is distributed
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between the various models is used. This technique allows to deal with incom-
patible models, including the ones defined on different meshes. The Arlequin
method has been the subject of many developments (see e.g. [21, 22, 23]) and
showed its capabilities to locally refine models to introduce an essential local
modification in models.

The Arlequin modeling framework has already been used in [24] in the con-
text of the PGD. In this work, the technique was implemented to split a complex
physical geometry in rather simple ones, in order to allow a separation of the
geometrical coordinates. The different simple zones were then solved using the
PGD approximation introduced in the global formulation, allowing a strong
decrease of the computational cost.

Herein, the aim is different. It consists in transforming the classical weak-
Arlequin volume coupling into a strong (pointwise) coupling. This local coupling
between models allows for the use of the LATIN algorithm as a decoupled solver
and the implementation of the PGD technique for each of the overlapping mod-
els. This approach leads to an interesting flexibility as it will permit at the end,
to use different PGD solvers, dedicated to the specificities of the models that are
considered (linear/nonlinear, deterministic/stochastic, atomistic/continuum ...)
as well as, in the future, resorting to precomputed reduced-models stored in a
library.

The present paper is organized as follows. In Section 2, the framework of
the Arlequin strategy is recalled in the case of linear elasticity and reformulated
to be solved by a decoupled algorithm. In Section 3, the LATIN algorithm is
introduced to solve the problem in a decoupled manner. The PGD approach is
then used to solve the problems corresponding to the different models. Finally,
some numerical examples are proposed in Section 4 to illustrate the behavior of
the strategy.

2. Arlequin formulation

Only the main features of the approach are recalled herein. For further
details, especially on the theoretical aspects, the interested reader can refer
to [22]. In order to recall the Arlequin formulation, we consider the following
representative model.

2.1. Classical linearized elasticity problem

Let us consider the evolution over the time interval I = (0, T ) of an elastic
body occupying the closure of a bounded regular domain Ω1 included in Rd,
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with d = 1, 2 or 3 in practice. It is submitted to a field of volume density of
forces f , a field of surface density of forces F on ΓF , a part of its boundary, and
clamped on Γu, a non zero measured other part of the boundary (see Figure 3).

f

F

Ω1 ΓF

Γu

Figure 3: Reference problem

For a given space V , we denote L2(I;V ) = {v : I → V ;
∫

I
||v||2V dt < +∞}

and || · ||V a norm on V . Then, we introduce V0 = {v ∈H1(Ω1) ; v = 0 on Γu}
and we define W0 = L2(I;V0), F0 = L2(I;L2(Ω1)) and G0 = L2(I;L2(ΓF )). If
we assume that f ∈ F0 and F ∈ G0, the displacement field u0 is a function of
(x, t) ∈ Ω1 × I and the weak primal (monomodel) formulation of this problem
reads as follows:

Find u0 ∈W0 ;
∀v0 ∈W0, a0(u0, v0) = `0(v0) (1)

where the virtual works of the internal and external forces respectively read:

∀ (u0, v0) ∈W0 ×W0, a0(u0, v0) =
∫

Ω1

σ(u0) :ε(v0) dΩ (2)

∀v0 ∈W0, `0(v0) =
∫

Ω1

f · v0 dΩ +
∫

ΓF

F · v0 dS (3)

In these equations, ε(v0) and σ(v0) denote the linearized strain and stress
tensors, associated to field v0, which are assumed to be connected through a
Hooke’s law.

2.2. Lagrange multiplier-based Arlequin formulations of the elasticity problem

Let Ω2 be a non-zero measured given bounded regular domain overlapping
Ω1. Let Ω12 be the overlap. For clarity and with no major restrictions, it will be
assumed that Ω2 is strictly embedded in Ω1, leading to Ω12 = Ω2. The overlap
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Figure 4: Arlequin models and the coupling zone (in grey)

is partitioned into two regular non overlapping domains, i.e. Ω12 = Ωc
12 ∪ Ωf

12
where Ωc

12 is the models gluing zone (see the grey zone in Figure 4).

Now, to define Arlequin formulations of the elasticity problem, we denote by
W1 = L2(I;V1) with V1 = {v ∈ H1(Ω1) ; v = 0 on Γu} and W2 = L2(I;V2)
with V2 = H1(Ω2). Weighted internal and external virtual works are defined
by:

∀ (u1, v1) ∈W1, a1(u1,v1) =
∫

Ω1

α1 σ(u1) :ε(v1) dΩ (4)

∀ (u2, v2) ∈W2, a2(u2,v2) =
∫

Ω2

α2 σ(u2) :ε(v2) dΩ (5)

∀v1 ∈W1, `1(v1) =
∫

Ω1

α1 f · v1 dΩ +
∫

ΓF

α1 F · v1 dS (6)

∀v2 ∈W2, `2(v2) =
∫

Ω2

α2 f · v2 dΩ (7)

where weight parameter functions (α1, α2) are defined respectively in Ω1 and
Ω2 and satisfy (see Figure 5) for i = 1, 2:

αi > 0 in Ωi, αi = 1 in Ωi \ Ω12, α1 + α2 = 1 in Ω12 (8)

The dual volume coupling-based continuous Arlequin formulation of the
model elasticity problem reads:

Find (u1, u2, Φd) ∈W1 ×W2 ×Md ;
∀v1 ∈W1, a1(u1, v1) + cd(Φd, v1) = `1(v1) (9)
∀v2 ∈W2, a2(u2, v2)− cd(Φd, v2) = `2(v2) (10)

∀Ψd ∈Md, cd(Ψd, u1 − u2) = 0 (11)
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Figure 5: Example of weight parameter functions αi, (i = 1, 2) (see [21, 22] for details on the
choice of these functions and the value of ε ≈ 10−2, which allows to avoid the ill-conditioning
of the operators of the method)

where Md is the dual mediator space of M = W1/Ωc
12 = W2/Ωc

12 = L2(I;V c
12)

with V c
12 = H1(Ωc

12) and cd(· , ·) is the volume coupling operator:

∀ (Ψd, v) ∈Md ×M , cd(Ψd, v) = 〈Ψd, v〉Md, M (12)

where 〈· , ·〉Md, M stands for the duality bracket. The dual volume coupling
is a natural mechanical coupling operator, in the sense that, interpreting the
Lagrange multiplier field Φd as a density of forces, it has to be in the dual space
Md of the space of the displacements in Ωc

12.

By using the Riesz-Fréchet representation theorem, the natural H1-scalar
product of the space M can be substituted to the duality bracket which leads
to:

Find (u1, u2, Φ) ∈W1 ×W2 ×M ;
∀v1 ∈W1, a1(u1, v1) + c(Φ, v1) = `1(v1) (13)
∀v2 ∈W2, a2(u2, v2)− c(Φ, v2) = `2(v2) (14)

∀Ψ ∈M , c(Ψ, u1 − u2) = 0 (15)

where the coupling operator, denoted by c(· , ·), is defined by:

∀(Ψ ,v) ∈M ×M , c(Ψ,v) =
∫

Ωc
12

κ(ε(Ψ) :ε(v) + 1
e2 Ψ · v)dΩ (16)

where κ is a positive parameter of the order of magnitude of the rigidity of the
material (typically the Young modulus E) and e is homogeneous to a length
(typically ec

12, the width of the gluing zone, see Figure 4). The choice of the
norm and of this width is not at the core of this paper and the guidelines of
[21, 22] will be followed. Lagrange multiplier Φ ∈ M appearing in (13,14) is
homogeneous to a displacement field.

After discretization in space, Problem (13,14,15) can be rewritten using ob-
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vious notations:

∀t ∈ I,

K1 0 CT
1

0 K2 −CT
2

C1 −C2 0

 u1(t)
u2(t)
Φ(t)

 =

F1(t)
F2(t)

0

 (17)

The solution of (17) is denoted sref. It is usually obtained using a “mono-
lithic” approach which consists in solving directly the previous system that
couples the models. Despite the simplicity of implementation, the monolithic
approach is not the most appealing approach as it does not allow to use appropri-
ate solvers for each of the super-imposed models. In particular, one can think of
the coupling between models such as linear/nonlinear, deterministic/stochastic,
atomistic/continuum ...

That is why some works have been proposed in [25] to circumvent this issue
by mean of the FETI approach. In the present paper, we propose to use another
solver, the LATIN method, to ensure the decoupling of the solution process but
also to use reduced-order modeling to solve more efficiently the various models.
For that purpose, the Arlequin problem is reformulated as follows.

2.3. Reformulation of the Arlequin problem

Problem (9,10,11) is rewritten by introducing new dual Lagrange multipliers
(Φd1,Φd2) ∈M2

d in the formulation, such that (9,10) reads:

∀v1 ∈W1, a1(u1,v1)− cd(Φd1,v1) = `1(v1)
∀v2 ∈W2, a2(u2,v2)− cd(Φd2,v2) = `2(v2)

(18)

provided that we enforce:
Φd1 + Φd2 = 0 (19)

which can be interpreted as the equilibrium in the volume Ωc
12 of the densities of

forces. Coming back to the primal formulation (13,14,15), new primal Lagrange
multipliers (Φ1,Φ2) ∈M2 are introduced such that (13,14) can be rewritten:

∀v1 ∈W1, a1(u1,v1)− c(Φ1,v1) = `1(v1)
∀v2 ∈W2, a2(u2,v2)− c(Φ2,v2) = `2(v2)

(20)

with:
Φ1 + Φ2 = 0 (21)

We also introduce new displacement fields (w1,w2) ∈M2 such that

∀Ψ ∈M , c(Ψ,wi) = c(Ψ,ui) (22)
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Equation (22) allows to define the restriction operators Πi, (i = 1, 2), that
transfer a field defined on space Wi to the mediator space M :

Πi : ui ∈Wi 7→ wi = Πiui ∈M (23)

Using these new fields, equation (15) which corresponds to the accommoda-
tion between the two models can simply be rewritten as the equality of w1 and
w2:

w1 −w2 = 0 (24)

Then, the Arlequin formulation that will be considered in the next section
is:

Find i = (1, 2) (ui,wi,Φi) ∈Wi ×M ×M ;
∀vi ∈Wi, ai(ui,vi)− c(Φi,vi) = `i(vi), wi = Πiui (25)

w1 −w2 = 0 and Φ1 + Φ2 = 0 (26)

3. Decoupled resolution using the LATIN method

3.1. The LATIN method as a decoupled solver

Problem (25,26) is solved using the LATIN framework. Only the basics of
the method are presented in the following and the interested reader can refer to
[26] for coupling material subdomains or [19] for coupling multiphysics models.
Equation (26) plays the role of an “interface” between the models, which is
similar to the interfaces between subdomains and between physics used in these
works.

To find the solution sref = {(ui,wi,Φi)}i=1,2 of problem (25,26), the idea
is a partitioning of the equations by introducing two subsets of elements of
W1 ×M ×M ×W2 ×M ×M . The first one is denoted Ad and corresponds
to the set of solutions to problem (25). The second, denoted Γ corresponds
to the set of solutions to problem (26). The solution sref = Ad ∩ Γ is build
using an alternated-direction-scheme which consists in finding alternatively an
element of Γ and an element of Ad. The advantage of this partitioning is mainly
that Ad involves equations that are independent between the two models and
Γ involve equations that couple the two models but which are defined locally in
the accommodation space. This algorithm is sketched in Figure 6.

At iteration n+ 1, an element sn ∈ Ad is assumed to be already computed.
The algorithm consists of two stages, called coupled and decoupled. These stages
lead to ŝn+1 ∈ Γ and sn+1 ∈ Ad and work as follows (subscript i, corresponding
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· · · −→ sn ∈ Ad
coupled stage−−−−−−−−→ ŝn+1 ∈ Γ

decoupled stage−−−−−−−−−−→ sn+1 ∈ Ad︸ ︷︷ ︸
Iteration n + 1

−→ ŝn+2 −→ · · ·

Figure 6: The coupled and decoupled stages of the LATIN method at Iteration n+ 1

to the two models, has to be interpreted as i = 1, 2; subscript n+ 1 is skipped
to simplify the notations):

Coupled stage. — Knowing a solution s ∈ Ad, the coupled stage consists
in finding a solution ŝ ∈ Γ such that a linear search direction E+ is fulfilled:

Φ̂i −Φi = ki(ŵi −wi) (27)

where ki ∈ R?
+ are parameters of the method that will be discussed in the

following. Recalling the compatibility conditions on the “interface”:

ŵ1 − ŵ2 = 0 and Φ̂1 + Φ̂2 = 0 (28)

the solution at this stage is defined explicitly by:

ŵi =
1

k1 + k2
(ϕ1 +ϕ2)

Φ̂i = kiŵi −ϕi

(29)

where ϕi = kiwi −Φi are known quantities.

Decoupled stage. — Knowing a solution ŝ ∈ Γ, the decoupled stage
consists in finding a solution s ∈ Ad such that a linear search direction E− is
fulfilled:

Φi − Φ̂i = −ki(wi − ŵi) (30)
Recalling the equilibrium equations of the models:

∀vi ∈Wi, ai(ui,vi)− c(Φi,vi) = `i(vi), wi = Πiui (31)

and using search direction (30) to substitute Φi, one obtains:

∀vi ∈Wi, ai(ui,vi)− c( Φi︸︷︷︸
−kiwi − α̂i = −kiΠiui − α̂i

,vi) = `i(vi) (32)

where α̂i = −kiŵi − Φ̂i are known quantities. One obtains:

∀vi ∈Wi, ai(ui,vi) + c(kiΠiui,vi) = `i(vi)− c(α̂i,vi) (33)

and the decoupled problems to be solved at this stage can be rewritten formally:

Find ui ∈Wi ; ∀vi ∈Wi, ai(ui,vi) = li(vi) (34)
Then (wi,Φi) ∈M ×M ; wi = Πiui and Φi = −kiwi − α̂i (35)

where ai(·, ·) = ai(·, ·) + c(kiΠi ·, ·) and li(·) = `i(·)− c(α̂i, ·).
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3.2. Some remarks on the algorithm

Initialisation. — The previous algorithm is initialized by assuming that
there is no link between the two models. For that purpose, a first decoupled
stage is performed to find a solution s0 ∈ Ad by assuming:

ŵ1 = ŵ2 = 0 and Φ̂1 = −Φ̂2 = 0 (36)

Convergence indicator. — The convergence of the algorithm is controlled
by the indicator ηLATIN computed at each iteration:

ηLATIN =
||ŝ− s||Ωc

12

|| 12 (ŝ + s)||Ωc
12

(37)

with the norm ||s||2Ωc
12

= ||w1||2k1
+ ||w2||2k2

=
∫

I×Ωc
12
w1 ·k1w1 dSdt+

∫
I×Ωc

12
w2 ·

k2w2 dSdt, and the iterations are stopped when the indicator is less than a
threshold η (in practice η = 10−2 in the following numerical examples). Note
that, following for example [7], this indicator can also be linked to the error
with respect to the reference monolithic solution sref but this aspect is out of
the scope of this first work on the subject and will be studied in some further
works.

Search direction parameters. — In the LATIN method, the choice of
the search direction parameters ki influences the convergence rate of the al-
gorithm and the order of magnitude is chosen following the works on domain
decomposition in this framework (see, e.g. [27] or [28] for the case of nonlin-
earities). During the decoupled stage, the search direction, written in terms
of the density of force Φdi and of the displacement field wi, should be writ-
ten Φdi − Φ̂di = −kdi(wi − ŵi), where kdi is of the order of magnitude of the
rigidity of the material (typically the Young modulus) divided by the square of
a characteristic length of the coupling area (typically the width of the gluing
zone). This leads to kdi which is chosen of the order of E/ec2

12.

Recalling that the primal field Φ and the dual field Φd are linked by (16), Φd

is of the order of κ/e2Φ. Finally, using the fact that κ is chosen equal to E and
e to ec

12, the search direction parameters used in the numerical examples will be
k1 = k2 = 1. The influence of this value will be discussed in the following.

Discretization of the Arlequin formulation. — Classical finite element
discretizations are used for spaces Wi with basis functions that are continuous
and polynomial by parts over each of the elements. The meshes corresponding
to the two models are not a priori compatible. A finite element discretization
is also introduced for the mediator space M . In practice, the latter will often
be a restriction of the coarser discretized space, and hence incompatible with
the finer discretized mesh, but this is not a requirement. When considering
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these incompatible meshes, the integration of the term c(kiΠi ·, ·) in (33) is
not classical because it involves functions that may not be polynomials over
the elements of any of the meshes. Quadrature methods can therefore not be
applied in a straightforward way. Several strategies can be used, for instance
by adding adaptively Gauss points to the integration, as done in [29]. In the
present work, one prefers to construct the geometrical intersection of the two
meshes, as done in [21], so that one falls back on classical integration schemes.

The coupled stage (see Equation (29)) is solved in a strong form, while the
decoupled stage (see Equation (34)) is solved in a weak form. The question of
the stability of this scheme, in particular when the functional spaces Wi are
discretized over incompatible meshes, will be the subject of some theoretical
investigations in further works and, herein, we limit ourselves to the apparent
stability of the numerical experiments that will be described in Section 4.

3.3. Proper Generalized Decomposition at a glance

During the decoupled stage, the problem to be solved for each model i =
(1, 2) is defined by (35), that is the space weak formulation:

Find ui ∈Wi ; ∀vi ∈Wi, ai(ui,vi) = li(vi) (38)

where we recall that ui is a function of (x, t) ∈ Ωi × I, Wi = L2(I;Vi) and
V1 = {v1 ∈ H1(Ω1) ; v1 = 0 on Γu} and V2 = H1(Ω2). We also introduce
I= L2(I,R) the space of square integrable functions on I.

An approximation of solution ui is sought using the Proper Generalized
Decomposition (PGD) framework. The aim is to find a low-rank approximation
of a space-time field as a sum of products of spatial and temporal functions. In
our case, space Wi is approximated by Si = Vi ⊗I, that is:

ui(x, t) ≈ um
i (x, t) =

m∑
k=1

Λk
i (x)λk

i (t) where (Λk
i , λ

k
i ) ∈ Vi ×I (39)

Many choices are possible to build the PGD (Galerkin orthogonality criteria,
minimal residual criteria ... [30]). The algorithm which is used herein is based on
the Galerkin orthogonality and, for that purpose, a space-time weak formulation
of (38) is introduced using the bilinear form Ai and the linear form Li defined
by:

Ai(ui,vi) =
∫

I

ai(ui,vi)dt and Li(vi) =
∫

I

li(vi)dt (40)

The new problem reads:

Find ui ∈ Si ; ∀vi ∈ Tui(Si), Ai(ui,vi) = Li(vi) (41)

12



where Tui(Si) is the tangent linear space to Si at ui. The construction of
the solution is done using a greedy procedure. Assuming that a decomposition
um−1

i of order (m− 1) is already known:

um−1
i =

m−1∑
k=1

Λk
i λ

k
i where (Λk

i , λ
k
i ) ∈ Vi ×I (42)

the solution of (41) is searched in two steps. The first (called update) consists
in seeking a solution ūm−1

i of order (m−1) in the reduced-order basis {Λk
i }

m−1
k=1

without any enrichment but only by computating new time functions. The
second (called enrichment), performed only if the update step is not sufficient,
consists in adding a new pair to the decomposition to compute a new solution
um

i of order m. These steps are described hereafter.

Update step. — Assuming that a decomposition um−1
i of order (m− 1) is

known (42), a recombination of the reduced-order basis is searched by computing
an approximation ūm−1

i = um−1
i +

∑m−1
k=1 Λk

i λ̄
k
i where only the time functions

λ̄k
i have to be searched. For that, a Galerkin orthogonality formulation of (41)

is used:

Find {λ̄k
i }m−1

k=1 ∈Im−1 ; ∀{λl?
i }m−1

l=1 ∈Im−1,

Ai(um−1
i +

∑m−1
k=1 Λk

i λ̄
k
i ,

∑m−1
l=1 Λl

iλ
l?
i ) = Li(

∑m−1
l=1 Λl

iλ
l?
i ) (43)

This problem is rewritten:

Find {λ̄k
i }m−1

k=1 ∈Im−1 ; ∀{λl?
i }m−1

l=1 ∈Im−1,

Ai(
∑m−1

k=1 Λk
i λ̄

k
i ,

∑m−1
l=1 Λl

iλ
l?
i ) = Li(

∑m−1
l=1 Λl

iλ
l?
i )−Ai(um−1

i ,
∑m−1

l=1 Λl
iλ

l?
i )
(44)

or, in a more compact form:

Find {λ̄k
i }m−1

k=1 ∈Im−1 ; ∀{λl?
i }m−1

l=1 ∈Im−1,

Ai(
∑m−1

k=1 Λk
i λ̄

k
i ,

∑m−1
l=1 Λl

iλ
l?
i ) = Bm

i (
∑m−1

l=1 Λl
iλ

l?
i ) (45)

where one introduces Bm
i (·) = Li(·)−Ai(um−1

i , ·).

It is straightforward to derive that (45) leads to a small system of order (m−
1) which can moreover be decoupled provided that {Λk

i }
m−1
k=1 is orthonormalized

with respect to the scalar product associated to ai, that is ai(Λk
i ,Λ

l
i) = δkl.

The new approximation ūi ≈ ūm−1
i being known, the corresponding w̄i and Φ̄i

can be computed using the restriction operator and the search direction.

A criterion is then used to check if this recombination of the previous
reduced-order basis was sufficient or if an enrichment is required. Reusing the
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subscripts introduced in Figure 6 for the consecutive iterations of the LATIN al-
gorithm, this criterion is based on the value of ξi = ||w̄i,n+1−ŵi,n+1||ki/||wi,n−
ŵi,n||ki

. If ξi is less than a threshold (chosen as 0.9 in the following examples),
the enrichment step is skipped and the next iteration of the LATIN algorithm
is performed, jumping directly to the next coupled stage. For more details on
this aspect, one can refer for example to [31].

Enrichment step. — Assuming now that a new decomposition ūm−1
i

of order (m − 1) is known, the reduced-order basis is enriched by seeking an
approximation um

i = ūm−1
i + ∆u = ūm−1

i + Λiλi of order m. For that, a new
pair (Λi, λi) is added solving:

Find (Λi, λi) ∈ Vi ×I ; ∀(Λ?
i , λ

?
i ) ∈ Vi ×I,

Ai(ūm−1
i + Λiλi,Λiλ

?
i + Λ?

i λi) = Li(Λiλ
?
i + Λ?

i λi) (46)

This problem is rewritten in two equations:

Find (Λi, λi) ∈ Vi ×I ;
∀Λ?

i ∈ Vi, Ai(Λiλi,Λ
?
i λi) = Li(Λ?

i λi)−Ai(ūm−1
i ,Λ?

i λi) (47)
∀λ?

i ∈I, Ai(Λiλi,Λiλ
?
i ) = Li(Λiλ

?
i )−Ai(ūm−1

i ,Λiλ
?
i ) (48)

or, in a more compact form:

Find (Λi, λi) ∈ Vi ×I ;
∀Λ?

i ∈ Vi, Ai(Λiλi,Λ
?
i λi) = B̄m

i (Λ?
i λi) (49)

∀λ?
i ∈I, Ai(Λiλi,Λiλ

?
i ) = B̄m

i (Λiλ
?
i ) (50)

where one introduces B̄m
i (·) = Li(·)−Ai(ūm−1

i , ·).

The details of the resolution of nonlinear system (49,50) can be found for ex-
ample in [27] but, roughly, a fixed-point method initialized by λi(t) = 1 is used.
Knowing time function λi, Equation (49) allows to compute a space function
Λi. Then, knowing space function Λi, Equation (50) allows to compute a time
function λi. The process can be performed until convergence but, in practice,
only 2 iterations are used. Before adding the new pair to the approximation,
a Gram-Schmidt algorithm (with respect to the scalar product associated to
ai(·, ·)) is performed. Again, a new approximation ui ≈ um

i being known, the
corresponding wi and Φi can be computed using the restriction operator and
the search direction.

3.4. Details of the coupled-decoupled strategy

The details of the whole procedure are given in the Algorithm 1.
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Algorithm 1: Summary of the procedure, based on a succession of coupled
problems to accommodate the models and decoupled problems solved by
PGD

1 begin
2 Initialization construction of s0 ∈ Ad

3 for i = 1, 2 do
4 Solve decoupled problem (34) for model i to find (ui,wi,Φi),

assuming ŵi = 0 and Φ̂i = 0

5 s0 = {(ui,wi,Φi)}i=1,2

6 n← 0
7 while error indicator ηLAT IN > threshold do
8 begin
9 Coupled stage solve coupled problem (29) to find

{(ŵi, Φ̂i)}i=1,2 ∈ Γ

10 begin
11 Decoupled stage solve decoupled problems (38) to find

sn+1 ∈ Ad using a PGD approach in two steps for each model:
12 for i = 1, 2 do
13 Update step: solve (45) for model i, reusing the previous

reduced-order basis, to find (ūi, w̄i, Φ̄i)
14 if skipping criterion ξi > threshold then
15 Enrichment step: solve system (49,50) for model i to

add a new pair and find
(ui,wi,Φi) = (ūi, w̄i, Φ̄i) + (∆ui,∆wi,∆Φi)

16 Orthonormalization of the reduced-order basis of model i
17 else
18 (ui,wi,Φi) = (ūi, w̄i, Φ̄i)

19 sn+1 = {(ui,wi,Φi)}i=1,2
20 n← n+ 1

4. Numerical examples

In this section, to illustrate the capabilities of the strategy, we consider two
numerical examples of coupling a geometrical local detail in a global structure.
The first one is an open-holed plate where two shapes of the hole are considered:
round or square. The second is a gamma-shaped structure where the inside
corner can have four different designs.
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Both examples concern proportional loadings that are, in spite of their sim-
plicity, probably ones of the most common loadings encountered in structural
mechanics analysis. In that case, as this first demonstration concerns linear
static elasticity, the solution of the monolithic formulation is also proportional
and a PGD approach that would apply directly of the coupled monolithic formu-
lation must build a solution with one pair. However, the decoupled treatment of
the models leads to a different behavior. During the initialization of the LATIN
algorithm, the two models are solved independently, without taking into account
of their coupling, which leads to a first PGD mode for each model. The coupling
is then recovered iteratively and, for that purpose, new modes are generated.
This behavior is similar to that of a classical domain decomposition approach
in which the materials subdomains are glued by the mean of interface condi-
tions. The motivation of this choice of proportional loading in the examples is
to separate the behavior of the PGD to represent complex solutions from the
effect of using a decoupled algorithm to build the different reduced models.

The case of nonlinear problems, such as the coupling between a global linear
domain and a local viscoplastic patch, is under investigation. Following our
former works on viscoplasticity in the context of the LATIN method, it will only
impact the coupled stage of the algorithm, in which the nonlinear evolution law
will be also solved. The iterations (and then the modes that will be generated)
will allow to satisfy both the nonlinear behavior and the coupling between the
models. This aspect will be the subject of a further publication.

4.1. Open-hole plate

In this first example, we come back to the illustration of the introduction,
which consists of an open-holed plate simulated under the assumption of plane
stress. The two geometries that are considered are presented in Figure 7. The
overall dimensions are 100 mm × 100 mm. The diameter of the round hole and
the side length of the square hole are 20 mm. No body force f is considered, but
a sinusoidal-cycle linear force F with an amplitude of 10 MPa is prescribed on
the right side. The time interval I = (0, T ) with T = 1 s is discretized using 100
time steps. The material is linear elastic and isotropic with a Young modulus
E = 210 GPa and a Poisson coefficient ν = 0.3.

Figure 9 illustrates the two possible computational approaches. On the
upper part, two different meshes have been generated, to compute the solutions
with a monomodel approach. On the lower part, the multimodel simulation is
performed using a coarse global model of dimensions 100 mm × 100 mm and two
refined patches of dimensions 50 mm × 50 mm corresponding to the geometrical
details. Apart from the gluing zone which allows to adapt the models to each
other, these patches correspond to the zone of interest of the structure (delimited
by a red line in the figure) as the stress will be maximum around the hole.
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Figure 7: Open-holed plate (the zone of interest is delimited in red)
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Figure 8: Convergence rate of the algorithm for various values of the search direction param-
eters k1 = k2 = k around the value k = 1

The LATIN algorithm is stopped when the indicator ηLAT IN < η = 10−2.
Figure 8 shows the convergence of the algorithm by plotting the evolution of the
indicator along the number of iterations. One can notice that the value of the
search direction parameters k1 = k2 = k influences only slightly the convergence
rate around the value k = 1 which is selected herein. In future works, in particu-
lar including some nonlinearities, further investigations will be derived from the
numerous works on this subject in the LATIN method. As already mentioned,
the behavior of the algorithm is similar to that of a domain decomposition ap-
proach and the advanced techniques (multiscale features, preconditionners ...)
that are proposed in the literature to accelerate the convergence of this type of
algorithms will be investigated carefully and will certainly lead to an improve-
ment of the convergence rate.
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Figure 9: Meshes of 3-nodes triangles with linear interpolation (top: monomodel simulations
with 1,696 and 1,644 DOFs; bottom: multimodel approach with a same global mesh with 505
DOFs and two local meshes with 1,016 and 944 DOFs, witdh of the gluing zone ec

12 = 5 mm)
and the zone of interest delimited by a red line

The four first PGD modes generated by the algorithm for each geometry are
presented in Figure 10 whereas Figure 11 shows the upper-left quarter of the
plate in order to study the zone of interest around the hole at t = T/4. One can
notice a very good agreement of the Mises stress obtained by the monomodel
and the multimodel approach.

Figure 10: Four first PGD modes for local model 2 {Λk
2}k=1...4, top: for the round hole;

bottom: for the square hole, (using the symmetry, only the upper part is represented herein.

4.2. Gamma-shaped structure

The second example consists of a Gamma-shaped structure with four dif-
ferent geometries in the inside corner, presented in Figure 12. The overall
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Figure 11: Influence of local geometrical details by embedding local reduced models (Mises
stress at t = T/4; top: monomodel approach; bottom multimodel simulation)

dimensions are 100 mm × 100 mm. As in the previous example, no body force
f is considered, but a sinusoidal-cycle linear force F with an amplitude of 5
MPa is prescribed on the right side. The time interval I = (0, T ) with T = 1 s
is discretized using 100 time steps. The material is linear elastic and isotropic
with a Young modulus E = 210 GPa and a Poisson coefficient ν = 0.3.

The same procedure than for the previous case is followed and Figure 13
shows that the various local patches can be embedded in the simulation to
study the influence of different shapes and, for example, chose a design which
satisfies some prescribed conditions such as the limit of elasticity.

5. Conclusion

In this paper, we investigated the coupling of reduced models for the simula-
tion of structures involving localized geometrical details. For that purpose, we
used the Arlequin method to setup a convenient framework to deal with mul-
timodel problems and the LATIN strategy to solve the models independently.
This approach allows a very flexible solution of the initial problem. Indeed,
different codes can be used to solve the various models and different approaches
can be mixed. Herein, the idea was to use the Proper Generalized Decompo-
sition to reduce the computational cost of the models and the promising first
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Figure 12: Gamma-shaped structure with different designs in the inside corner (the zone of
interest is delimited in red)

numerical results presented in this work show the potential of the approach.

The aim of this first work was to assess the feasibility of the technique
and its flexibility, that is why no deep study of the computational gains has
been performed, which is the purpose of further works in progress. One of the
advantages of the approach is that it permits to use different PGD solvers, ded-
icated to the specificities of the models that are considered (linear/nonlinear,
deterministic/stochastic, atomistic/continuum ...). The coupling of elastic and
viscoplastic reduced-order models (following [10]) to capture the nonlinear be-
havior of material in specific zones is currently under investigation.

In the previous numerical examples, the reduced-order bases corresponding
to the two models are built along the iterations of the LATIN algorithm. An
interesting approach, that will be investigated in the next future concerns the
coupling of different models, some of which being precomputed and stored as
PGD modes in a library. This would allow to increase the performances of the
strategy and to optimize an industrial structures by exploring the influence of
various designs. In that context, some questions will need to be answered such as
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Figure 13: Influence of the local geometrical details by embedding local reduced models (Mises
stress at t = T/4)

the choice of the coupling zone or of the loadings during the offline construction
of the library.
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[14] D. González, I. Alfaro, C. Quesada, E. Cueto, F. Chinesta, Computational
vademecums for the real-time simulation of haptic collision between non-
linear solids, Computer Methods in Applied Mechanics and Engineering
283 (1) (2015) 210–223.
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