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Abstract: This paper deals with an intra-day Direct Normal Irradiance (DNI) forecasting
methodology under clear sky conditions, for time horizon varying up to 5 h. The goal is to
evaluate the variability and the needs of forecasting models under such conditions. It is a part of
a project which aims to forecast the DNI under various sky conditions at short term horizon and
high spatial resolution. A quick review of the clear sky DNI modeling is firstly performed. Then,
the database selection and filtering process is described. Finally, the forecasting approaches
are presented and compared to persistent models used as references. The most efficient model
presented here is based on adaptive network-based fuzzy inference systems and the optimal
configuration achieves very good forecasting results and validates the proposed methodology.
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1. INTRODUCTION

In a context of sustainable development, clean energy sys-
tems are strongly promoted in the European energy mix.
Among the various solar energy systems, the Concentrat-
ing Solar Power (CSP) systems will play a key role in the
future [Agency, 2010]. At this stage, the main drawback of
this technology continues to be its cost. To overcome it, the
European research project CSPIMP (Concentrated Solar
Power plant IMProvement) has been recently initiated.
Its main target is to achieve a better competitiveness of
the CSP plants thanks to the development of new tools
improving steam turbine start up cycles, maintenance ac-
tivities and plant control.
One challenge of the project is to better forecast the sun’s
resource. Indeed, it is widely acknowledged by producers
and grid operators that solar energy variability strongly
influences the CSP systems output. Therefore, Direct Nor-
mal Irradiance (DNI) forecasting would help them to ef-
ficiently schedule and manage the electricity production
according to the grid needs. Different solar irradiance
forecast methodologies have already been developed for
various time horizons [Diagne et al., 2013]. Changes in the
DNI are mainly affected by clouds motion, which can be
detected using sky camera or satellite imagery [Mefti et al.,
2008] [Zaher, 2012] [Chow et al., 2011] [Marquez and Coim-
bra, 2013] [Cazorla et al., 2008]. When there is no clouds,
however, the atmospheric turbidity, mainly attributable
to the Aerosol Optical Depth (AOD), is known to be
the driving factor [Gueymard, 2012b]. As a consequence,

it has been decided to split the DNI forecasting in two
different blocks: the cloud cover forecasting and the DNI
forecasting under clear sky conditions. It is expected that
this methodology would lead to more accurate forecasts
than a global model. In this paper, only the clear sky DNI
forecasting at different short-time horizons is studied.
First, a quick review of the atmospheric turbidity coeffi-
cients is introduced. It especially explains the choice of the
model used according to our forecasting needs. The second
part briefly describes the database used for our models as
well as the multi-resolution analysis performed to extract
the clear sky data. The next part focuses on the different
models developed, based on the generated historical data
of atmospheric turbidity. Then models are compared and
discussed. The paper ends with a conclusion and outlook
on further work.

2. CONSIDERATIONS ABOUT ATMOSPHERIC
TURBIDITY

Under clear sky conditions, the broadband DNI (ICS) is
equal to the solar constant (I0 = 1367W/m2) weighted
by the sun-earth distance correction factor (r) and the
atmospheric transmittance (T ) resulting from both scat-
tering and absorption of the sunlight. The equation can be
expressed as follows:

ICS = rI0T (1)
The knowledge of the clear sky atmospheric transmittance
is thus required to assess the amount of direct solar energy
reaching the ground. This attenuation factor T is corre-



lated to the band transmittances of Rayleigh scattering
(TRa), uniformly mixed gases absorption (Tg), ozone ab-
sorption (TO3), nitrogen dioxide absorption (TNO2), water
vapor absorption (Tw) and aerosol absorption (TAOD) as
follows [Gueymard, 2008]:

T = TRaTgTO3TNO2TwTAOD (2)
All these transmittances are function of the sunlight opti-
cal path length (m) through the atmosphere, also called air
mass. Information regarding to these atmospheric attenu-
ation coefficients can be obtained using radiation transfer
models based on site pressure, ozone amount, total ni-
trogen dioxide amount, precipitable water and Ångström
turbidity coefficients as inputs parameters.
Among all clear-sky broadband radiation models of the
literature, REST2 [Gueymard, 2008] has proven to predict
DNI with unsurpassed accuracy [Gueymard and Myers,
2008] [Gueymard, 2012a]. However, the model requires
AOD data which happens to be highly variable in both
space and time, as well as difficult to measure [Gueymard,
2012b]. As a consequence, this model is not well adapted
for on-site real-time clear sky DNI forecasting.
On the other hand, simpler models, based on a turbidity
coefficient like the well-known Linke turbidity coefficient
[Linke, 1922], have been developed. Although they have a
lower accuracy than radiation transfer models, they have
been widely used by the scientific community because they
only derive from broadband beam radiation measurement
networks and can thus be easily implemented.
The Linke turbidity coefficient represents the number of
clean dry atmospheres leading to the observed attenuation
of solar radiation. For instance, the average Linke turbidity
is close to 3 in most parts of Europe whereas it can grow
up to 6 or 7 in polluted cities. Although this coefficient
is easy to calculate, one of its main drawbacks is its
strong dependency on air mass [Kasten, 1988] [Grenier
et al., 1994] [Kasten and Young, 1989]. That is why, in
2002, Ineichen and Perez proposed a new formulation
of the Linke turbidity coefficient in order to limit this
turbidity dependence upon solar geometry [Ineichen and
Perez, 2002]. They obtained a new empirical formulation of
the broadband atmospheric transmittance for the normal
beam clear sky radiation:

T = f(m, TLI) = b. exp [−0.09 ·m(TLI − 1)] (3)
It can be noticed that the transmittance presented in (2)
includes the effects of both scattering and absorption phe-
nomena. This equation matches with the Linke turbidity
coefficient at air mass 2 (f(2, TLK) = f(2, TLI)) and is
also corrected by a multiplicative coefficient b taking into
account the altitude (alt) of the considered site:

b = 0.664 + 0.163
exp (−alt/8000) (4)

From (1) and (3), Ineichein obtains a new turbidity coeffi-
cient that proves to have a much better stability than the
previous one:

TLI(t) = 1 +
[

11.1
m(t) · ln

(
b · r(t) · I0

ICS(t)

)]
(5)

Because this coefficient can be easily derived from broad-
band beam radiation measurements, it has been selected
as a starting point for the development of our intra-day
clear sky DNI forecasting model.

3. DATA PRE-PROCESSING

The database used to develop and validate the different
proposed DNI forecasting models is derived from data col-
lected at the National Renewable Energy Laboratory, lo-
cated in Golden, Colorado, USA. Data are freely available
at http://midcdmz.nrel.gov/apps where an exhaustive set
of meteorological parameters and irradiances are collected
and stored since July 1981. In our study, only data ranging
from 2002 to 2013 have been considered. Using (5), the
following data have been collected:
• Timestamp
• Air mass (m)
• Extraterrestrial irradiance (I0)
• Direct Normal Irradiance (I)

Different families of wavelets may be chosen for analyzing
sequences of data points. The main criteria are (a) the time
and frequency localizations, quantified by the speed of con-
vergence to 0 of these functions when time and frequency
goes to infinity, (b) the symmetry, (c) the number of van-
ishing moments of the mother wavelet and (d) the regular-
ity, useful for getting nice features, like smoothness of the
reconstructed signal. The most commonly used wavelets
are the orthogonal ones (Daubechies, Symlet or Coiflet
wavelets). Because the Daubechies wavelets [Daubechies,
1992] have the highest number of vanishing moments, this
family has been chosen for carrying out the wavelet-based
multi-resolution analysis of the considered data sequences.
The impact of both the decomposition level and the
wavelet order on the algorithm performance has been
studied [Nou et al., 2013] and the optimal configuration
chosen is a decomposition of level 3, using 4th-order
Daubechies wavelets. pas clair à partir de là, D3 non
défini, etc. Clear sky data were selected by thresholding
the detail D3 and removing the low I values from the
database. The clear sky irradiance threshold has been
set to 150W/m2 because this value refers to the typical
minimum solar irradiance usable for CSP plant. With
this selection, only full clear sky days were selected.
Indeed, full days allow keeping the transient behavior of
the turbidity, which is essential in our forecasting model.
Finally, a temporal smoothing, using a moving average of
40 minutes, was applied on these selected days in order to
remove the last outliers.
From these selected days, the turbidity is computed using
(5). The final database specifications are reported in Table
1.

Table 1. Database specifications.

Description Value

Latitude 39.74N
Longitude 105.18W
Altitude 1829m
Number of selected clear sky days 156
Range 2002–2013
Yearly mean turbidity 2.37
Distribution [Spring Summer Autumn Winter] [22 45 53 36]



4. MODELS

Different models have been developed and compared for
forecast horizons varying from 30 minutes to 5 hours. The
first category of models is based on the daily, monthly
and yearly mean turbidity values. This approach allows to
evaluate the gain of accuracy obtained from a yearly at-
mospheric turbidity coefficient to a daily one. The second
category consists in two simple persistent models. They
are used to validate the last category of models which is
based on neuro-fuzzy systems. The different approaches
are presented Figure 1.
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Fig. 1. Overview of the developed models.

4.1 Mean turbidity-based models

It is known that atmospheric turbidity has seasonal trends.
The turbidity is higher in summer than in winter, be-
cause of a higher concentration in aerosol. Consequently,
we decided to estimate the error between the clear sky
irradiance measured and the irradiance calculated using
the yearly, monthly and daily mean turbidity. These errors
will also be used as reference for the next models. However,
it is important to notice that these models cannot be
considered as forecasting models because they only depend
on the mean turbidity value. Thus, the error does not vary
with time horizon. Figure 2 summarizes the mean values of
turbidity through the year using the collected database. As
expected, a seasonal trend of the turbidity can be observed
with a peak during summer time. The yearly mean turbid-
ity is averaged from the monthly mean turbidity whereas
the daily mean turbidity comes from a linear interpolation
of the monthly mean turbidity. According to (1) and (5),
the expected clear sky irradiance of the collected days can
be calculated as follows:

ICSk
(t) = r(t) · I0 · f (m(t), 〈TLI〉k) (6)

where k = {Year, Month, Day}.

4.2 Persistent models

Two persistent models have been also tested on the
database. The first one considers the DNI constant be-
tween the present and the forecast horizon whereas the
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Fig. 2. Yearly, monthly and daily mean turbidity values

second one considers the turbidity as a constant during the
same elapsed time. Although the first persistent model is
not expected to give good results, we compute it in order
to highlight the relevancy of the turbidity coefficient use.
Irradiance for both models can be expressed as follows:

ICSp1(t + ∆t) = ICS(t) (7)
ICSp2(t + ∆t) = r(t + ∆t) · I0 · f (m(t + ∆t), TLI(t)) (8)

4.3 ANFIS models

The new approach developed in this paper is based on AN-
FIS (Adaptive Network-Based Fuzzy Inference Systems)
techniques. In the field of artificial intelligence, neural
networks and fuzzy logic can be combined in neuro-fuzzy
systems in order to achieve both properties of readability
and learning ability. Neuro-fuzzy systems synergizes the
two techniques by combining the human-like reasoning
style of fuzzy systems (through the use of fuzzy sets and a
linguistic model consisting of a set of if-then fuzzy rules)
with the learning and connectionist structure of artificial
neural networks [Lin and Lee, 1996] [Abraham, 2005].
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Fig. 3. The two ANFIS forecasting approaches

The first model (Fig. 3.a), is composed of ten different
blocks, each one giving a forecast at a specific time horizon
(varying from 30 minutes to 5 hours). To obtain the
forecasted turbidity (TLI(t + ∆t)), the inputs considered
for each block are: the day of the year DOY , the minutes
of the day MOD) and the atmospheric turbidity TLI(t).



The second model (Fig. 3.b), consists of a single block
giving forecasts at a multiple of 30 minutes. The output
of the block is re-injected into the input until the desired
time horizon is reached. A criterion has been considered for
evaluating the performance of the models: the Normalized
Root-Mean-Square Error (NRMSE).

5. RESULTS

This section is organized as follows: first, we present the
constraints upon the model regarding to clear sky DNI
forecasting. Then the optimization of the ANFIS models
is described. Finally, we compare the optimized models
we propose with the standard models presented in the
previous section of the paper.

5.1 Forecasting issues

The main drawback of the clear sky DNI forecasting
remains the discontinuity of data due to nights and cloud
events. As mentioned above, we only save the full clear
sky days in order to keep the transient behavior of the
atmospheric turbidity through the day. However, such
days are rarely one after the other. It prevents models
to get information from previous days and so, only the
information of the current clear sky dat is available. It
strongly limits the potential of our forecasting model.
Indeed, the first turbidity value is obtained after sunrise
and so the first clear sky DNI forecast is available at sunrise
plus horizon. For instance, if sunrise occurs at 8:00 AM
and the forecast horizon is set to 5 hours, then the first
forecasted value will be available at 01:00 PM using a
persistent model. This is the main reason why models
based on mean values of turbidity (independent of time)
are so convenient. The goal of the ANFIS approaches is to
quantify the gain in accuracy reached by the forecasting
model as soon as intra-day forecasts are available. If this
approach is conclusive, a strategy will be implemented in
order to fill the gap produced by nights and clouds in the
frame of a real-time processing system.

5.2 ANFIS optimization

A parametric study dealing with forecasting accuracy, for
both the side-by-side and the single-block ANFIS, has
been performed. The goal is to optimize the structure
of the neuro-fuzzy systems used in order to get the
lowest possible NRMSE along the forecast horizon. Among
the possibilities of optimization, the number of previous
observations to be considered, the number of fuzzy sets
used to split the universes of discourse of the model inputs
and the number of training examples have been optimized.
Results are reported below.

Side-by-side ANFIS. Because of the structure of the
model, it is not relevant to consider more than one previous
observation. Indeed, it has been seen before that forecasted
values are not available while the fixed horizon is not
elapsed. Two previous observations to be considered and
a 5-hour forecast horizon would lead to forecasted values
available 10 hours after the sunrise time, which is not
realistic. In addition, the way the universes of discourse
are partitioned into fuzzy sets is optimized. The side-by-
side ANFIS are composed of 3 inputs each and Gaussian

membership functions are associated to the sets. It has
been decided to consider 2, 3 and 4 fuzzy sets for each
block input, what leads to 27 possible configurations. Fig. 4
shows the NRMSE we obtained for each configuration and
a forecast horizon varying from 1 to 5 hours. From this
graph, it can be noticed easily that only the number of
fuzzy sets used to split the universe of discourse of the
first input (DOY, the Day Of the Year) impacts accuracy
in a significant way. As a consequence, we decided for two
fuzzy sets for MOD (the Minute Of the Day) and TLI in
order to limit the complexity of the model.
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Fig. 4. NRMSE as a function of the number of fuzzy sets
used to split the universes of discourse

Regarding to the first model input (DOY), we considered
up to 7 fuzzy sets during the parametric analysis we carried
out. Results are reported in table 2. Due to the similar
evolution of NRMSE for each ANFIS block, only the block
dealing with a 5-hour forecast horizon is presented here.
As a key result, we found that 5 fuzzy sets is the most
suitable regarding to accuracy (about 3% for a 5-hour
forecast horizon). The benefits of a higher number of fuzzy
sets are insignifiant but compexity increases. As a result,
final configuration is [5 2 2].

Table 2. Fuzzy partition of DOY

Forecast horizon = 5h ; Configuration = [X 2 2]

X 2 3 4 5 6 7
NRMSE (%) 3.36 3.18 3.11 3.06 3.02 2.99

Once the optimal partition is found, one can search for the
optimal number of examples to be used during training.
Fig. 5 deals with the NRMSE as a function of the number
of training examples, on the basis of fuzzy configuration [5
2 2] and for forecast horizons of 1, 3 and 5 hours. Finally,
we decided for 10000 examples as the optimal number of
examples to be used during training. Additional examples
do not bring more usable information and, as a result,
accuracy is not improved significantly.

Single-block ANFIS. A similar optimization process has
been performed for the single-block approach. Because of
the structure of the ANFIS, the way observations impact
on accuracy can be considered. As previously highlighted,
the output of the model is used as an input at the next time
step, until the desired forecast horizon is reached. Using
this structure, the first forecasted value is obtained at the
same time than with the side-by-side ANFIS approach,
considering only one observation (TLI(t)), and 30 minutes



later when using two observations (TLI(t) and TLI(t −
30 min)). However, the constraints on our database (i.e.
discontinuities) as well as some divergence effects limit the
number of previous values one can consider to 3 (up to
TLI(t − 60 min)). Table 3 deals with the NRMSE as a
function of the number of observations and the number of
training examples, with fuzzy configuration [2 2 2].
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Fig. 5. NRMSE as a function of the number of examples
used during training
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Fig. 6. NRMSE as a function of the fuzzy configuration
(model inputs)

Table 3. NRMSE as a function of the number
of observations and training examples

Horizon 1 hour 3 hours 5 hours

Observ. 1 2 3 1 2 3 1 2 3

10000 2.12 1.98 2.29 3.04 3.12 X 3.76 3.94 X
20000 2.12 1.95 2.33 3.08 3.02 X 3.79 3.90 X
30000 2.13 1.96 1.93 3.02 3.04 X 3.78 3.94 X
40000 2.10 1.95 1.95 3.05 3.00 X 3.74 3.84 X
50000 2.11 1.95 1.93 3.07 3.02 X 3.80 3.94 X
60000 2.13 1.95 1.94 3.04 3.07 X 3.76 3.90 X
X: divergence

Taking a look at the results, one can note that an increase
in the number of observations do not improve accuracy
in a significant way. For a forecast horizon set to 1 hour,
accuracy is better when considering 2 observations (TLI(t)
and TLI(t − 30 min)) than only one. For longer forecast
horizons, accuracy is the best with only one observation
(TLI(t)) used as a model input. As a result, we decided for
only one observation when the forecast horizon is set to
5 hours. Regarding the number of examples to be used
during training, its impact on accuracy is insignificant
beyond 10000. So, we used 10000 examples to train the

system and optimize its parameters. Finally, as we did for
the side-by-side ANFIS, we optimized the partition of the
(inputs) universes of discourse. Taking a look at Fig. 6,
one can see that, in most cases, the fuzzy configuration
does not influence accuracy. As a result, we decided for
fuzzy configuration [2 2 2] in order to reduce as possible
the complexity of the model and the number of fuzzy rules.

5.3 Forecasting results and discussion

In this section, we compare the results we obtained using
the two neuro-fuzzy approaches with the results given
by the persistent models or the models based on the
calculation of mean values of turbidity. Fig. 7 and 8
summarize these results. The persistent model only based
on irradiance is not plotted here because error is to high
to be displayed: NRMSEp1 = 31% at t + 5 hours.
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Fig. 8. NRMSE as a function of the forecast horizon

As expected, the benefits in considering the atmospheric
turbidity is obvious: accuracy is increased of about 30% for
a 5-hour forecast horizon. One can highlight the stability
of the turbidity coefficient in comparison to the variability
of sun irradiance through the day. Regarding to the
mean turbidity coefficient, the MAE and NRMSE are
not related to the forecast horizon and we find that the
monthly mean turbidity significantly outperformed the
yearly one (18% of difference in NRMSE). This is due
to the seasonal trend depicted earlier. However, the daily
mean turbidity does not achieve much better results than



the monthly one (less than 0.5% of difference). It means
that there is no real benefits in interpolating turbidity
below the month scale. In other words, the intra-month
variability of turbidity is more influenced by the day-by-
day atmospheric phenomena than by the overall evolution
of the atmosphere through the year. Finally, the persistent
model based on atmospheric turbidity outperforms the
models using mean turbidity values even if at t + 5 hours
the MAE and NRMSE are close (difference is 0.6%).
Whatever the error criterion (MAE or NRMSE), the
side-by-side ANFIS give the best forecasting results. The
single-block ANFIS is almost equivalent to the side-by-
side ANFIS if we consider the MAE only: 20W/m2 (side-
by-side ANFIS) vs. 24W/m2 (single-block ANFIS) at t +
5 hours. However, it gives similar results as the Persistent
Model 2 (PM2) when considering the NRMSE: 4.05%
(PM2) vs. 3.72% (single-block ANFIS) at t + 5 hours.
It means that the single-block ANFIS produces clear sky
DNI forecasting with a higher accuracy than the persistent
model (MAE is lower) but with more outliers values than
the side-by-side ANFIS (NRMSE is higher). To conclude,
among the seven modelling approaches we tested, the side-
by-side ANFIS model appears to forecast the clear sky DNI
with unsurpassed accuracy (NRMSE = 3%).

6. CONCLUSION

The error calculated between the measured DNI and the
expected ones, using a daily mean value of the turbidity
(NRMSE〈Day〉 = 4.5%), encouraged us to develop intra-
day forecasting models of the clear sky irradiance. As a
consequence, two different approaches based on Adaptive
Network-based Fuzzy Inference Systems (ANFIS) have
been developed in this paper in order to forecast clear sky
DNI for a horizon varying from 30 minutes to 5 hours. Both
approaches outperformed the persistent models. The side-
by-side ANFIS provided the best results. However, this
model is hard to implement because of its structure. In-
deed, an ANFIS block has to be developed and optimized
for each forecast horizon. On the other hand, the single-
block ANFIS has the huge advantage to be less complex,
easier to optimize and more easily adaptable to different
time scales. Nevertheless, it produces slightly less accurate
estimates than the side-by-side ANFIS, even if results re-
main better than those produced by the persistent models.
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