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Abstract: In this paper the modeling of buildings thermal behavior is studied. The main goal
is to develop a modeling procedure that can be used at different scales (a thermal zone, a floor
or a whole building) and on different buildings. The scalability of the chosen black-box model
structure is first assessed; simulation experiments are then conducted in order to test if the
modeling procedure is reusable. As these tests are hardly feasible in practice, a real university
building is first modeled using an energy simulation software. This model is then used to validate

the proposed approach.
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1. INTRODUCTION

As the building sector is the largest consumer of energy
among all economic sectors and a greenhouse gases emitter,
its energy consumption has to be reduced. A way of doing
so, and a popular research subject, is the application of
model predictive control (MPC) strategies to the building
automation systems (see [Freire et al., 2008, Kolokotsa
et al., 2009, Siroky et al., 2011]). The dynamic model used
to perform the predictions is of great importance and three
categories regroup the numerous modeling approaches that
have been considered:

e white box models are based on physical knowledge of
the system and thermal balance equations: these are
often obtained through energy simulation softwares
like EnergyPlus [Crawley et al., 2001], TRNSYS [S.A.
Klein & al., 2010], etc;

e black box models use only measured input/output
data and statistical estimation methods (e.g. [Cigler
and Privara, 2010, Ferkl and Siroky, 2010]);

e grey box models, a mix of the first two categories:
they use input/output data as well as some a priori
knowledge on the system. A popular grey-box model
is the equivalent RC networks (see [Wang and Xu,
2006, Siroky et al., 2011, Bacher and Madsen, 2011]
for example).

This work is a part of the RIDER project [RIDER Project,
2010], whose objective is to improve energy efficiency of
buildings and groups of buildings while preserving the
thermal comfort of the occupants and/or other (economic)
criteria. The use of MPC is in this case natural. However,
since the developed methodology should be applicable to

* This work is a part of RIDER project, supported by a fund from
the Fonds Unique Interministériel (OSEO — Région Languedoc-
Roussillon).

different buildings, at different scales (from a single room to
a whole building) and in different locations, the main issue
becomes the model used to predict the thermal behavior
of the studied zone: it needs to be reusable and scalable,
while being simple enough to apply MPC. As a consequence,
the model’s structure should be complex enough to adapt
to the various scales and the use of a priori knowledge
should be avoided. Black box models are thus the most
appropriate.

This paper presents, in the second section, how an scalable
model of an university building has been obtained. The
building was modeled using the energy simulation software
EnergyPlus (see [Royer et al., 2013] for more details) and
rich data have been generated to obtain a scalable model
using system identification. In the third section, the generic
feature of modeling procedure is tested by applying it in
different locations and with another building.

2. STUDY OF A UNIVERSITY BUILDING

The studied building (see Figure 1) is a five years old uni-
versity building located in the city of Perpignan (southern
France). It is a two-storey building, with a total floor area
of 514.9m?2. The ground floor is divided in five thermal
zones: two classrooms, a space for students, an office, a
corridor and toilets. The first floor is identical, except that
the student space and the office are gathered into a media
classroom.

The HVAC system is a Hitachi Variable Refrigerant Flow.
The heat or cold production is performed by two outside
condensing units connected to several inside air handling
units (simultaneous cooling and heating is not allowed).

2.1 Inputs, outputs and informative experiments

The main signals influencing indoor temperature are:
outdoor temperature, direct normal solar radiation and



Fig. 1. Photography of the two floors building under study
and the corresponding Google Sketchup mock-up.

HVAC power in the considered thermal zone. Although
several additional inputs can be considered, only these three
signals have been considered to keep the model simple. The
output y(t) is the indoor temperature in the considered
thermal zone (see Figure 2). Note that, in this paper, it is
supposed that there are no internal gains; the reason is that
— at least within the RIDER project — it can be considered
as a known perturbation through a priori knowledge on
occupation (time tables) and equipment.

Outdoor

temperature

Heating or Thermal Indoor
cooling power zone temperature

Direct solar
radiation

Fig. 2. Three inputs / one output model of a thermal zone.

As it relies on input/output data only, the identification

of black-box models usually requires data of high quality.

This is mathematically expressed through the notion of
persistence of excitation (see e.g. [Ljung, 1999]): the input
signal must persistently excite the system under study, at
least in the frequency band of interest. As a consequence,
input signals such as filtered white noise or pseudo-random
binary sequences (PRBS) are commonly used.

Data collected from real operation of a building are usually
insufficiently informative to reliably estimate the model
[Privara et al., 2013]. Informative experiments have thus
to be designed. Among the various inputs affecting the
thermal behavior of a building, the only controllable input
is the heating/cooling system power; an input such as a
PRBS can be impossible, too long or even too expensive
to run. To overcome this problem, a model of the studied
building has been constructed using EnergyPlus [Crawley
et al., 2001], an energy simulation software. This model
will in turn be used to generate the informative data used

to perform system identification procedures. Note that an
energy simulation software is used in this work only as a
first step, to assess the feasibility of the problem and gain
insight on the minimal design of experiments. In future
work, no other model than the black-box model will be
used, since it defeats the purpose of not relying on physical
a priori knowledge on the studied thermal zone.

2.2 EnergyPlus model

A 3D model of the studied building has been created
from the building architect book (containing drawings,
dimensions, materials, ...) with the Google Sketchup
3D design software (see Figure 1). All geometry data
have been imported in EnergyPlus using the OpenStudio
plug-in; thermal parameters such as conductivity, specific
heat, etc. come from ASHRAE’s book [ASH, 2009]. The
HVAC characteristics are provided by the manufacturer
documentation book, except energy ratio curves which are
derived from similar equipment found in [Raustad, 2012].

The validity of this model has been confirmed using mea-
surements from installed sensors: the standard deviation
between measured and simulated temperatures is less than
1°C over a test period of one month with several types of
excitation and weather (see [Royer et al., 2013]).

2.8 System identification

EnergyPlus and Matlab co-simulation  The design of input
signals in EnergyPlus is made through the use of schedules,
which is quite impractical to generate a Pseudo-Random
Binary Sequence (PRBS) for example. Co-simulation, that
is the integration of different software components by run-
time coupling [Sagerschnig et al., 2011], is a solution to
overcome this problem. Co-simulation of EnergyPlus with
Matlab is done through a software environment called
Building Controls Virtual Test Bed (BCVTB) [Wetter,
2011], used as a middleware, and the toolbox MLE+ [Bernal
et al., 2012], which provides Matlab functions and classes.

The procedure is as follows: the input signals are designed
with Matlab and then fed to EnergyPlus; EnergyPlus then
simulates the output signals that are used to estimate
the model’s parameters using Matlab system identification
toolbox [Ljung, 2003].

Model structure A discrete-time state-space representa-

tion, more suitable for modeling MIMO systems, has been

chosen. In innovation form, it is given by (see e.g. [Ljung,
1999]):

z(t+1) = Az(t) + Bu(t) + Ke(t) (1)

y(t) = Cz(t) + Du(t) + e(t) (2)

where u(t) is the input vector, y(¢) the output vector, e(t)

the disturbance and z(t) the state vector. The order of

the state-space model and the coefficients of the state-

space matrices A, B, C, D and K are estimated using
input/output data and system identification techniques.

Design of experiments Pseudo-random binary sequences
is a common input signal in system identification: it
is a periodic, deterministic signal with white-noise-like
properties [Ljung, 1999]. The only controllable input of
the input vector u(t), is the heating/cooling power of the
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Fig. 3. Part of generated data for classroom 01. Top plot: indoor temperature, outdoor temperature and temperature
setpoint. Middle plot: heating power. Bottom plot: direct normal radiation.

HVAC system. However, in EnergyPlus, it is currently
impossible to directly control the heating or cooling; the
solution is then to control the indoor temperature heating
and cooling setpoints, which act directly on the HVAC
power. In order to ensure that the HVAC power follows
the setpoint PRBS as closely as possible, the binary levels
of the PRBS are set to 5 and 30 °C: the HVAC should thus

either be on at full power, or completely off. Moreover,

the cooling setpoint is set to 40 °C, avoiding the HVAC
system to switch in cooling mode. The EnergyPlus model
is excited with a time-step of 10 minutes, during 36 days
(from the 6th of December 2012 to the 11th of January
2013). Some of the generated data for one thermal zone can
be found in Figure 3, where the input signals (direct normal
solar radiation, HVAC power and outdoor temperature),
the output signal (indoor ambient temperature) and the
indoor temperature heating setpoint are plotted. One can
see that, as expected, the indoor temperature never reaches
the setpoints and the HVAC power follows the PRBS rather
closely. Variations are due to internal rules of EnergyPlus
regarding HVAC systems control. One can also notice that
during the considered period, the weather is varied (sunny
and cloudy days, low and high outdoor temperature, etc.),
which means more information to construct the model than
if there were only warm and sunny days.

Order and parameters estimation — Tests on the generated
data have shown that a second order model is sufficient
estimated to model the dynamics of the indoor temperature

(see also the discussion in [Privara et al., 2013|). Hence,
the model order has been set to two for all the models
considered in the sequel.

The chosen model structure is a state-space model of second
order, and to assess its scalability, several models have been
identified:

e first, each room of the building is considered as a
thermal zone separately;

e then the case of each floor as a unique thermal zone
(whose temperature is defined as the average of each
thermal zone temperature weighted by its volume);

e finally, the complete building as a unique thermal zone
(same as above).

Each time, the considered thermal zone is excited using
the same PRBS to control the heating setpoints, while the
other thermal zones are left drifting. The system matrices A,
B, C' and D are determined using the classical prediction-
error method in the system identification toolbox of Matlab
[Ljung, 1999].

Model validation  The model validation method is the
cross-validation, the generated data is divided in two
sets: the first two-thirds are used to estimate the model’s
parameters, while the last third of the data is used to
validate the identified model.
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The comparison between the validation data and the
temperature simulated models data is presented in Figure 16
4. Only four plots for pure simulation are printed here to

save space but results are similar for the other zones. The

fit values for the different prediction horizons can be found

in Table 1.
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and in these three cities. It can be noticed that:

e the fit values are for the most part between 70 and Fig
80 % or higher for pure simulation for all thermal
zones except these of Madison, which are lower;

. 4. Comparison between validation data and models
output for pure simulation (infinite prediction hori-
zon).



Table 2. Fit between validation data and mod-
els output: case of the university building in
different locations (pure simulation).

Fit in %
Location Perpignan Tampa SF  Madison
Classroom 01 73 73 78 72
Classroom 02 71 74 75 69
Student space 69 78 87 56
Office 70 78 85 70
Classroom 11 70 68 86 67
Classroom 12 74 r 81 66
Media room 65 87 92 51
First floor 70 80 90 60
Whole building 71 79 88 62

e the fit values for the building in Perpignan are not
the best while the identification procedure was made
from it. Sorting the cities in best results order is: San
Francisco, Tampa, Perpignan and Madison.

The differences of values can be explained in part by the
location and the weather differences of the four cities.
Geographical coordinates are presented in the Table 3
and we can see that all the cities have things in common:
Perpignan and Madison have a close latitude, Tampa and
Madison have a close longitude, Tampa and San Francisco
(SF) have a close elevation and Perpignan is not much
distant. That last property distinguishes Madison: with an
elevation of 262 m against 35m, 6 m and 2m. Madison is
considerably higher than the three other cities. Longitude
differences impact only the time zone whereas latitude and
elevation impact the outdoor temperature. One can see in
Figure 5 that Madison has lower outdoor temperature than
the others, Tampa has the highest, and variations between
Perpignan and San Francisco are rather close. Direct solar
radiations of the cities are not plotted because they belong
to the same range (between 0 and 1000 W/m?), all cities
have sunny and cloudy days.

Table 3. Geographical coordinates of the four

cities.
City Perpignan  Tampa  San Francisco Madison
Latitude 42.65 27.97 37.62 43.13
Longitude 2.90 -89.53 -122.40 -89.33
Elevation 35 6 2 262

So, the university model structure is still scalable and sat-
isfying for three of four cities, the identification procedure
proposed in this paper is adaptable, but can be improved.

3.2 Test with another building

The objective is to know if the modeling procedure is
usable with another entirely different building (geometry,
materials, HVAC system, ...). This building has been
created with the EnergyPlus example file generator. It is a
U-shape, one floor building, divided in three thermal zones
(see Figure 6): two large identical zones of 600 m? each and
a middle zone of 150 m?; the total floor area is 1350 m?.

The HVAC system is a Packaged Terminal Air Conditioner
(PTAC) consisting of an outdoor air mixer, a direct

—— Perpignan =— Tampa =—— SF —— Madison

Temperature (°C)

Fig. 5. Outdoor temperatures of the four selected cities.

Fig. 6. The three zones of the U-shape example building.

expansion cooling coil, an hot water heating coil (via a
gas boiler) and a supply air fan.

This building is submitted to the same conditions than
the first we have studied: the EnergyPlus model is excited
during 36 days (from the 6th of December 2012 to the
11th of January 2013), with a time-step of 10 minutes (see
subsection 2.3.3).

The Table 4 presents the fit values between validation data
and models’ output for pure simulation of the example
building, in the four same cities than the first building. It
can be noticed that:

e once again, the fit values are close or higher to 70 %
for pure simulation for all thermal zones except these
of Madison, which are close to 60 %;

e this time, the fit values for the building in Perpignan
are the best. Sorting the cities in best results order is:
Perpignan, Tampa, San Francisco and Madison.

The fit values for simulation prediction are satisfying for
every thermal zone in each of the four cities. The model
structure and the identification procedure suit this other
building with a different HVAC system.

4. CONCLUSION

In the first part of this paper, a black-box model of
a building and its thermal zones has been developed.
System identification techniques have been applied to rich



Table 4. Fit between validation data and models
output: case of the U-shape building in different
locations (pure simulation).

Fit in %
Location Perpignan Tampa SF  Madison
Zone 1 78 71 73 60
Zone 2 75 72 71 56
Zone 3 74 73 70 55
Whole building 7 73 72 58

input/output data generated using co-simulation between
EnergyPlus and Matlab. The model structure, a state-space
dynamical model of second order, has been shown to be
scalable: the identified models of rooms, floors and the
building as a whole exhibited rather satisfying prediction
of indoor temperature of the considered thermal zones.

Then in the second part, the model structure has been
reused by applying this procedure in the same building but
located in three american distant cities, and has showed
satisfying results. Finally, the procedure has been repeated
on another type of building with a different heating system,
in the same cities, and results are satisfying too.

Obviously, it exists several building geometries and heating
systems; future work will repeat this procedure and model
structure on other or same buildings, may be in other
cities, and equipped with the most usual heating system.
Future work will also assess the input/output influence and
selection in function of the location.
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