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Ordered Smoothers With Exponential Weighting∗

Chernousova, E.,† Golubev, Yu.‡ and Krymova, E.§

Abstract

The main goal in this paper is to propose a new approach to de-
riving oracle inequalities related to the exponential weighting method.
The paper focuses on recovering an unknown vector from noisy data
with the help of the family of ordered smoothers [12]. The estimators
withing this family are aggregated using the exponential weighting
method and the aim is to control the risk of the aggregated estimate.
Based on natural probabilistic properties of the unbiased risk estimate,
we derive new oracle inequalities for mean square risk and show that
the exponential weighting permits to improve Kneip’s oracle inequality.

1 Introduction and main results

This paper deals with the simple linear model

Yi = µi + σξi, i = 1, 2, . . . , n, (1.1)

where ξ is a standard white Gaussian noise, i.e. ξi are Gaussian i.i.d. random
variables with Eξi = 0 and Eξ2i = 1. For the sake of simplicity it is assumed
that the noise level σ > 0 is known.

The goal is to estimate an unknown vector µ ∈ Rn based on the data Y =
(Y1, . . . , Yn)>. In this paper, µ is recovered with the help of the following
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family of linear estimates

µ̂hi (Y ) = hiYi, h ∈ H, (1.2)

where H is a finite set of vectors in Rn which will be described later on.
In what follows, the risk of an estimate µ̂(Y ) = (µ̂1(Y ), . . . , µ̂n(Y ))> is

measured by
R(µ̂, µ) = Eµ‖µ̂(Y )− µ‖2,

where Eµ is the expectation with respect to the measure Pµ generated by
the observations from (1.1) and ‖·‖ , 〈·, ·〉 stand for the standard norm and
inner product in Rn

‖x‖2 =
n∑
i=1

x2i , 〈x, y〉 =
n∑
i=1

xiyi.

One can check very easily that the mean square risk of µ̂h(Y ) is given
by

R(µ̂h, µ) = ‖(1− h) · µ‖2 + σ2‖h‖2,

where x · y denotes the coordinate-wise product of vectors x, y ∈ Rn, i.e.
z = x ·y, means that zi = xiyi, i = 1, . . . , n. So, R(µ̂h, µ) depends on h ∈ H
and one can minimize it choosing properly h ∈ H. Very often the minimal
risk

rH(µ) = min
h∈H

R(µ̂h, µ)

is called the oracle risk.
Obviously, the oracle estimate

µ∗(Y ) = h∗ · Y, where h∗ = arg min
h∈H

R(µ̂h, µ),

cannot be used since it depends on the unknown vector µ. However, one
could try to construct an estimate µ̃H(Y ) based on the family of linear
estimates µ̂h(Y ), h ∈ H, the risk of which is close to the oracle risk. This
means that the risk of µ̃H(Y ) might be bounded from above by the so-called
oracle inequality

R(µ̃H, µ) ≤ rH(µ) + ∆̃H(µ),

which holds uniformly in µ ∈ Rn. Heuristically, this inequality assumes
that the remainder term ∆̃H(µ) is negligible with respect to the oracle risk
for all µ ∈ Rn. In general, such an estimator doesn’t exist, but for certain
statistical models one can construct an estimator µ̃H(Y ) (see, e.g., Theorem
1.1 below) such that:
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• ∆̃H(µ) ≤ C̃rH(µ) for all µ ∈ Rn, where C̃ > 1 is a constant.

• ∆̃H(µ)� rH(µ) for all µ such that rH(µ)� σ2.

It is also well-known that one can find an estimator with the above properties
provided that H is not very rich. In particular, as shown in [12], this can be
done for the so-called ordered smoothers. This is why this paper deals with
H containing solely ordered multipliers defined as follows:

Definition 1.1. H is a set of ordered multipliers if the following properties
hold

• contracting property: hi ∈ [0, 1], i = 1, . . . , n for all h ∈ H,

• decreasing property: hi+1 ≤ hi, i = 1, . . . , n for all h ∈ H,

• totally ordered property: if for some integer k and some h, g ∈ H,
hk < gk, then hi ≤ gi for all i = 1, . . . , n.

The totally ordered property means that vectors in H may be naturally
ordered, since for any h, g ∈ H there are only two possibilities hi ≤ gi or
hi ≥ gi for all i = 1, . . . , n. Therefore the estimators defined by (1.2), where
H is a set of ordered multipliers, are often called ordered smoothers [12].

Note that ordered smoothers are common in statistics. Below we give
two basic examples, where these smoothers appear naturally.

Smoothing splines. They are usually used in recovering smooth regression
functions f(x), x ∈ [0, 1], given the noisy observations Z = (Z1, . . . , Zn)>

Zi = f(Xi) + εξi, i = 1, . . . , n, (1.3)

where the design points Xi belong to (0, 1) and ξ is a standard white Gaus-
sian noise. It is well known that smoothing splines are defined by

f̂α(x, Z) = arg min
f

{
1

n

n∑
i=1

[Zi − f(Xi)]
2 + α

∫ 1

0
[f (m)(x)]2

}
, (1.4)

where f (m)(·) denotes the derivative of order m and α > 0 is a smoothing
parameter which is usually chosen with the help of the Generalized Cross
Validation (see, e.g., [23]).

In order to show that the regression estimation with the help of the
smoothing splines is equivalent to the sequence space model (1.1), consider
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the Demmler-Reinsch [6] basis ψk(x), x ∈ [0, 1], k = 1, . . . , n having double
orthogonality

〈ψk, ψl〉n = δkl,

∫ 1

0
ψ
(m)
k (x)ψ

(m)
l (x) dx = δklλk, k, l = 1, . . . , n, (1.5)

where δkl = 1 if k = l, and δkl = 0 otherwise. Here and below 〈u, v〉n stands
for the inner product

〈u, v〉n =
1

n

n∑
i=1

u(Xi)v(Xi).

Let us assume for definiteness that the eigenvalues λk are sorted in ascending
order λ1 ≤ . . . ≤ λn.

With this basis, representing the underlying regression function as fol-
lows:

f(x) =
n∑
k=1

ψk(x)µk, (1.6)

we get from (1.3) and (1.5)

Y ′k =
1

n

n∑
i=1

Ziψk(Xi) = µk +
ε√
n
ξ′k, (1.7)

where µk = 〈f, ψk〉n and ξ′ is a standard white Gaussian noise. So, substi-
tuting (1.6) in (1.4) and using (1.5), we arrive at

f̂α(x, Z) =

n∑
k=1

µ̂kψk(x),

where

µ̂ = arg min
µ

{ n∑
k=1

[Y ′k − µk]2 + α

n∑
k=1

λkµ
2
k

}
.

It can be seen easily that

µ̂k =
Yk

1 + αλk

and thus the model (1.3)–(1.4) is equivalent to (1.1)–(1.2) with σ = ε/
√
n

and

H =

{
h : hk =

1

1 + αλk
, α ∈ R+

}
. (1.8)
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If we are interested in minimax regression estimates on Sobolev’s classes,
they can be easily constructed using the statistics from (1.7) and the follow-
ing set of ordered multipliers

H =
{
h : hk = max(1− αλk, 0), α ∈ R+

}
.

See [17] and [20] for details.
Note that the Demmler-Reinsch basis is a very useful tool for statistical

analysis of spline methods. However, in constructing statistical estimates,
this basis is rarely used since there are very fast algorithms for computing
smoothing splines (see, e.g., [10] and [23]).

Spectral regularizations of large linear models. Very often in linear
models, we are interested in estimating Xθ ∈ Rn based on the observations

Z = Xθ + σξ, (1.9)

where X is a known n × p - matrix, θ ∈ Rp is an unknown vector, and ξ
is a standard white Gaussian noise. It is well known that if X>X has a
large condition number or p is large, then the standard maximum likelihood
estimate Xθ̂0(Z), where

θ̂0(Z) = arg min
θ
‖Z −Xθ‖2 = (X>X)−1X>Z

may result in a large risk. In particular, if X>X > 0, then

E‖Xθ −Xθ̂0‖2 = σ2p.

When p is large, this risk may be improved with the help of a regular-
ization term. For instance, one can use the Phillps-Tikhonov regularization
[22] (often called ridge regression in statistics)

θ̂α(Z) = arg min
θ

{
‖Z −Xθ‖2 + α‖θ‖2

}
,

where α > 0 is a smoothing parameter. It can be seen easily that

θ̂α(Z) = [I + α(X>X)−1]−1θ̂0(Z).

This formula is a particular case of the so-called spectral regularizations
defined as follows (see, e.g., [7]):

θ̂α(Z) = Hα(X>X)θ̂0(Z),
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where Hα(X>X) is a matrix depending on a smoothing parameter α ∈ R+

and X>X and admitting the following representation

Hα(X>X) =

p∑
k=1

hα(λk)eke
>
k

where ek, k = 1, . . . , p and λ1 ≤ λ2 ≤ . . . ≤ λp are eigenvectors and eigen-
values of X>X, and hα(·) is a function R+ → [0, 1].

The standard way to construct an equivalent model for the spectral
regularization method is to make use of the SVD. Note that

e∗k =
Xek√
λk
, k = 1, . . . , p

is an orthonormal system in Rn. Therefore the observations Z (see (1.9))
admit the following equivalent representation

Yk = 〈e∗k, Z〉 = 〈e∗k, Xθ〉+ σξ′k, k = 1, . . . , p, (1.10)

where ξ′ is a standard white Gaussian noise. Noticing that

Xθ̂α(Z) = XHα(X>X)(X>X)−1X>Z,

we have

〈Xθ̂α(Z), e∗k〉 =

p∑
s=1

Ys〈XHα(X>X)(X>X)−1X>e∗s, e
∗
k〉

=

p∑
s=1

Ysλk〈Hα(X>X)(X>X)−1es, ek〉 = hα(λk)Yk.

Therefore from this equation and (1.10) and we see that the spectral regu-
larization method is equivalent to the statistical model defined by (1.1) and
(1.2) with H = {h : hk = hα(λk), α ∈ R+}.

Note that for the Phillps-Tikhonov method we have

hα(λ) =
1

1 + α/λ

and it is clear that the correspondingH is a set of ordered multipliers. Along
with this regularization method, the spectral cut-off method and Landwe-
ber’s iterations (see, e.g., [7] for details) are typical examples of ordered
smoothers.
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Nowadays, there are a lot of approaches aimed to construct estimates
mimicking the oracle risk. At the best of our knowledge, the principal idea
in obtaining such estimates goes back to [3] and [15] and related to the
method of the unbiased risk estimation [21]. The literature on this approach
is so vast that it would be impractical to cite it here. We mention solely
the following result by Kneip [12] since it plays an important role in our
presentation. Denote by

r̄(Y, µ̂h)
def
= ‖Y − µ̂h(Y )‖2 + 2σ2

n∑
i=1

hi − σ2n, (1.11)

the unbiased risk estimate of µ̂h(Y ).

Theorem 1.1. Let
ĥ = arg min

h∈H
r̄(Y, µ̂h)

be a minimizer of the unbiased risk estimate. Then uniformly in µ ∈ Rn,

Eµ‖ĥ · Y − µ‖2 ≤ rH(µ) +Kσ2
√

1 +
rH(µ)

σ2
, (1.12)

where K is a generic constant.

Another well-known idea to construct a good estimator based on the
family µ̂h, h ∈ H is to aggregate the estimates within this family using a
held-out sample. Apparently, this approach was firstly developed by Ne-
mirovsky in [16] (see also [11]) and independently by Catoni (see [4] for a
summary). Later, the method was extended to several statistical models
(see, e.g., [24], [18], [13], [19]).

To overcome the well-know drawbacks of sample splitting, one would
like to aggregate estimators using the same observations for constructing
estimators and performing the aggregation. This can be done, for instance,
with the help of the exponential weighting. The motivation of this method is
related to the problem of functional aggregation, see [19]. It has been shown
that this method yields rather good oracle inequalities for certain statistical
models [14], [5], [19], [1], [2].

In the considered statistical model, the exponential weighting estimate
is defined as follows:

µ̄(Y ) =
∑
h∈H

wh(Y )µ̂h(Y ), (1.13)
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where

wh(Y ) = πh exp

[
− r̄(Y, µ̂

h)

2βσ2

]/∑
g∈H

πg exp

[
− r̄(Y, µ̂

g)

2βσ2

]
, β > 0,

r̄(Y, µ̂h) is the unbiased risk estimate of µ̂h(Y ) defined by (1.11), and a priori
weights {πh, h ∈ H} are non-negative and such that

∑
h∈H πh > 0. Recall

that for simplicity, it is assumed here and in what follows that H is discrete
and finite.

It has been shown in [5] that for this method the following oracle in-
equalities hold.

Theorem 1.2. Assume that
∑

h∈H πh = 1. If β ≥ 4, then uniformly in
µ ∈ Rn

R(µ̄, µ) ≤ min
λh≥0:‖λ‖1=1

{∑
h∈H

λhR(µ̂h, µ) + 2σ2βK(λ, π)

}
,

R(µ̄, µ) ≤ min
h∈H

{
R(µ̂h, µ) + 2σ2β log

1

πh

}
,

(1.14)

where K(·, ·) is the Kullback-Leibler divergence and ‖·‖1 stands for `1-norm,
i.e.,

K(λ, π) =
∑
h∈H

λh log
λh
πh
, ‖λ‖1 =

∑
h∈H
|λh|.

Note that for projection methods (hk ∈ {0, 1}) this theorem holds for
β ≥ 2, see [14].

It is clear that if we want to derive from (1.14) an oracle inequality
similar to (1.12), then we have to chose πh = 1/(#H), where #H denotes
the cardinality of H, and thus we arrive at

R(µ̄, µ) ≤ rH(µ) + 2σ2β log(#H).

This oracle inequality is good only when the cardinality of H is not very
large. If we deal with H having a very large cardinality like those related to
smoothing splines, this inequality is not good. To some extent, this situation
may be improved, see Proposition 2 in [5]. However, looking at the oracle
inequality in this proposition, one cannot say, unfortunately, that it is always
better than (1.12).

The main goal in this paper is to show that for the exponential weighting
method one can obtain an oracle inequality with a smaller remainder term
than the one in Theorem 1.1, Equation (1.12).
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In order to attain this goal and to cover H with both small and large
cardinality, we make use of the special prior weights defined as follows:

πh
def
= 1− exp

{
−‖h

+‖1 − ‖h‖1
β

}
. (1.15)

Here
h+ = min{g ∈ H : g > h}

and πhmax = 1, where hmax is the maximal multiplier in H.
Along with these weights we will need also the following condition:

Condition 1.1. There exists a constant K◦ ∈ (0,∞) such that

‖h‖2 − ‖g‖2 ≥ K◦
(
‖h‖1 − ‖g‖1

)
(1.16)

for all h ≥ g from H.

The next theorem, yielding an upper bound for the mean square risk of
µ̄(Y ) defined by (1.13), is the main result of this paper.

Theorem 1.3. Assume that H is a set of ordered multipliers, β ≥ 4, and
Condition 1.1 holds. Then, uniformly in µ ∈ Rn,

Eµ‖µ̄(Y )− µ‖2 ≤ rH(µ) + 2βσ2 log

[
C

(
1 +

rH(µ)

σ2

)]
. (1.17)

Here and in what follows C = C(K◦, β) denotes strictly positive and bounded
constants depending on K◦, β.

We finish this section with some remarks regarding this theorem.

Remark 1. The condition β ≥ 4 may be improved when the ordered
multipliers h ∈ H take only two values 0 and 1. In this case it is sufficient
to assume that β ≥ 2 (see [9]).

Remark 2. Usually Condition 1.1 may be checked rather easily. For in-
stance, for smoothing splines and equidistant design, the set of ordered
multipliers is given by (1.8) and this condition follows from the well-known
asymptotic formula λk � (πk)2m for large k (see [6] for details). Heuristi-
cally, for small α and large n we have

‖hα‖2 =

n∑
k=1

1

(1 + αλk)2
≈

n∑
k=1

1

[1 + α(πk)2m]2

≈ 1

πα1/(2m)

∫ ∞
0

1

[1 + x2m]2
dx
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and

‖hα‖1 =
n∑
k=1

1

1 + αλk
≈

n∑
k=1

1

1 + α(πk)2m

≈ 1

πα1/(2m)

∫ ∞
0

1

1 + x2m
dx.

(1.18)

With these equations Condition 1.1 becomes obvious. A rigorous proof of
(1.16) is based on a non-asymptotic version of these arguments. It is tech-
nical but unfortunately cumbersome and therefore, in order not to overload
the paper, we omit it.

For spectral regularizations Condition 1.1 is obvious for the spectral cut-
off method. For the Phillps-Tikhonov method the proof is more involved but
similar to the one for splines. Note, however, that in this case the following
condition

λs ≥ Ksq, for some q > 1

is required.

Remark 3. In practice, the multipliers in H are often chosen so that

‖h+‖1 = (1 + ε)‖h‖1

with some small ε > 0 and the initial condition ‖hmin‖1 = 1, where hmin is
the minimal multiplier in H. In this case one may chose the a priori weights
πh = 1 since πh from (1.15) are strictly bounded from below and it can
be checked very easily that Lemma 2.1 holds true for πh = 1. This means
in particular that if the smoothing parameter α in smoothing splines (1.4)
takes values {(1 + ε)−2mk, k = 0, 1, . . .}, then πh = 1 may be used in the
exponential weighting (see (1.18)).

Remark 4. In contrast to Proposition 2 in [5], the remainder term in (1.17)
does depend neither on the cardinality of H nor n. It has the same structure
as Kneip’s oracle inequality in Theorem 1.1.

Remark 5. Comparing (1.17) with (1.12), we see that when

rH(µ)

σ2
≈ 1,

then the remainder terms in (1.12) and (1.17) have the same order, namely,
σ2. However, when

rH(µ)

σ2
� 1,
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we get

2βσ2 log

[
C

(
1 +

rH(µ)

σ2

)]
� Kσ2

√
1 +

rH(µ)

σ2
,

thus showing that the upper bound for the remainder term in the oracle
inequality related to the exponential weighting is better than the one in
Theorem 1.1.

Remark 6. To compare the actual remainder terms in (1.17) and (1.12)
and to find out what β is good from a practical viewpoint, a numerical
experiment has been carried out. The goal in this experiment is to compare
the exponential weighting methods for β = {0, 1, 2, 4} combined with the
cubic smoothing splines for the equidistant design. In order to simulate
these splines, the following family of ordered multipliers was used

H =

{
h : hk =

1

1 + [α(k − 1)]4
, α > 0

}
.

The motivation of this family is due to the well-known asymptotic formula
λk � (πk)4, k →∞.

The simulations are organized as follows. For given A ∈ [0, 300], 100000
replications of the observations

Yk = µk(A) + ξk, k = 1, . . . , 400

are generated. Here µ(A) ∈ R400 is a Gaussian vector with independent
components and

Eµk(A) = 0, Eµ2k(A) = A exp

(
− k2

2Σ2

)
.

Next, the mean oracle risk

r̄H(A) = E min
h∈H

{
‖(1− h) · µ(A)‖2 + ‖h‖2

}
and the mean excess risk

∆̄β(A) = E‖µ(A)− µ̄(Y )‖2 − r̄H(A),

were computed with the help of the Monte-Carlo method. Finally, the data
{r̄H(A), ∆̄β(A), A ∈ [0, 300]} are plotted on Figure 1 to illustrate graphically
the remainder term ∆β(rH) = Eµ‖µ̄− µ‖2 − rH(µ).

Looking at this picture we see that there is no universal β minimizing
the excess risk uniformly in µ. However, it seems to us that a reasonable
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choice is β ≈ 1, but unfortunately, good oracle inequalities are not available
for this case. Note also that the exponential weighting can provide only a
moderate improvement of the risk compared to the classical unbiased risk
estimation (β = 0). All methods demonstrate almost similar statistical per-
formance. However, when rH(µ)/σ2 is not large, the exponential weighting
works usually better.

Figure 1: Mean excess risks ∆̄β(r̄H) (left panel Σ = 5; right panel Σ = 50).

2 Proofs

The proof of Theorem 1.3 is based on a combination of methods for deriving
oracle inequalities proposed in [14] and [9]. We indicate here solely the main
steps in the proof, all details are given below. With the help of Stein’s
formula for the unbiased risk estimate it can be shown similar to [14] that
for β ≥ 4

Eµ‖µ̄− µ‖2 ≤Eµ

∑
h∈H

wh(Y )r̄(Y, µ̂h)

≤rH(µ) + 2βσ2Eµ

∑
h∈H

wh(Y ) log
πh

wh(Y )

− 2βσ2Eµ log

{∑
h∈H

πh exp

[
− r̄(Y, µ̂

h)− r̄(Y, µ̂ĥ)

2βσ2

]}
,

(2.1)

where ĥ = arg minh∈H r̄(Y, µ̂
h).
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To control the right-hand side at this equation, we make use of the
ordering property of estimates µ̂h, h ∈ H. First, we check using (??) that
if πh is defined by (1.15), then

∑
h∈H

πh exp

[
− r̄(Y, µ̂

h)− r̄(Y, µ̂ĥ)

2βσ2

]
≥
∑
h≥ĥ

πh exp

[
− r̄(Y, µ̂

h)− r̄(Y, µ̂ĥ)

2βσ2

]
≥ 1,

and so, the last term in Equation (2.1) is always negative.
The most difficult and delicate part of the proof is related to the average

Kullback-Leibler divergence

Eµ

∑
h∈H

wh(Y ) log
wh(Y )

πh
.

To compute a good lower bound for this value, we follow the approach
proposed in [9]. The main idea here is to make use of the following property
of the unbiased risk estimate: for any sufficiently small ε < 1, there exists
ĥε depending on Y such that with probability 1, for all h ≥ ĥε

r̄(Y, µ̂h)− r̄(Y, µ̂ĥ) ≥ 2βσ2ε
[
‖h‖2 − ‖ĥ‖2

]
+ 2βσ2.

This equation means that wh(Y ) are exponentially decreasing for large h.
With this property we obtain the following entropy bound (see Lemma 2.3
below) ∑

h∈H
wh(Y ) log

πh
wh(Y )

≤ log

[∑
h≤ĥε

πh +
C

ε
exp

(
C

ε

)]
.

The rest of the proof is routine. It follows from (1.16) and (1.15) (see
Lemma 2.1 below) that

∑
h≤ĥε

πh ≤ 1 +
‖ĥε‖2

K◦β
.

More cumbersome probabilistic technique is required to prove the following
upper bound (see Lemma 2.5):

√
Eµ‖ĥε‖2 ≤

√
rH(µ)

(1− 2βε)σ2
+

√
1 + 2β

1− 2βε

√
K.

Finally, combining the above equations, we arrive at (1.17).
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2.1 Auxiliary facts

The next lemma collects some useful facts about a priori weights defined by
(1.15). Let

Dh =
{
g ∈ H : ‖h‖1 ≤ ‖g‖1 ≤ ‖h‖1 + 1

}
.

Lemma 2.1. Under Condition 1.1, for any h ∈ H, the following assertions
hold: ∑

g≥h
πg exp

{
−‖g‖1

β

}
= exp

{
−‖h‖1

β

}
, (2.2)

∑
g≤h

πg ≤ 1 +
‖h‖2

K◦β
, (2.3)

∑
g∈Dh

πg ≤ 1 +
1

β
, (2.4)

∑
g∈Dh

πg ≥
1

2β
exp

(
− 1

β

)
. (2.5)

Proof. Denote for brevity

S(h) =
∑
g≥h

πg exp

{
−‖g‖1 − ‖h‖1

β

}
.

Then we have

S(h)− S(h+) = πh + exp

{
− ‖h

+‖1 − ‖h‖1
β

}
×
∑
g≥h+

πg exp

{
−‖g‖1 − ‖h

+‖1
β

}
−
∑
g≥h+

πg exp

{
−‖g‖1 − ‖h

+‖1
β

}

= πh −
{

1− exp

[
−‖h

+‖1 − ‖h‖1
β

]}
S(h+).

Therefore in view of the definition of πh, it is clear that if S(hmax) = 1, then
S(h) = S(h+), thus proving (2.2).

To prove (2.3), note that

πg ≤
‖g+‖1 − ‖g‖1

β
. (2.6)
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This inequality follows from (1.15) and from the inequality inequality 1 −
exp(−x) ≤ x. Hence, by Condition (1.16) we obtain∑

g≤h
πg ≤ 1 +

∑
g≤h−

πg ≤ 1 +
1

β

∑
g≤h−

[
‖g+‖1 − ‖g‖1

]
= 1 +

‖h‖1 − ‖hmin‖1
β

≤ 1 +
‖h‖2 − ‖hmin‖2

K◦β
,

where hmin is the minimal element in H.
The same arguments can be used in proving (2.4).
In order to check (2.5), denote by gh be the maximal element in Dh.

Then there are two possibilities

• ‖gh‖1 ≤ ‖h‖1 + 1/2,

• ‖gh‖1 > ‖h‖1 + 1/2.

In the first case, ‖g+h ‖1 − ‖gh‖1 ≥ 1/2, and thus by

∑
g∈Dh

πg ≥ πgh ≥ 1− exp

(
−
‖g+h ‖1 − ‖gh‖1

β

)
≥ 1− exp

(
− 1

2β

)
. (2.7)

In the second case, where ‖h‖1 + 1/2 < ‖gh‖1 ≤ ‖h‖1 + 1, we obtain by
a Taylor expansion that for any g < gh

πg ≥
‖g+‖1 − ‖g‖1

β
exp

(
−‖gh‖1 − ‖h‖1

β

)
≥ ‖g

+‖1 − ‖g‖1
β

exp

(
− 1

β

)
,

and thus ∑
g∈Dh

πg ≥
‖gh‖1 − ‖h‖1

β
exp

(
− 1

β

)
≥ 1

2β
exp

(
− 1

β

)
.

This equation together with (2.7) ensures (2.5) since it can be checked
with a simple algebra that

1

2β
exp

(
− 1

β

)
≤ 1− exp

(
− 1

2β

)
, β > 0. �

The following lemma is a cornerstone in the proof of Theorem 1.3.
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Lemma 2.2. For β ≥ 4 the risk of µ̄(Y ) is bounded from above as follows:

Eµ‖µ̄(Y )− µ‖2 ≤ Eµ

∑
h∈H

wh(Y )r̄(Y, µ̂h).

Proof. It is based essentially on the method proposed in [14]. Unfortu-
nately, we cannot use directly Corollary 2 in [14] because it holds only for
hk, k = 1, . . . , n taking values 0 and 1. In the case of ordered smoothers hk
belongs to the interval [0, 1] and we will see below that this fact results in
the condition β ≥ 4.

Recall that the unbiased risk estimates for µ̄i(Y ) and µ̄hi (Y ) are com-
puted as follows (see, e.g. [21])

r̄(Yi, µ̄i) = [µ̄i(Y )− Yi]2 + 2σ2
∂µ̄i(Y )

∂Yi
− σ2,

r̄(Yi, µ̂
h
i ) = [µ̂hi (Y )− Yi]2 + 2σ2hi − σ2.

(2.8)

Since
∑

h∈Hwh = 1, we have

[µ̄i(Y )− Yi]2 =
∑
h∈H

wh(Y )[µ̄i(Y )− Yi]2

=
∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y ) + µ̂hi (Y )− Yi]2

=
∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y )]2 +
∑
h∈H

wh(Y )[µ̂hi (Y )− Yi]2

+ 2
∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y )][µ̂hi (Y )− Yi]

=
∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y )]2 +
∑
h∈H

wh(Y )[µ̂hi (Y )− Yi]2

+ 2
∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y )][µ̂hi (Y )− µ̄i(Y ) + µ̄i(Y )− Yi]

= −
∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y )]2 +
∑
h∈H

wh(Y )[µ̂hi (Y )− Yi]2.

(2.9)

From the definition of µ̄(Y ) we obviously get

∂µ̄i(Y )

∂Yi
=
∑
h∈H

wh(Y )
∂µ̂hi (Y )

∂Yi
+
∑
h∈H

∂wh(Y )

∂Yi
µ̂hi (Y )
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and combining this equation with (2.9) (see also (2.8)), we arrive at

r̄(Yi, µ̄i) = [µ̄i(Y )− Yi]2 + 2σ2
∂µ̄i(Y )

∂Yi
− σ2

=
∑
h∈H

wh(Y )

{
[µ̂hi (Y )− Yi]2 + 2σ2

∂µ̂hi (Y )

∂Yi
− σ2

− [µ̄i(Y )− µ̂hi (Y )]2 + 2σ2
∂ log(wh(Y ))

∂Yi
µ̂hi (Y )

}
=
∑
h∈H

wh(Y )r̄(Yi, µ̂
h
i )+

+
∑
h∈H

wh(Y )

{
−[µ̄i(Y )− µ̂hi (Y )]2 + 2σ2

∂ log[wh(Y )]

∂Yi
µ̂hi (Y )

}
=
∑
h∈H

wh(Y )r̄(Yi, µ̂
h
i ) +

∑
h∈H

wh(Y )

{
−[µ̄i(Y )− µ̂hi (Y )]2

+ 2σ2
∂ log[wh(Y )]

∂Yi
[µ̂hi (Y )− µ̄i(Y )]

}
.

(2.10)

In deriving the above equation it was used that
∑

h∈Hwh(Y ) = 1 and hence∑
h∈H

∂wh(Y )

∂Yi
=
∑
h∈H

wh(Y )
∂ logwh(Y )

∂Yi
= 0.

To control the second sum at the right hand side of (2.10) we make use
of the following equation

log[wh(Y )] = − r̄(Y, µ̂
h)

2βσ2
+ log(πh)− log

{∑
g∈H

πg exp

[
− r̄(Y, µ̂

g)

2βσ2

]}
. (2.11)

Therefore∑
h∈H

wh(Y )
∂ logwh(Y )

∂Yi
[µ̂hi (Y )− µ̄i(Y )]

= − 1

2βσ2

∑
h∈H

wh(Y )
∂r̄(Y, µ̂h)

∂Yi
[µ̂hi (Y )− µ̄i(Y )].

Substituting in the above equation (see (1.11))

∂r̄(Yi, µ̂
h
i )

∂Yi
= 2(1− hi)2Yi,
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we obtain ∑
h∈H

wh(Y )
∂ logwh(Y )

∂Yi
[µ̂hi (Y )− µ̄i(Y )]

= − 1

βσ2
Y 2
i

∑
h∈H

wh(Y )[hi − 1]2[hi − h̄i],
(2.12)

where
h̄i =

∑
h∈H

wh(Y )hi.

Next noticing that

(1− hi)2 = (1− h̄i)2 + (h̄i − hi)2 + 2(1− h̄i)(h̄i − hi),

we have

−Y 2
i

∑
h∈H

wh(Y )(hi − 1)2(hi − h̄i) = Y 2
i (1− h̄i)2

∑
h∈H

wh(Y )(h̄i − hi)

+Y 2
i

∑
h∈H

wh(Y )(h̄i − hi)2(h̄i − hi + 2− 2h̄i)

= 2Y 2
i

∑
h∈H

wh(Y )(h̄i − hi)2
(

1− hi + h̄i
2

)
≤ 2

∑
h∈H

wh(Y )[µ̄i(Y )− µ̂hi (Y )]2.

Combining this equation with (2.9)–(2.12), we finish the proof. �

Lemma 2.3. Suppose {qh ≤ 1, h ∈ H} is a nonnegative sequence such that
for all h ≥ h̃

qh ≤ exp
{
−γ
[
‖h‖1 − ‖h̃‖1

]
− 1
}
, γ > 0.

Let

Wh = πhqh

[∑
g∈H

πgqg

]−1
and G be a subset in H. Then

H(W,π)
def
=
∑
h∈H

Wh log
πh
Wh
≤ log

[∑
h≤h̃

πh + exp[R(γ)]

]
,
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where

R(γ) = log

[
2

γβe
+
∑
h∈G

πh

]
+

[∑
h∈G

πhqh

]−1[ 8

γβe
+
∑
h∈G

πh

]
. (2.13)

Proof. Decompose H onto two subsets

Q = {h ≥ h̃} ∪ G, P = H \Q

and denote for brevity

P =
∑
h∈P

πhqh, Q =
∑
h∈Q

πhqh.

By convexity of log(x) we obtain

H(W,π) =
P

P +Q

∑
h∈P

πhqh
P

log
(P +Q)/P

qh/P

+
Q

P +Q

∑
h∈Q

πhqh
Q

log
(P +Q)/Q

qh/Q

≤ P

P +Q
log

P +Q

P
+

Q

P +Q
log

P +Q

Q
+

P

P +Q
log

(∑
h∈P

πh

)
+

1

P +Q

[∑
h∈Q

πhqh log
1

qh
+Q log(Q)

]
.

(2.14)

Next, note that f(x) = x log(1/x) is an increasing function, when x ∈
(0, e−1], and maxx∈[0,1] f(x) = e−1. Therefore, if

qh ≤ exp
[
−γ(‖h‖1 − ‖h̃‖1)− 1

]
,

then

qh log
1

qh
≤ exp

[
−γ(‖h‖1 − ‖h̃‖1)− 1

][
γ(‖h‖1 − ‖h̃‖1) + 1

]
,

and we get∑
h∈Q

πhqh log
1

qh
≤ 1

e

∑
h∈G

πh +
1

e

∑
h≥h̃

πh exp
[
−γ(‖h‖1 − ‖h̃‖1)

]
×
[
γ(‖h‖1 − ‖h̃‖1) + 1

]
.
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We continue this equation with (2.6) as follows:∑
h∈Q

πhqh log
1

qh
≤ 1

e

∑
h∈G

πh +
1

βe

∑
h≥h̃

exp
[
−γ(‖h‖1 − ‖h̃‖1)

]
×
[
γ
(
‖h‖1 − ‖h̃‖1

)
+ 1
](
‖h+‖1 − ‖h‖1

)
.

(2.15)

In order to bound from above the right-hand side at this equation, let
us index the elements in {h ∈ H : h ≥ h̃} denoting them as {hk, k ≥ 0}, so
that ‖hk+1‖1 ≥ ‖hk‖1 and h0 = h̃. Then, denoting for brevity

Si = ‖hi‖1 − ‖h̃‖1,

we can rewrite the sum at the right hand side in (2.15) as follows:∑
h≥h̃

exp
[
−γ(‖h‖1 − ‖h̃‖1)

][
γ
(
‖h‖1 − ‖h̃‖1

)
+ 1
](
‖h+‖1 − ‖h‖1

)
=
∑
i≥0

exp
[
−γSi

][
γSi + 1

]
(Si+1 − Si).

(2.16)

To bound from above the right hand side at this equation, let us check
that

max
Sk,k≥1

∑
i≥0

exp
[
−γSi

]
(Si+1 − Si) ≤

2

γ
, (2.17)

where max is computed over all nondecreasing sequences. Solving the equa-
tion

∂

∂Sk

∑
i≥0

exp
[
−γSi

]
[Si+1 − Si]+ = 0,

we obtain with a simple algebra

Sk+1 − Sk =
exp
[
γ(Sk − Sk−1)

]
− 1

γ
.

Hence

exp(−γSk)(Sk+1 − Sk) =
exp[−γSk−1]− exp[−γSk]

γ

and summing up these equations, we arrive at (2.17). Next notice that for
any z > 0 we have (1 + x) ≤ z exp(x/z). With this inequality and (2.17) we
obtain for any z > 1∑
i≥0

exp
[
−γSi

][
γSi + 1

]
(Si+1 − Si) ≤ z

∑
i≥0

exp[−γ(1− 1/z)Si](Si+1 − Si)

≤ 2z2

(z − 1)γ
.
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It can be seen easily that the minimun of the right hand side at this equation
is attained at z = 2. So, we obtain∑

i≥0
exp
[
−γSi

][
γSi + 1

]
(Si+1 − Si) ≤

8

γ
. (2.18)

With Equations (2.15)–(2.18) we get∑
h∈Q

πhqh log
1

qh
≤ 8

γβe
+

1

e

∑
h∈G

πh (2.19)

and similarly

Q =
∑
h∈Q

πhqh ≤
2

γβe
+
∑
h∈G

πh. (2.20)

Therefore

log(Q) ≤ log

[
2

γβe
+
∑
h∈G

πh

]
. (2.21)

Next, denoting for brevity

x =
Q

P +Q
,

and using (2.19) and (2.21), we arrive at

H(W,π) ≤ max
x∈[0,1]

{
−x log(x)− (1− x) log(1− x)

+(1− x) log

(∑
h∈P

πh

)
+ xρ

}
,

(2.22)

where

ρ
def
= log(Q) +

1

Q

∑
h∈Q

πhqh log
1

qh

≤ log

[
2

γβe
+
∑
h∈G

πh

]
+

[∑
h∈G

πhqh

]−1[ 8

γβe
+
∑
h∈G

πh

]
= R(γ).

It is seen easily that the minimizer x∗ of the right-hand side at (2.22) is a
solution to the following equation

log
1− x∗

x∗
= log

(∑
h∈P

πh

)
− ρ
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and thus

x∗ =

{
1 +

(∑
h∈P

πh

)
exp(−ρ)

}−1
.

Therefore from (2.22) we get

H(W,π) ≤ log

(∑
h∈P

πh

)
− log(1− x∗)

− x∗
[
log

x∗

1− x∗
+ log

(∑
h∈P

πh

)
− ρ
]

= log

(∑
h∈P

πh

)
− log(1− x∗) = log

[∑
h∈P

πh + exp(ρ)

]
≤ log

[∑
h<h̃

πh + exp(ρ)

]
. �

Lemma 2.4. Let ξi be i.i.d. N (0, 1) and H be a set of ordered multipliers.
Then for any α ∈ (0, 1/4)

E max
h∈H

{
±

n∑
i=1

(h2i − 2hi)(ξ
2
i − 1)− α

n∑
i=1

h2i

}
≤ K

α
,

E max
h∈H

{
n∑
i=1

(1− hi)2ξiµi − α
n∑
i=1

(1− hi)2µ2i

}
≤ K

α
,

where K is a generic constant.

Proof. It follows from Lemma 2 in [8].

Lemma 2.5. Let

ĥε = max
{
h :
[
r̄(Y, µ̂h)− r̄H(Y )

]
≤ 2βεσ2

[
‖h‖2 − ‖ĥ‖2

]
+ 2βσ2

}
, (2.23)

where ε ∈ (0, 1/(2β)) and r̄H(Y ) = minh∈H r̄(Y, µ̂
h). Then

√
Eµ‖ĥε‖2 ≤

√
rH(µ)

(1− 2βε)σ2
+

√
1 + 2β

1− 2βε

√
K. (2.24)

22



Proof. By the definition of r̄(Y, µ̂h), see also (1.11) and (2.23), we get

ĥε = max

{
h : ‖(1− h) · µ‖2 + σ2(1− 2βε)‖h‖2

+ 2σ
n∑
i=1

(1− hi)2µiξi + σ2
n∑
i=1

(h2i − 2hi)(ξ
2
i − 1)

≤‖(1− ĥ) · µ‖2 + σ2(1− 2βε)‖ĥ‖2

+ 2σ

n∑
i=1

(1− ĥi)2µiξi + σ2
n∑
i=1

(ĥ2i − 2ĥi)(ξ
2
i − 1) + 2βσ2

}
.

Let us fix some γ, γ′ > 0. Then we can rewrite the above equation as follows:

ĥε = max

{
h : σ2(1− 2βε− γ)‖h‖2 + 2σ

n∑
i=1

(1− hi)2µiξi + ‖(1− h) · µ‖2

+σ2
n∑
i=1

(h2i − 2hi)(ξ
2
i − 1) + γσ2‖h‖2

≤ (1 + γ′)‖(1− ĥ) · µ‖2 + σ2(1− 2βε+ γ′)‖ĥ‖2

+2σ
n∑
i=1

(1− ĥi)2µiξi − γ′‖(1− ĥ) · µ‖2

+σ2
n∑
i=1

(ĥ2i − 2ĥi)(ξ
2
i − 1)− γ′σ2‖ĥ‖2 + 2βσ2

}
.

Therefore

ĥε ≤ h̃ε def
= max

{
h : σ2(1− 2βε− γ)‖h‖2

+ min
g∈H

[
2σ

n∑
i=1

(1− gi)2µiξi + ‖(1− g) · µ‖2
]

+ min
g∈H

[
σ2

n∑
i=1

(g2i − 2gi)(ξ
2
i − 1) + γσ2‖g‖2

]
≤(1 + γ′)‖(1− ĥ)µ‖2 + (1− 2βε+ γ′)σ2‖ĥ‖2

+ max
g∈H

[
2σ

n∑
i=1

(1− gi)2µiξi − γ′‖(1− g) · µ‖2
]

+ max
g∈H

[
σ2

n∑
i=1

(g2i − 2gi)(ξ
2
i − 1)− γ′σ2‖g‖2

]
+ 2βσ2

}
.
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Next, bounding max and min in this equation with the help of Lemma
2.4, we arrive at

(1− 2βε)σ2Eµ‖h̃ε‖2 −
Kσ2

γ
− γσ2Eµ‖h̃ε‖2 −Kσ2

≤ Eµ‖(1− ĥ) · µ‖2 + (1− 2βε)σ2Eµ‖ĥ‖2 +
Kσ2

γ′

+ γ′Eµ‖(1− ĥ) · µ‖2 +
Kσ2

γ′
+ γ′σ2Eµ‖ĥ‖2 + 2βσ2.

Maximizing the left-hand side in γ ∈ (0, 1/4) and minimizing the right-hand
side in γ′ ∈ (0, 1/4), we obtain with a simple algebra

σ2
[√

(1− 2βε)Eµ‖h̃ε‖2 −
(

K

1− 2βε

)1/2]2
≤
[√

Eµ‖(1− ĥ) · µ‖2 + σ2Eµ‖ĥ‖2 + σ
√
K

]2
+

2βεKσ2

1− 2βε
+ (2β +K)σ2.

Combining this equation with ‖ĥε‖2 ≤ ‖h̃ε‖2 we arrive at√
(1− 2βε)Eµ‖ĥε‖2 ≤ σ−1

√
Eµ‖(1− ĥ) · µ‖2 + σ2Eµ‖ĥ‖2

+

√
1 + 2βε√
1− 2βε

√
K +

√
2β +K.

(2.25)

To control the expectation at the right-hand side in (2.25), we note that
for any given g ∈ H the following inequality

n∑
i=1

[1− ĥi]2Y 2
i + 2σ2

n∑
i=1

ĥi ≤
n∑
i=1

[1− gi]2Y 2
i + 2σ2

n∑
i=1

gi

holds. Denoting for brevity

ρ(h)
def
= ‖(1− h) · µ‖2 + σ2‖h‖2,

we rewrite this equation as follows:

ρ(ĥ)+2σ
n∑
i=1

(1− ĥi)2µiξi + σ2
n∑
i=1

(ĥ2i − 2ĥi)(ξ
2
i − 1)

≤ρ(g) + 2σ
n∑
i=1

(1− gi)2µiξi + σ2
n∑
i=1

(g2i − 2gi)(ξ
2
i − 1).
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So, for any γ > 0, we get with this equation and Lemma 2.4

Eµρ(ĥ) ≤ρ(g) + γEµρ(ĥ)

+ 2σEµ max
h∈H

[
−

n∑
i=1

(1− hi)2µiξi −
γ

2σ

n∑
i=1

(1− hi)2µ2i
]

+ σ2Eµ max
h∈H

[ n∑
i=1

[2hi − h2i ](ξ2i − 1)− γ
n∑
i=1

h2i

]
≤ρ(g) +

Kσ2

γ
+ γEµρ(ĥ).

Next, minimizing the right-hand side in g ∈ H and γ ∈ (0, 1/4), we obtain

Eµρ(ĥ) ≤rH(µ) + 2σ
[
KEµρ(ĥ)

]1/2
+Kσ2

or, equivalently, {[
Eµρ(ĥ)

]1/2 −√Kσ}2
≤ rH(µ) +Kσ2.

This yields obviously{
Eµ

[
‖(1− ĥ) · µ‖2 + σ2‖ĥ‖2

]}1/2
≤
√
rH(µ) + 2σ

√
K.

Finally, substituting this inequality in (2.25), we get (2.24). �

2.2 Proof of Theorem 1.3

By (2.11) we have by

log[wh(Y )] =
1

2σ2β
r̄(Y, µ̂ĥ)− 1

2σ2β
r̄(Y, µ̂h) + log πh

− log

{∑
g∈H

πg exp

[
− r̄(Y, µ̂

g)− r̄(Y, µ̂ĥ)

2βσ2

]}
,

where ĥ = arg minh∈H r̄(Y, µ̂
h). Therefore∑

h∈H
wh(Y )r̄(Y, µ̂h) = r̄(Y, µ̂ĥ) + 2βσ2

∑
h∈H

wh(Y ) log
πh

wh(Y )

−2βσ2 log

{∑
g∈H

πg exp

[
− r̄(Y, µ̂

g)− r̄(Y, µ̂ĥ)

2βσ2

]}
.

(2.26)
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We begin to control the right-hand side at (2.26) with the last term.
Ordering the elements in H, we obtain by (2.2)

log

{∑
g∈H

πg exp

[
− r̄(Y, µ̂

g)− r̄(Y, µ̂ĥ)

2βσ2

]}

≥ log

{∑
g≥ĥ

πg exp

[
− r̄(Y, µ̂

g)− r̄(Y, µ̂ĥ)

2βσ2

]}

= log

{∑
g≥ĥ

πg exp

[
−‖(1− g) · Y ‖2 − ‖(1− ĥ) · Y ‖2

2βσ2

− 1

β

n∑
i=1

[gi − ĥi]
]}
≥ log

{∑
g≥ĥ

πg exp

[
− 1

β

n∑
i=1

[gi − ĥi]
]}
≥ 0.

(2.27)

Our next step is to bound from above the second term at the right-hand
side of Equation (2.26). We note that for all h > ĥε, where ĥε is defined by
(2.23), [

r̄(Y, µ̂h)− r̄H(Y )
]
≥ 2βεσ2

[
‖h‖2 − ‖ĥ‖2

]
+ 2βσ2.

Let

qh = exp

[
− r̄(Y, µ̂

h)− r̄H(Y )

2βσ2

]
and

G =
{
h ∈ H : ‖ĥ‖1 ≤ ‖h‖1 < ‖ĥ‖1 + 1

}
.

By Condition (1.16) we have that for all h ≥ ĥε

qh ≤ exp

[
−2σ2βK◦ε(‖h‖1 − ‖ĥ‖1)

2βσ2
− 1

]
= exp

[
−K◦ε(‖h‖1 − ‖ĥ‖1)− 1

]
.

So, we obtain with Lemma 2.3, Jensen’s inequality, and (2.3)

Eµ

∑
h∈H

wh(Y ) log
πh

wh(Y )
≤ Eµ log

{∑
h≤ĥε

πh + exp[R(K◦ε)]

}

≤ Eµ log

{
1 +
‖ĥε‖2

βK◦
+ exp[R(K◦ε)]

}
≤ log

{
1 +

Eµ‖ĥε‖2

βK◦
+ Eµ exp[R(K◦ε)]

}
≤ 2 log

{
1 +

[
Eµ‖ĥε‖2

βK◦

]1/2
+
{
Eµ exp[R(K◦ε)]

}1/2}
,

(2.28)
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where R(·) is defined by (2.13).
Note that similar to (2.27) it can be checked easily that

qh ≥ exp

(
− 1

β

)
, h ∈ G

and thus it follows immediately from the definition of G and (2.4)-(2.5) that∑
h∈G

πhqh ≥ exp

(
− 1

β

)∑
h∈G

πh ≥
1

2β
exp

(
− 2

β

)
and hence

R(K◦ε) ≤
C

2ε
+

1

2
log

C

ε
.

With this equation, bounding from above
√

Eµ‖ĥε‖2 with the help of

(2.24), we get from (2.26)–(2.28)

Eµ

∑
h∈H

wh(Y )r̄(Y, µ̂h) ≤ Eµr̄
H(Y ) + 4βσ2 log

{
1√

1− 2βε

√
rH(µ)

σ2βK◦

+

√
1 + 2β

1− 2βε

√
K + exp

[
C

2ε
+

1

2
log

C

ε

]}
.

(2.29)

To finish the proof of the theorem, it remains to minimize the right hand
side at this equation in ε. Assuming ε ≤ 1/(3β), we obtain

1√
1− 2βε

√
rH(µ)

σ2βK◦
+

√
1 + 2β

1− 2βε

√
K + exp

[
C

2ε
+

1

2
log

C

ε

]

≤

√
rH(µ)

σ2βK◦
+

2βε√
1− 2βε

√
rH(µ)

σ2βK◦
+

√
1 + 2β

1− 2βε

√
K

+ exp

[
C

2ε
+

1

2
log

C

ε

]
≤

√
rH(µ)

σ2βK◦
+ 3
√

(1 + 2β)K + 4βε

√
rH(µ)

σ2βK◦

+ exp

[
C

2ε
+

1

2
log

C

ε

]
.

(2.30)

Let

Ψ(x) = min
ε∈[0,1/(3β)]

[
εx+

√
C

ε
exp

(
C

2ε

)]
.
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It is clear that Ψ(0) is bounded from above. It is also easy to check with
ε = 4C/log(x) that for any x ≥ 2

Ψ(x) ≤ 4Cx

log(x)
+

√
x log(x)

2
≤ Cx

log(x)
.

So, combining (2.29) and (2.30) with Lemma 2.2, we complete the proof
of (1.17) since Eµr̄

H(Y ) ≤ rH(µ). �
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