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Abstract

This paper presents a first attempt at obtaining a reusable and scalable model of buildings. To this end, a university

building is first modeled using EnergyPlus, an energy simulation software. The EnergyPlus model is then validated using

measured temperatures in the university building. In a second part, the EnergyPlus model is used to generate informative

input/output data to perform system identification techniques: a black-box model of the building is obtained. Using

simulation experiments, it is showed that the structure of the black-box model can be used to model the building at

different scales: a thermal zone, a floor or the whole building.
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1. Introduction

The building sector is a greenhouse gases emitter and

the largest consumer of energy among all economic sectors.

In 2010, it was responsible for 40% of global CO2 emissions

and accounted for about 41% of primary energy consump-

tion in the United States (US) [1]. In France, the building

sector is representing 44% of the total energy consumption

(in 2011); it has increased by almost 25% over the last 20

years [2]. Hence, reducing the energy consumption in the

building sector can significantly contribute to the diminu-

tion of the power consumption and the greenhouse gases

emission.

Currently, a popular approach to save energy in build-

ings is the application of model predictive control (MPC)
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strategies to the building automation systems or to some

of their parts (see [3, 4, 5] for example). To obtain on-line

predictions, the MPC strategy relies on an internal model

of the process to be controlled. The dynamic model used

to perform the predictions is thus of great importance. The

numerous modeling approaches that have been considered

can be classified into three categories.

• White box modeling: in this approach models are

built using a priori knowledge about the system and

thermal balance equations. These models are often

obtained through energy simulation softwares like

EnergyPlus [6], TRNSYS [7], etc.

• Black box modeling: usually constituted of differen-

tial or difference equations, these models are obtained

using measured input/output data and statistical es-

timation methods (see e.g. [8, 9]). No a priori knowl-

edge is needed in this approach, but input/output

data of high quality is usually needed to get accurate

models.
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• Grey box modeling: a mix of the first two categories.

Models are obtained using input/output data as well

as some a priori knowledge on the system. A popular

grey-box model is the equivalent RC networks (see

[10, 5, 11] for example).

This work is a part of the RIDER project [12], whose

objective is to improve energy efficiency of buildings and

groups of buildings while preserving the thermal comfort of

the occupants and/or other (economic) criteria. The use of

MPC is in this case natural; a model of the thermal zones

is thus needed. The nature of the RIDER project imposes

two constraints on the modeling procedure.

First, the developed modeling procedure should ideally

be applicable to different buildings. White box and grey

box models are thus not appropriate: since they use a priori

knowledge on the building, the procedure would not be

applicable to different buildings without many changes. In

order to obtain a reusable modeling procedure, black-box

models have thus to be used.

In addition, the developed methodology should be ap-

plicable at different scales: from a single thermal zone to

a whole building made up of several thermal zones. As a

consequence, the structure of the black-box model should

be complex enough to adapt to the various scales.

The work presented in this paper begins to explore

the feasibility of this problem by studying the modeling

of an university building. First, one has to get a deep

knowledge on the building thermal behavior with respect to

various excitation signals. This is achieved by modeling the

building using the energy simulation software EnergyPlus;

the second section details how this model was obtained

and validated (see also [13]). Note that the EnergyPlus

model is not a part of the modeling procedure: it is only

instrumental in developing the modeling procedure. In

the third section is explained how this EnergyPlus model

is used to generate rich data and obtain a generic and

scalable model using system identification. Finally, in the

last section the results are presented and discussed.

Figure 1: Photograph of the two floors building under study and the

corresponding Google Sketchup mock-up.

2. Modeling using EnergyPlus

2.1. Building geometry and materials

The university building under study (see Figure 1) was

built in 2008 and is home for the Renewable Energy de-

partment of the engineering school Polytech Montpellier.

It is located in the city of Perpignan (southern France)

and consists of two floors with almost the same geomet-

ric configuration (see Figure 2). Each floor has an area

of 257.45m2; the total floor area of the building is thus

514.9m2.

The ground floor is divided in five thermal zones: two

classrooms, a space for students, an office, a corridor and

toilets. The first floor is identical, except that the student

space and the office have been gathered into a media class-

room. The glazing installed is a double glazing constituted

by two clear glasses of 4mm and a 12mm air space between.

Each window has an outside blind covering all of its glazed

part. The blinds consist of flat, equally-spaced slats in

PolyVinyl Chloride (PVC).
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Figure 2: Ground floor (left) and first floor (right) with HVAC and temperature sensors’ location. Blue squares are indoor temperature sensors

and green spots are sensors measuring temperature at air duct outlets.

2.2. HVAC system

The HVAC system is a Hitachi Variable Refrigerant

Flow (VRF). An external condensing unit is connected to

several air handling units. As a result, the refrigerant flow

can be varied either by using an inverter controlled variable

speed compressor or by using more than one compressor.

The heat or cold production is performed by two outside

condensing units (simultaneous cooling and heating is not

allowed). These air to air heat pump units are part of

a ventilation group, consisting of one or two double inlet

centrifugal aluminium impellers. The indoor units are man-

ually controlled by thermostats in each room. There are

three air flow speeds: 16, 15 and 13m3/min. Finally, there

is a mechanical ventilation that operates during activity in

classrooms and permanently in restrooms.

2.3. EnergyPlus model

The modeling of the building and its HVAC system is

made with EnergyPlus, a building energy simulation soft-

ware created by the US Department of Energy [6]. The vir-

tual architecture of the building is created with the Google

Sketchup 3D design software (see Figure 1), and is linked to

EnergyPlus using the Legacy OpenStudio Sketchup plug-in

[14]. Building architecture informations come from the ar-

chitect book, and some thermal parameters (conductivity,

specific heat, . . . ) come from ASHRAE’s book [15]. As

for the HVAC VRF system, its characteristics are derived

from similar equipment found in [16].

2.4. Instrumentation

In order to validate the EnergyPlus model, compar-

isons between simulated and measured data have to be

made. The building has been instrumented with tem-

perature sensors wire-connected to a data archiver, that

transmits measures to a central server in the building by

radio protocol for storage and real time treatment. The

sensors have been placed at ceiling level and acquire data

with a five minutes time step. Figure 2 presents the two

stories building plans along with the HVAC system and

the temperature sensors location. Figure 3 presents the

instrumentation and transmission architecture.

2.5. Meteorological data

The weather data has been provided by ‘MeteoFrance’

(MF) [17]. The meteorological station is located in Perpig-

nan’s airport, 10 km from the studied building. The main

parameters needed to create a weather file for EnergyPlus

are atmospheric station pressure (Pa), dew point temper-

ature (◦C), dry bulb temperature (◦C), global horizontal
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Figure 3: Instrumentation and data transmission architecture.

radiation (W/m2), precipitable water (mm), relative hu-

midity (%), visibility (km), wind direction (◦), wind speed

(m/s), direct normal radiation (W/m2), diffuse horizontal

radiation (W/m2).

All these data are measured with a hourly time step ex-

cept for the direct normal and diffuse horizontal radiations,

which are not measured but reconstructed using global

horizontal radiation and the Erbs model [18], following the

conclusion in [19].

2.6. EnergyPlus model validation

The validation is made in two steps: the model of

building envelope is first validated (the HVAC system being

switched off), then the complete model of the building with

the HVAC in heating mode. The validation is realized

during holidays (respectively summer and winter), so that

no activity or internal gain are perturbing the results.

In the Figure 4 and Figure 5, the black curve repre-

sents the measured indoor temperature while the magenta

curve represents the simulated indoor temperature using

EnergyPlus; the bottom subplot represents the outdoor

temperature from MF. Perceptible discontinuities on mea-

sured indoor temperature come from missing data due to

sensors or server failures.

During 2012 summer test (Figure 4), curves have glob-

ally the same variations, except for two periods: around

June 24th in media room, and between June 30th and July

2nd in classroom 11; these rooms were actually occupied

by students and a council meeting during these periods:

the air conditioning was on. Although the amplitude of the

variations seems to be higher for the simulated temperature

than for the measured one, the model is rather satisfying.

The standard deviation of the difference between simulated

and measured temperatures is less than 1 ◦C .

Using 2012 winter’s data and turning on the heating

system, it becomes possible to validate the model of the

building and its HVAC system (Figure 5). One can see

that there is a good agreement between simulation and

measures, with similar variations, coming from air turbu-

lence at ceiling level (exhaust and return air). With a

standard deviation of roughly 0.65 ◦C between simulated

and measured data, the EnergyPlus model with HVAC

system gives satisfying results.
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Figure 4: Classroom 11, media room and outside air temperatures

during summer period with the HVAC system switched off.

3. Modeling procedure using system identification

System identification is the field of modeling dynamic

systems from experimental data (see [20, 21] for details).

The modeling procedure is as follows (see Figure 6); for

each thermal zone that is to be modeled:

1. collect input/output data;

2. estimate the parameters of the black-box model;
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Figure 5: Classroom 12, media room and outside air temperatures

during winter period with the HVAC system switched on.

3. validate the obtained model.

The identification of black-box models relies exclusively

on input/output data. However, data collected from real

operation of a building are usually insufficiently informative

to reliably estimate the model [22]: the persistence of

excitation condition (see [20] for example) is hardly met

in these conditions. The idea is then to use EnergyPlus in

order to generate rich data, that will in turn be used to

identify the black-box model. This also allows to generate

data that would be hard or impossible to get from real

operation of a building.

However, the design of input signals in EnergyPlus is

made through the use of schedules, which is quite imprac-

tical if, say, a pseudo-random binary sequence (PRBS) is

to be generated. A solution to overcome this problem is

co-simulation, that is the integration of different software

components by run-time coupling [23].

3.1. Matlab and EnergyPlus interoperability

The Building Controls Virtual Test Bed (BCVTB) [24]

is a software environment that allows users to link together

Thermal

zone

Estimation

algorithm

Black box

model

Input signal

generation

u(t) y(t)

+
−

Step 1: collect I/O data

Step 2: system ident.

Step 3: model validation

Matlab

EnergyPlus

Figure 6: Modeling procedure using Matlab–EnergyPlus co-

simulation. u(t) is the input signal and y(t) the output signal.

different simulation programs for co-simulation. Here,

BCVTB is used as a middleware to couple EnergyPlus

with Matlab, along with MLE+ [25], which is a toolbox

providing a set of Matlab functions and classes for perform-

ing co-simulation with EnergyPlus.

The procedure is as follows: the input signals are de-

signed with Matlab and then fed to EnergyPlus; EnergyPlus

then simulates the output signals that are used to estimate

the model’s parameters using Matlab system identification

toolbox [26]; see also Figure 6.

3.2. Model structure

A state-space representation, more suitable for modeling

MIMO systems, has been chosen. In innovation form, it is

given by (see e.g. [20]):

x(t+ 1) = Ax(t) +Bu(t) +Ke(t) (1)

y(t) = Cx(t) +Du(t) + e(t) (2)

where u(t) is the input vector, y(t) the output vector, e(t)

the disturbance and x(t) the state vector. The order of

the state-space model and the coefficients of the state-

space matrices A, B, C, D and K are estimated using

input/output data and system identification techniques.

5



The input vector u(t) contains three signals: outdoor

temperature, direct normal solar radiation and HVAC

power in the considered thermal zone. These are the main

signals influencing indoor temperature. Although several

additional inputs can be considered, only these three sig-

nals have been considered to keep the model simple. The

output y(t) is the indoor temperature in the considered

thermal zone.

3.3. Design of experiments

A caveat in black-box model identification is that the

input/output data have to be informative enough for the

model be to reliable. In particular, the input signal almost

always violates the persistence of excitation condition (see

e.g. [20]) during the normal operation of a building [22].

However, thanks to the Matlab/EnergyPlus co-simulation,

suitable inputs can be designed in Matlab and fed to Ener-

gyPlus to get the output signal.

A common input signal for system identification is the

Pseudo-Random Binary Signal (PRBS): it is a periodic,

deterministic signal with white-noise-like properties [20].

In the input vector u(t), only the heating/cooling power

of the HVAC system is controllable. However, in Energy-

Plus, there is currently no way of controlling heating or

cooling power directly; the solution is then to control the

indoor temperature heating and cooling setpoints, which

act directly on the HVAC power. In order to ensure that

the HVAC power follows the setpoint PRBS as closely as

possible, the binary levels of the PRBS are set to 5 ◦C and

30 ◦C: the HVAC should thus either be on at full power,

or completely off.

The EnergyPlus model is excited during 36 days (from

the 6th of December 2012 to the 11th of January 2013), with

a time-step of 10 minutes. Some of the generated data for

one thermal zone can be found in Figure 7, where the input

signals (direct normal solar radiation, HVAC power and

outdoor temperature), the output signal (indoor ambient

temperature) and the indoor temperature heating setpoint

are plotted. One can see that, as expected, the indoor

temperature never reaches the setpoints and the HVAC

power follows the PRBS rather closely. One can also notice

that during the considered period, the weather is varied

(sunny and cloudy days, low and high outdoor temperature,

etc.), which means more information to construct the model

than if there were only warm and sunny days.

3.4. Order and parameters estimation

The model order can be estimated using input/output

data; tests have consistently showed that a second order

model is sufficient to model the dynamics of the indoor

temperature (see also the discussion in [22]). The model

order has thus been set to two for all the models considered

in the sequel.

In order to assess the scalability of the model structure

(a state-space model of second order), several models have

been identified:

• first, each room of the building is considered as a

thermal zone separately;

• then the case of each floor as a unique thermal zone;

• finally, the complete building as a unique thermal

zone.

Each time, the considered thermal zone is excited using

the same PRBS to control the heating setpoints, while the

other thermal zones are left drifting. The system matrices

A, B, C and D are determined using the prediction-error

method in the system identification toolbox of Matlab. The

general idea of prediction error methods is as follows (see

also Fig. 8):

1. use the model, whose parameters are collected in

a vector θ, to compute a prediction ŷ(t, θ) of the

output;

2. compute the prediction error ε(t, θ) = y(t)− ŷ(t, θ);
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Figure 7: Part of generated data for classroom 01. Top plot: indoor temperature, outdoor temperature and temperature setpoint. Middle plot:

heating power. Bottom plot: direct normal radiation.

3. determine the parameter vector θ that minimize some

norm (usually quadratic) of the prediction error:

θ̂ = arg min
θ

[∑
t

`(ε(t, θ))

]
(3)

In the end, one model for each thermal zone is obtained.

The models have the same structure, but the value of their

parameter vector θ is different (to account for their different

thermal characteristics).

4. Results and discussion

The generated data is divided in two sets: the first

two-thirds are used to estimate the model’s parameters,

while the last third of the data is used to validate the

identified models. The parameters of nine distinct models

are estimated:

System

Predictor with

adjustable param. θ

u(t) y(t)

+

−

ŷ(t, θ)

Algorithm for minimizing

some norm of ε(t, θ)

ε(t, θ)

Figure 8: Schematic of the prediction error method.

• four thermal zones on the ground floor;

• three thermal zones on the first floor;

• the first floor as one thermal zone;
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• the whole building as one thermal zone.

Models’ quality is evaluated using the normalized root

mean square error fit value, defined as:

fit = 100

(
1− ‖y − ŷ‖2
‖y −mean(y)‖2

)
(4)

where y is the validation data and ŷ is the output of the

model. In addition to pure simulation (infinite prediction

horizon), the ability of the identified model to predict

indoor temperatures is tested on three prediction horizons:

24 h, 12 h and 3 h.

Figure 9 presents the comparison between the valida-

tion data and the temperature simulated using the models.

For the sake of space, only four plots are printed (results

are similar for the other zones) and only for pure simula-

tion. The fit values for all the nine models using different

prediction horizons can be found in Table 1.

It can be seen on Figure 9 that the model structure is

complex enough to account for the different scales: whether

it is a single thermal zone, a floor or the building as a whole,

the ability of the models to simulate and predict the indoor

temperature is satisfying (see Table 1).

Fit in %

Prediction horizon ∞ 24 h 12 h 3 h

Classroom 01 88 90 89 90
Classroom 02 79 84 86 89
Student space 78 85 88 91
Office 80 88 90 91
Media room 89 91 92 93
Classroom 11 90 91 91 92
Classroom 12 84 87 89 91

First floor 88 90 92 93

Whole building 89 90 91 92

Table 1: Fit between validation data and the output signal of the nine

models for pure simulation and different prediction horizons (values

are rounded to the nearest integer).
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5. Conclusion and perspectives

In this paper, procedure for modeling a building and its

thermal zones has been developed, using a black-box model.

System identification techniques have been applied to rich

input/output data generated using co-simulation between

EnergyPlus and Matlab. The black-box model structure,

a state-space dynamical model of second order, has been

shown to be scalable: the identified models of rooms, floors

and the building as a whole exhibited rather satisfying

prediction of indoor temperature of the considered thermal

zones.

Future work will assess the reusability of the modeling

procedure by applying it on several types of buildings

with different heating and cooling systems, and in different

locations. Also, a study will be be conducted in order to

determine an excitation signal that is sufficiently exciting,

while also being easily applicable on a real building; the

modeling procedure will then be applied to a real building

without recourse to an energy simulation software.
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