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Ordered Smoothers With Exponential Weighting *

. The estimators withing this family are aggregated using the exponential weighting method and the aim is to control the risk of the aggregated estimate. Based on natural probabilistic properties of the unbiased risk estimate, we derive new oracle inequalities for mean square risk and show that the exponential weighting permits to improve Kneip's oracle inequality.

Introduction and main results

This paper deals with the simple linear model

Y i = µ i + σξ i , i = 1, 2, . . . , n, (1.1) 
where ξ is a standard white Gaussian noise, i.e. ξ i are Gaussian i.i.d. random variables with Eξ i = 0 and Eξ 2 i = 1. For the sake of simplicity it is assumed that the noise level σ > 0 is known.

The goal is to estimate an unknown vector µ ∈ R n based on the data Y = (Y 1 , . . . , Y n ) . In this paper, µ is recovered with the help of the following family of linear estimates

μh i (Y ) = h i Y i , h ∈ H, (1.2) 
where H is a finite set of vectors in R n which will be described later on.

In what follows, the risk of an estimate μ(Y ) = (μ 1 (Y ), . . . , μn (Y )) is measured by

R(μ, µ) = E µ μ(Y ) -µ 2 ,
where E µ is the expectation with respect to the measure P µ generated by the observations from (1.1) and • , •, • stand for the standard norm and inner product in R n

x 2 = n i=1

x 2 i , x, y = n i=1

x i y i .

One can check very easily that the mean square risk of μh (Y ) is given by

R(μ h , µ) = (1 -h) • µ 2 + σ 2 h 2 ,
where x • y denotes the coordinate-wise product of vectors x, y ∈ R n , i.e. z = x • y, means that z i = x i y i , i = 1, . . . , n. So, R(μ h , µ) depends on h ∈ H and one can minimize it choosing properly h ∈ H. Very often the minimal risk r H (µ) = min cannot be used since it depends on the unknown vector µ. However, one could try to construct an estimate μH (Y ) based on the family of linear estimates μh (Y ), h ∈ H, the risk of which is close to the oracle risk. This means that the risk of μH (Y ) might be bounded from above by the so-called oracle inequality R(μ H , µ) ≤ r H (µ) + ∆H (µ), which holds uniformly in µ ∈ R n . Heuristically, this inequality assumes that the remainder term ∆H (µ) is negligible with respect to the oracle risk for all µ ∈ R n . In general, such an estimator doesn't exist, but for certain statistical models one can construct an estimator μH (Y ) (see, e.g., Theorem 1.1 below) such that:

• ∆H (µ) ≤ Cr H (µ) for all µ ∈ R n , where C > 1 is a constant.

• ∆H (µ) r H (µ) for all µ such that r H (µ) σ 2 .

It is also well-known that one can find an estimator with the above properties provided that H is not very rich. In particular, as shown in [START_REF] Kneip | Ordered linear smoothers[END_REF], this can be done for the so-called ordered smoothers. This is why this paper deals with H containing solely ordered multipliers defined as follows:

Definition 1.1. H is a set of ordered multipliers if the following properties hold

• contracting property: h i ∈ [0, 1], i = 1, . . . , n for all h ∈ H,

• decreasing property: h i+1 ≤ h i , i = 1, . . . , n for all h ∈ H,

• totally ordered property: if for some integer k and some h, g ∈ H, h k < g k , then h i ≤ g i for all i = 1, . . . , n.

The totally ordered property means that vectors in H may be naturally ordered, since for any h, g ∈ H there are only two possibilities h i ≤ g i or h i ≥ g i for all i = 1, . . . , n. Therefore the estimators defined by (1.2), where H is a set of ordered multipliers, are often called ordered smoothers [START_REF] Kneip | Ordered linear smoothers[END_REF].

Note that ordered smoothers are common in statistics. Below we give two basic examples, where these smoothers appear naturally.

Smoothing splines. They are usually used in recovering smooth regression functions f (x), x ∈ [0, 1], given the noisy observations Z = (Z 1 , . . . , Z n )

Z i = f (X i ) + εξ i , i = 1, . . . , n, (1.3) 
where the design points X i belong to (0, 1) and ξ is a standard white Gaussian noise. It is well known that smoothing splines are defined by fα (x, Z) = arg min

f 1 n n i=1 [Z i -f (X i )] 2 + α 1 0 [f (m) (x)] 2 , (1.4) 
where f (m) (•) denotes the derivative of order m and α > 0 is a smoothing parameter which is usually chosen with the help of the Generalized Cross Validation (see, e.g., [START_REF] Wahba | Spline Models for Observational Data[END_REF]).

In order to show that the regression estimation with the help of the smoothing splines is equivalent to the sequence space model (1.1), consider the Demmler-Reinsch [START_REF] Demmler | Oscillation matrices with spline smoothing[END_REF] basis ψ k (x), x ∈ [0, 1], k = 1, . . . , n having double orthogonality

ψ k , ψ l n = δ kl , 1 0 ψ (m) k (x)ψ (m) l (x) dx = δ kl λ k , k, l = 1, . . . , n, (1.5)
where δ kl = 1 if k = l, and δ kl = 0 otherwise. Here and below u, v n stands for the inner product

u, v n = 1 n n i=1 u(X i )v(X i ).
Let us assume for definiteness that the eigenvalues λ k are sorted in ascending order λ 1 ≤ . . . ≤ λ n .

With this basis, representing the underlying regression function as follows:

f (x) = n k=1 ψ k (x)µ k , (1.6) 
we get from (1.3) and (1.5)

Y k = 1 n n i=1 Z i ψ k (X i ) = µ k + ε √ n ξ k , (1.7) 
where µ k = f, ψ k n and ξ is a standard white Gaussian noise. So, substituting (1.6) in (1.4) and using (1.5), we arrive at

fα (x, Z) = n k=1 μk ψ k (x), where μ = arg min µ n k=1 [Y k -µ k ] 2 + α n k=1 λ k µ 2 k .
It can be seen easily that

μk = Y k 1 + αλ k and thus the model (1.3)-(1.4) is equivalent to (1.1)-(1.2) with σ = ε/ √ n and H = h : h k = 1 1 + αλ k , α ∈ R + . (1.8)
If we are interested in minimax regression estimates on Sobolev's classes, they can be easily constructed using the statistics from (1.7) and the following set of ordered multipliers

H = h : h k = max(1 -αλ k , 0), α ∈ R + .
See [START_REF] Nussbaum | Spline smoothing in regression models and asymptotic efficiency in L 2[END_REF] and [START_REF] Speckman | Spline smoothing and optimal rates of convergence in nonparametric regression[END_REF] for details.

Note that the Demmler-Reinsch basis is a very useful tool for statistical analysis of spline methods. However, in constructing statistical estimates, this basis is rarely used since there are very fast algorithms for computing smoothing splines (see, e.g., [START_REF] Green | Nonparametric Regression and Generalized Linear Models. A roughness penalty approach[END_REF] and [START_REF] Wahba | Spline Models for Observational Data[END_REF]).

Spectral regularizations of large linear models. Very often in linear models, we are interested in estimating Xθ ∈ R n based on the observations

Z = Xθ + σξ, (1.9) 
where X is a known n × p -matrix, θ ∈ R p is an unknown vector, and ξ is a standard white Gaussian noise. It is well known that if X X has a large condition number or p is large, then the standard maximum likelihood estimate X θ0 (Z), where

θ0 (Z) = arg min θ Z -Xθ 2 = (X X) -1 X Z
may result in a large risk. In particular, if X X > 0, then

E Xθ -X θ0 2 = σ 2 p.
When p is large, this risk may be improved with the help of a regularization term. For instance, one can use the Phillps-Tikhonov regularization [START_REF] Tikhonov | Solution of Ill-posed Problems[END_REF] (often called ridge regression in statistics)

θα (Z) = arg min θ Z -Xθ 2 + α θ 2 ,
where α > 0 is a smoothing parameter. It can be seen easily that

θα (Z) = [I + α(X X) -1 ] -1 θ0 (Z).
This formula is a particular case of the so-called spectral regularizations defined as follows (see, e.g., [START_REF] Engl | Regularization of Inverse Problems[END_REF]):

θα (Z) = H α (X X) θ0 (Z),
where H α (X X) is a matrix depending on a smoothing parameter α ∈ R + and X X and admitting the following representation

H α (X X) = p k=1 h α (λ k )e k e k
where e k , k = 1, . . . , p and λ 1 ≤ λ 2 ≤ . . . ≤ λ p are eigenvectors and eigenvalues of X X, and

h α (•) is a function R + → [0, 1].
The standard way to construct an equivalent model for the spectral regularization method is to make use of the SVD. Note that

e * k = Xe k √ λ k , k = 1, . . . , p
is an orthonormal system in R n . Therefore the observations Z (see (1.9)) admit the following equivalent representation

Y k = e * k , Z = e * k , Xθ + σξ k , k = 1, . . . , p, (1.10) 
where ξ is a standard white Gaussian noise. Noticing that

X θα (Z) = XH α (X X)(X X) -1 X Z,
we have

X θα (Z), e * k = p s=1 Y s XH α (X X)(X X) -1 X e * s , e * k = p s=1 Y s λ k H α (X X)(X X) -1 e s , e k = h α (λ k )Y k .
Therefore from this equation and (1.10) and we see that the spectral regularization method is equivalent to the statistical model defined by (1.1) and (1.2) with H = {h :

h k = h α (λ k ), α ∈ R + }.
Note that for the Phillps-Tikhonov method we have

h α (λ) = 1 1 + α/λ
and it is clear that the corresponding H is a set of ordered multipliers. Along with this regularization method, the spectral cut-off method and Landweber's iterations (see, e.g., [START_REF] Engl | Regularization of Inverse Problems[END_REF] for details) are typical examples of ordered smoothers.

Nowadays, there are a lot of approaches aimed to construct estimates mimicking the oracle risk. At the best of our knowledge, the principal idea in obtaining such estimates goes back to [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] and [START_REF] Mallows | Some comments on C p[END_REF] and related to the method of the unbiased risk estimation [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF]. The literature on this approach is so vast that it would be impractical to cite it here. We mention solely the following result by Kneip [12] since it plays an important role in our presentation. Denote by r(Y, μh )

def = Y -μh (Y ) 2 + 2σ 2 n i=1 h i -σ 2 n, (1.11) 
the unbiased risk estimate of μh (Y ).

Theorem 1.1. Let ĥ = arg min h∈H r(Y, μh ) be a minimizer of the unbiased risk estimate. Then uniformly in µ ∈ R n ,

E µ ĥ • Y -µ 2 ≤ r H (µ) + Kσ 2 1 + r H (µ) σ 2 , (1.12) 
where K is a generic constant.

Another well-known idea to construct a good estimator based on the family μh , h ∈ H is to aggregate the estimates within this family using a held-out sample. Apparently, this approach was firstly developed by Nemirovsky in [START_REF] Nemirovski | Topics in non-parametric statistics[END_REF] (see also [START_REF] Juditsky | Functional aggregation for nonparametric regression[END_REF]) and independently by Catoni (see [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF] for a summary). Later, the method was extended to several statistical models (see, e.g., [START_REF] Yang | Combining different procedures for adaptive regression[END_REF], [START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF], [START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF], [START_REF] Rigolet | Sparse estimation by exponential weighting[END_REF]).

To overcome the well-know drawbacks of sample splitting, one would like to aggregate estimators using the same observations for constructing estimators and performing the aggregation. This can be done, for instance, with the help of the exponential weighting. The motivation of this method is related to the problem of functional aggregation, see [START_REF] Rigolet | Sparse estimation by exponential weighting[END_REF]. It has been shown that this method yields rather good oracle inequalities for certain statistical models [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF], [START_REF] Dalayan | Sharp oracle inequalities for aggregation of affine estimators[END_REF], [START_REF] Rigolet | Sparse estimation by exponential weighting[END_REF], [START_REF] Alquier | Pac-bayesian theorems for sparse regression estimation with exponential weights[END_REF], [START_REF] Arias-Castro | K Variable Selection with Exponential Weights and l 0 -Penalization[END_REF].

In the considered statistical model, the exponential weighting estimate is defined as follows:

μ(Y ) = h∈H w h (Y )μ h (Y ), (1.13) 
where

w h (Y ) = π h exp - r(Y, μh ) 2βσ 2 g∈H π g exp - r(Y, μg ) 2βσ 2 , β > 0,
r(Y, μh ) is the unbiased risk estimate of μh (Y ) defined by (1.11), and a priori weights {π h , h ∈ H} are non-negative and such that h∈H π h > 0. Recall that for simplicity, it is assumed here and in what follows that H is discrete and finite.

It has been shown in [START_REF] Dalayan | Sharp oracle inequalities for aggregation of affine estimators[END_REF] that for this method the following oracle inequalities hold.

Theorem 1.2. Assume that h∈H π h = 1. If β ≥ 4, then uniformly in µ ∈ R n R(μ, µ) ≤ min λ h ≥0: λ 1 =1 h∈H λ h R(μ h , µ) + 2σ 2 βK(λ, π) , R(μ, µ) ≤ min h∈H R(μ h , µ) + 2σ 2 β log 1 π h , (1.14) 
where K(•, •) is the Kullback-Leibler divergence and • 1 stands for 1 -norm, i.e.,

K(λ, π) = h∈H λ h log λ h π h , λ 1 = h∈H |λ h |.
Note that for projection methods (h k ∈ {0, 1}) this theorem holds for β ≥ 2, see [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF].

It is clear that if we want to derive from (1.14) an oracle inequality similar to (1.12), then we have to chose π h = 1/(#H), where #H denotes the cardinality of H, and thus we arrive at

R(μ, µ) ≤ r H (µ) + 2σ 2 β log(#H).
This oracle inequality is good only when the cardinality of H is not very large. If we deal with H having a very large cardinality like those related to smoothing splines, this inequality is not good. To some extent, this situation may be improved, see Proposition 2 in [START_REF] Dalayan | Sharp oracle inequalities for aggregation of affine estimators[END_REF]. However, looking at the oracle inequality in this proposition, one cannot say, unfortunately, that it is always better than (1.12).

The main goal in this paper is to show that for the exponential weighting method one can obtain an oracle inequality with a smaller remainder term than the one in Theorem 1.1, Equation (1.12).

In order to attain this goal and to cover H with both small and large cardinality, we make use of the special prior weights defined as follows:

π h def = 1 -exp - h + 1 -h 1 β . (1.15) 
Here h + = min{g ∈ H : g > h} and π h max = 1, where h max is the maximal multiplier in H.

Along with these weights we will need also the following condition:

Condition 1.1. There exists a constant K • ∈ (0, ∞) such that h 2 -g 2 ≥ K • h 1 -g 1 (1.16)
for all h ≥ g from H.

The next theorem, yielding an upper bound for the mean square risk of μ(Y ) defined by (1.13), is the main result of this paper.

Theorem 1.3. Assume that H is a set of ordered multipliers, β ≥ 4, and Condition 1.1 holds. Then, uniformly in µ ∈ R n ,

E µ μ(Y ) -µ 2 ≤ r H (µ) + 2βσ 2 log C 1 + r H (µ) σ 2 .
(1.17)

Here and in what follows C = C(K • , β) denotes strictly positive and bounded constants depending on K • , β.

We finish this section with some remarks regarding this theorem.

Remark 1. The condition β ≥ 4 may be improved when the ordered multipliers h ∈ H take only two values 0 and 1. In this case it is sufficient to assume that β ≥ 2 (see [START_REF] Golubev | Exponential weighting and oracle inequalities for projection estimates[END_REF]).

Remark 2. Usually Condition 1.1 may be checked rather easily. For instance, for smoothing splines and equidistant design, the set of ordered multipliers is given by (1.8) and this condition follows from the well-known asymptotic formula λ k (πk) 2m for large k (see [START_REF] Demmler | Oscillation matrices with spline smoothing[END_REF] for details). Heuristically, for small α and large n we have

h α 2 = n k=1 1 (1 + αλ k ) 2 ≈ n k=1 1 [1 + α(πk) 2m ] 2 ≈ 1 πα 1/(2m) ∞ 0 1 [1 + x 2m ] 2 dx and h α 1 = n k=1 1 1 + αλ k ≈ n k=1 1 1 + α(πk) 2m ≈ 1 πα 1/(2m) ∞ 0 1 1 + x 2m dx. (1.18)
With these equations Condition 1.1 becomes obvious. A rigorous proof of (1. [START_REF] Nemirovski | Topics in non-parametric statistics[END_REF]) is based on a non-asymptotic version of these arguments. It is technical but unfortunately cumbersome and therefore, in order not to overload the paper, we omit it.

For spectral regularizations Condition 1.1 is obvious for the spectral cutoff method. For the Phillps-Tikhonov method the proof is more involved but similar to the one for splines. Note, however, that in this case the following condition λ s ≥ Ks q , for some q > 1 is required.

Remark 3. In practice, the multipliers in H are often chosen so that

h + 1 = (1 + ) h 1
with some small > 0 and the initial condition h min 1 = 1, where h min is the minimal multiplier in H. In this case one may chose the a priori weights π h = 1 since π h from (1.15) are strictly bounded from below and it can be checked very easily that Lemma 2.1 holds true for π h = 1. This means in particular that if the smoothing parameter α in smoothing splines (1.4) takes values {(1 + ) -2mk , k = 0, 1, . . .}, then π h = 1 may be used in the exponential weighting (see (1.18)).

Remark 4. In contrast to Proposition 2 in [START_REF] Dalayan | Sharp oracle inequalities for aggregation of affine estimators[END_REF], the remainder term in (1.17) does depend neither on the cardinality of H nor n. It has the same structure as Kneip's oracle inequality in Theorem 1.1.

Remark 5. Comparing (1.17) with (1.12), we see that when

r H (µ) σ 2 ≈ 1,
then the remainder terms in (1.12) and (1.17) have the same order, namely, σ 2 . However, when r H (µ)

σ 2 1,
we get

2βσ 2 log C 1 + r H (µ) σ 2 Kσ 2 1 + r H (µ) σ 2 ,
thus showing that the upper bound for the remainder term in the oracle inequality related to the exponential weighting is better than the one in Theorem 1.1.

Remark 6. To compare the actual remainder terms in (1.17) and (1.12) and to find out what β is good from a practical viewpoint, a numerical experiment has been carried out. The goal in this experiment is to compare the exponential weighting methods for β = {0, 1, 2, 4} combined with the cubic smoothing splines for the equidistant design. In order to simulate these splines, the following family of ordered multipliers was used

H = h : h k = 1 1 + [α(k -1)] 4 , α > 0 .
The motivation of this family is due to the well-known asymptotic formula λ k (πk) 4 , k → ∞.

The simulations are organized as follows. For given A ∈ [0, 300], 100000 replications of the observations

Y k = µ k (A) + ξ k , k = 1, . . . , 400
are generated. Here µ(A) ∈ R 400 is a Gaussian vector with independent components and

Eµ k (A) = 0, Eµ 2 k (A) = A exp - k 2 2Σ 2 .
Next, the mean oracle risk

rH (A) = E min h∈H (1 -h) • µ(A) 2 + h 2
and the mean excess risk

∆β (A) = E µ(A) -μ(Y ) 2 -rH (A),
were computed with the help of the Monte-Carlo method. Finally, the data {r H (A), ∆β (A), A ∈ [0, 300]} are plotted on Figure 1 to illustrate graphically the remainder term ∆ β (r

H ) = E µ μ -µ 2 -r H (µ).
Looking at this picture we see that there is no universal β minimizing the excess risk uniformly in µ. However, it seems to us that a reasonable choice is β ≈ 1, but unfortunately, good oracle inequalities are not available for this case. Note also that the exponential weighting can provide only a moderate improvement of the risk compared to the classical unbiased risk estimation (β = 0). All methods demonstrate almost similar statistical performance. However, when r H (µ)/σ 2 is not large, the exponential weighting works usually better. 

Proofs

The proof of Theorem 1.3 is based on a combination of methods for deriving oracle inequalities proposed in [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] and [START_REF] Golubev | Exponential weighting and oracle inequalities for projection estimates[END_REF]. We indicate here solely the main steps in the proof, all details are given below. With the help of Stein's formula for the unbiased risk estimate it can be shown similar to [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] that for β ≥ 4

E µ μ -µ 2 ≤E µ h∈H w h (Y )r(Y, μh ) ≤r H (µ) + 2βσ 2 E µ h∈H w h (Y ) log π h w h (Y ) -2βσ 2 E µ log h∈H π h exp - r(Y, μh ) -r(Y, μĥ ) 2βσ 2 , (2.1) 
where ĥ = arg min h∈H r(Y, μh ).

To control the right-hand side at this equation, we make use of the ordering property of estimates μh , h ∈ H. First, we check using (??) that if π h is defined by (1.15), then

h∈H π h exp - r(Y, μh ) -r(Y, μĥ ) 2βσ 2 ≥ h≥ ĥ π h exp - r(Y, μh ) -r(Y, μĥ ) 2βσ 2 ≥ 1,
and so, the last term in Equation (2.1) is always negative.

The most difficult and delicate part of the proof is related to the average Kullback-Leibler divergence

E µ h∈H w h (Y ) log w h (Y ) π h .
To compute a good lower bound for this value, we follow the approach proposed in [START_REF] Golubev | Exponential weighting and oracle inequalities for projection estimates[END_REF]. The main idea here is to make use of the following property of the unbiased risk estimate: for any sufficiently small < 1, there exists ĥ depending on Y such that with probability 1, for all h ≥ ĥ r(Y, μh ) -r(Y, μĥ ) ≥ 2βσ 2 h 2 -ĥ 2 + 2βσ 

π h ≤ 1 + ĥ 2 K • β .
More cumbersome probabilistic technique is required to prove the following upper bound (see Lemma 2.5):

E µ ĥ 2 ≤ r H (µ) (1 -2β )σ 2 + √ 1 + 2β 1 -2β √ K.
Finally, combining the above equations, we arrive at (1.17).

Auxiliary facts

The next lemma collects some useful facts about a priori weights defined by (1.15). Let

D h = g ∈ H : h 1 ≤ g 1 ≤ h 1 + 1 .
Lemma 2.1. Under Condition 1.1, for any h ∈ H, the following assertions hold:

g≥h π g exp - g 1 β = exp - h 1 β , (2.2) 
g≤h π g ≤ 1 + h 2 K • β , (2.3 
)

g∈D h π g ≤ 1 + 1 β , (2.4 
)

g∈D h π g ≥ 1 2β exp - 1 β . (2.5) 
Proof. Denote for brevity

S(h) = g≥h π g exp - g 1 -h 1 β .

Then we have

S(h) -S(h

+ ) = π h + exp - h + 1 -h 1 β × g≥h + π g exp - g 1 -h + 1 β - g≥h + π g exp - g 1 -h + 1 β = π h -1 -exp - h + 1 -h 1 β S(h + ).
Therefore in view of the definition of π h , it is clear that if S(h max ) = 1, then S(h) = S(h + ), thus proving (2.2).

To prove (2.3), note that

π g ≤ g + 1 -g 1 β . (2.6)
This inequality follows from (1.15) and from the inequality inequality 1exp(-x) ≤ x. Hence, by Condition (1.16) we obtain

g≤h π g ≤ 1 + g≤h - π g ≤ 1 + 1 β g≤h - g + 1 -g 1 = 1 + h 1 -h min 1 β ≤ 1 + h 2 -h min 2 K • β ,
where h min is the minimal element in H.

The same arguments can be used in proving (2.4).

In order to check (2.5), denote by g h be the maximal element in D h . Then there are two possibilities

• g h 1 ≤ h 1 + 1/2, • g h 1 > h 1 + 1/2.
In the first case, g + h 1 -g h 1 ≥ 1/2, and thus by

g∈D h π g ≥ π g h ≥ 1 -exp - g + h 1 -g h 1 β ≥ 1 -exp - 1 2β . (2.7) 
In the second case, where h 1 + 1/2 < g h 1 ≤ h 1 + 1, we obtain by a Taylor expansion that for any g < g h

π g ≥ g + 1 -g 1 β exp - g h 1 -h 1 β ≥ g + 1 -g 1 β exp - 1 β ,
and thus

g∈D h π g ≥ g h 1 -h 1 β exp - 1 β ≥ 1 2β exp - 1 β .
This equation together with (2.7) ensures (2.5) since it can be checked with a simple algebra that

1 2β exp - 1 β ≤ 1 -exp - 1 2β , β > 0.
The following lemma is a cornerstone in the proof of Theorem 1.3.

Lemma 2.2. For β ≥ 4 the risk of μ(Y ) is bounded from above as follows:

E µ μ(Y ) -µ 2 ≤ E µ h∈H w h (Y )r(Y, μh ).
Proof. It is based essentially on the method proposed in [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF]. Unfortunately, we cannot use directly Corollary 2 in [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] because it holds only for h k , k = 1, . . . , n taking values 0 and 1. In the case of ordered smoothers h k belongs to the interval [0, 1] and we will see below that this fact results in the condition β ≥ 4.

Recall that the unbiased risk estimates for μi (Y ) and μh i (Y ) are computed as follows (see, e.g. [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF])

r(Y i , μi ) = [μ i (Y ) -Y i ] 2 + 2σ 2 ∂ μi (Y ) ∂Y i -σ 2 , r(Y i , μh i ) = [μ h i (Y ) -Y i ] 2 + 2σ 2 h i -σ 2 .
(2.8)

Since h∈H w h = 1, we have [μ i (Y ) -Y i ] 2 = h∈H w h (Y )[μ i (Y ) -Y i ] 2 = h∈H w h (Y )[μ i (Y ) -μh i (Y ) + μh i (Y ) -Y i ] 2 = h∈H w h (Y )[μ i (Y ) -μh i (Y )] 2 + h∈H w h (Y )[μ h i (Y ) -Y i ] 2 + 2 h∈H w h (Y )[μ i (Y ) -μh i (Y )][μ h i (Y ) -Y i ] = h∈H w h (Y )[μ i (Y ) -μh i (Y )] 2 + h∈H w h (Y )[μ h i (Y ) -Y i ] 2 + 2 h∈H w h (Y )[μ i (Y ) -μh i (Y )][μ h i (Y ) -μi (Y ) + μi (Y ) -Y i ] = - h∈H w h (Y )[μ i (Y ) -μh i (Y )] 2 + h∈H w h (Y )[μ h i (Y ) -Y i ] 2 .
(2.9)

From the definition of μ(Y ) we obviously get

∂ μi (Y ) ∂Y i = h∈H w h (Y ) ∂ μh i (Y ) ∂Y i + h∈H ∂w h (Y ) ∂Y i μh i (Y )
and combining this equation with (2.9) (see also (2.8)), we arrive at

r(Y i , μi ) = [μ i (Y ) -Y i ] 2 + 2σ 2 ∂ μi (Y ) ∂Y i -σ 2 = h∈H w h (Y ) [μ h i (Y ) -Y i ] 2 + 2σ 2 ∂ μh i (Y ) ∂Y i -σ 2 -[μ i (Y ) -μh i (Y )] 2 + 2σ 2 ∂ log(w h (Y )) ∂Y i μh i (Y ) = h∈H w h (Y )r(Y i , μh i )+ + h∈H w h (Y ) -[μ i (Y ) -μh i (Y )] 2 + 2σ 2 ∂ log[w h (Y )] ∂Y i μh i (Y ) = h∈H w h (Y )r(Y i , μh i ) + h∈H w h (Y ) -[μ i (Y ) -μh i (Y )] 2 + 2σ 2 ∂ log[w h (Y )] ∂Y i [μ h i (Y ) -μi (Y )] .
(2.10)

In deriving the above equation it was used that h∈H w h (Y ) = 1 and hence

h∈H ∂w h (Y ) ∂Y i = h∈H w h (Y ) ∂ log w h (Y ) ∂Y i = 0.
To control the second sum at the right hand side of (2.10) we make use of the following equation

log[w h (Y )] = - r(Y, μh ) 2βσ 2 + log(π h ) -log g∈H π g exp - r(Y, μg ) 2βσ 2 . (2.11) Therefore h∈H w h (Y ) ∂ log w h (Y ) ∂Y i [μ h i (Y ) -μi (Y )] = - 1 2βσ 2 h∈H w h (Y ) ∂ r(Y, μh ) ∂Y i [μ h i (Y ) -μi (Y )].
Substituting in the above equation (see (1.11)

) ∂ r(Y i , μh i ) ∂Y i = 2(1 -h i ) 2 Y i , we obtain h∈H w h (Y ) ∂ log w h (Y ) ∂Y i [μ h i (Y ) -μi (Y )] = - 1 βσ 2 Y 2 i h∈H w h (Y )[h i -1] 2 [h i -hi ], (2.12) 
where hi =

h∈H w h (Y )h i . Next noticing that (1 -h i ) 2 = (1 -hi ) 2 + ( hi -h i ) 2 + 2(1 -hi )( hi -h i ), we have -Y 2 i h∈H w h (Y )(h i -1) 2 (h i -hi ) = Y 2 i (1 -hi ) 2 h∈H w h (Y )( hi -h i ) +Y 2 i h∈H w h (Y )( hi -h i ) 2 ( hi -h i + 2 -2 hi ) = 2Y 2 i h∈H w h (Y )( hi -h i ) 2 1 - h i + hi 2 ≤ 2 h∈H w h (Y )[μ i (Y ) -μh i (Y )] 2 .
Combining this equation with (2.9)-(2.12), we finish the proof.

Lemma 2.3. Suppose {q h ≤ 1, h ∈ H} is a nonnegative sequence such that for all h ≥ h

q h ≤ exp -γ h 1 -h 1 -1 , γ > 0. Let W h = π h q h g∈H π g q g -1
and G be a subset in H. Then

H(W, π) def = h∈H W h log π h W h ≤ log h≤ h π h + exp[R(γ)] ,
where

R(γ) = log 2 γβe + h∈G π h + h∈G π h q h -1 8 γβe + h∈G π h . (2.13) 
Proof. Decompose H onto two subsets

Q = {h ≥ h} ∪ G, P = H \ Q
and denote for brevity

P = h∈P π h q h , Q = h∈Q π h q h .
By convexity of log(x) we obtain

H(W, π) = P P + Q h∈P π h q h P log (P + Q)/P q h /P + Q P + Q h∈Q π h q h Q log (P + Q)/Q q h /Q ≤ P P + Q log P + Q P + Q P + Q log P + Q Q + P P + Q log h∈P π h + 1 P + Q h∈Q π h q h log 1 q h + Q log(Q) . (2.14) 
Next, note that f (x) = x log(1/x) is an increasing function, when x ∈ (0, e -1 ], and max x∈[0,1] f (x) = e -1 . Therefore, if

q h ≤ exp -γ( h 1 -h 1 ) -1 , then q h log 1 q h ≤ exp -γ( h 1 -h 1 ) -1 γ( h 1 -h 1 ) + 1 ,
and we get

h∈Q π h q h log 1 q h ≤ 1 e h∈G π h + 1 e h≥ h π h exp -γ( h 1 -h 1 ) × γ( h 1 -h 1 ) + 1 .
We continue this equation with (2.6) as follows:

h∈Q π h q h log 1 q h ≤ 1 e h∈G π h + 1 βe h≥ h exp -γ( h 1 -h 1 ) × γ h 1 -h 1 + 1 h + 1 -h 1 . (2.15) 
In order to bound from above the right-hand side at this equation, let us index the elements in {h ∈ H : h ≥ h} denoting them as {h k , k ≥ 0}, so that h k+1 1 ≥ h k 1 and h 0 = h. Then, denoting for brevity

S i = h i 1 -h 1 ,
we can rewrite the sum at the right hand side in (2.15) as follows:

h≥ h exp -γ( h 1 -h 1 ) γ h 1 -h 1 + 1 h + 1 -h 1 = i≥0 exp -γS i γS i + 1 (S i+1 -S i ).
(2.16) To bound from above the right hand side at this equation, let us check that max

S k ,k≥1 i≥0 exp -γS i (S i+1 -S i ) ≤ 2 γ , (2.17) 
where max is computed over all nondecreasing sequences. Solving the equation

∂ ∂S k i≥0 exp -γS i [S i+1 -S i ] + = 0,
we obtain with a simple algebra

S k+1 -S k = exp γ(S k -S k-1 ) -1 γ . Hence exp(-γS k )(S k+1 -S k ) = exp[-γS k-1 ] -exp[-γS k ]
γ and summing up these equations, we arrive at (2.17). Next notice that for any z > 0 we have (1 + x) ≤ z exp(x/z). With this inequality and (2.17) we obtain for any z >

1 i≥0 exp -γS i γS i + 1 (S i+1 -S i ) ≤ z i≥0 exp[-γ(1 -1/z)S i ](S i+1 -S i ) ≤ 2z 2 (z -1)γ .
It can be seen easily that the minimun of the right hand side at this equation is attained at z = 2. So, we obtain 

i≥0 exp -γS i γS i + 1 (S i+1 -S i ) ≤ 8 γ . ( 2 
H(W, π) ≤ max x∈[0,1] -x log(x) -(1 -x) log(1 -x) +(1 -x) log h∈P π h + xρ , (2.22) 
where

ρ def = log(Q) + 1 Q h∈Q π h q h log 1 q h ≤ log 2 γβe + h∈G π h + h∈G π h q h -1 8 γβe + h∈G π h = R(γ).
It is seen easily that the minimizer x * of the right-hand side at (2.22) is a solution to the following equation .

Therefore from (2.22) we get

H(W, π) ≤ log h∈P π h -log(1 -x * ) -x * log x * 1 -x * + log h∈P π h -ρ = log h∈P π h -log(1 -x * ) = log h∈P π h + exp(ρ) ≤ log h< h π h + exp(ρ) .
Lemma 2.4. Let ξ i be i.i.d. N (0, 1) and H be a set of ordered multipliers. Then for any α ∈ (0, 1/4)

E max h∈H ± n i=1 (h 2 i -2h i )(ξ 2 i -1) -α n i=1 h 2 i ≤ K α , E max h∈H n i=1 (1 -h i ) 2 ξ i µ i -α n i=1 (1 -h i ) 2 µ 2 i ≤ K α ,
where K is a generic constant.

Proof. It follows from Lemma 2 in [START_REF] Golubev | On universal oracle inequalities related to high dimensional linear models[END_REF].

Lemma 2.5. Let

ĥ = max h : r(Y, μh ) -rH (Y ) ≤ 2β σ 2 h 2 -ĥ 2 + 2βσ 2 , (2.23)
where ∈ (0, 1/(2β)) and rH (Y ) = min h∈H r(Y, μh ). Then

E µ ĥ 2 ≤ r H (µ) (1 -2β )σ 2 + √ 1 + 2β 1 -2β √ K. (2.24)
Proof. By the definition of r(Y, μh ), see also (1.11) and (2.23), we get ĥ = max h :

(1 -h) • µ 2 + σ 2 (1 -2β ) h 2 + 2σ n i=1 (1 -h i ) 2 µ i ξ i + σ 2 n i=1 (h 2 i -2h i )(ξ 2 i -1) ≤ (1 -ĥ) • µ 2 + σ 2 (1 -2β ) ĥ 2 + 2σ n i=1 (1 -ĥi ) 2 µ i ξ i + σ 2 n i=1 ( ĥ2 i -2 ĥi )(ξ 2 i -1) + 2βσ 2 .
Let us fix some γ, γ > 0. Then we can rewrite the above equation as follows:

ĥ = max h : σ 2 (1 -2β -γ) h 2 + 2σ n i=1 (1 -h i ) 2 µ i ξ i + (1 -h) • µ 2 +σ 2 n i=1 (h 2 i -2h i )(ξ 2 i -1) + γσ 2 h 2 ≤ (1 + γ ) (1 -ĥ) • µ 2 + σ 2 (1 -2β + γ ) ĥ 2 +2σ n i=1 (1 -ĥi ) 2 µ i ξ i -γ (1 -ĥ) • µ 2 +σ 2 n i=1 ( ĥ2 i -2 ĥi )(ξ 2 i -1) -γ σ 2 ĥ 2 + 2βσ 2 . Therefore ĥ ≤ h def = max h : σ 2 (1 -2β -γ) h 2 + min g∈H 2σ n i=1 (1 -g i ) 2 µ i ξ i + (1 -g) • µ 2 + min g∈H σ 2 n i=1 (g 2 i -2g i )(ξ 2 i -1) + γσ 2 g 2 ≤(1 + γ ) (1 -ĥ)µ 2 + (1 -2β + γ )σ 2 ĥ 2 + max g∈H 2σ n i=1 (1 -g i ) 2 µ i ξ i -γ (1 -g) • µ 2 + max g∈H σ 2 n i=1 (g 2 i -2g i )(ξ 2 i -1) -γ σ 2 g 2 + 2βσ 2 .
Next, bounding max and min in this equation with the help of Lemma 2.4, we arrive at

(1 -2β )σ 2 E µ h 2 - Kσ 2 γ -γσ 2 E µ h 2 -Kσ 2 ≤ E µ (1 -ĥ) • µ 2 + (1 -2β )σ 2 E µ ĥ 2 + Kσ 2 γ + γ E µ (1 -ĥ) • µ 2 + Kσ 2 γ + γ σ 2 E µ ĥ 2 + 2βσ 2 .
Maximizing the left-hand side in γ ∈ (0, 1/4) and minimizing the right-hand side in γ ∈ (0, 1/4), we obtain with a simple algebra

σ 2 (1 -2β )E µ h 2 - K 1 -2β 1/2 2 ≤ E µ (1 -ĥ) • µ 2 + σ 2 E µ ĥ 2 + σ √ K 2 + 2β Kσ 2 1 -2β + (2β + K)σ 2 .
Combining this equation with ĥ 2 ≤ h 2 we arrive at

(1 -2β )E µ ĥ 2 ≤ σ -1 E µ (1 -ĥ) • µ 2 + σ 2 E µ ĥ 2 + √ 1 + 2β √ 1 -2β √ K + 2β + K.
(2.25)

To control the expectation at the right-hand side in (2.25), we note that for any given g ∈ H the following inequality

n i=1 [1 -ĥi ] 2 Y 2 i + 2σ 2 n i=1 ĥi ≤ n i=1 [1 -g i ] 2 Y 2 i + 2σ 2 n i=1 g i holds. Denoting for brevity ρ(h) def = (1 -h) • µ 2 + σ 2 h 2 ,
we rewrite this equation as follows:

ρ( ĥ)+2σ n i=1 (1 -ĥi ) 2 µ i ξ i + σ 2 n i=1 ( ĥ2 i -2 ĥi )(ξ 2 i -1) ≤ρ(g) + 2σ n i=1 (1 -g i ) 2 µ i ξ i + σ 2 n i=1 (g 2 i -2g i )(ξ 2 i -1).
So, for any γ > 0, we get with this equation and Lemma 2.4

E µ ρ( ĥ) ≤ρ(g) + γE µ ρ( ĥ)

+ 2σE µ max h∈H - n i=1 (1 -h i ) 2 µ i ξ i - γ 2σ n i=1 (1 -h i ) 2 µ 2 i + σ 2 E µ max h∈H n i=1 [2h i -h 2 i ](ξ 2 i -1) -γ n i=1 h 2 i ≤ρ(g) + Kσ 2 γ + γE µ ρ( ĥ).
Next, minimizing the right-hand side in g ∈ H and γ ∈ (0, 1/4), we obtain

E µ ρ( ĥ) ≤r H (µ) + 2σ KE µ ρ( ĥ) 1/2 + Kσ 2
or, equivalently,

E µ ρ( ĥ) 1/2 - √ Kσ 2 ≤ r H (µ) + Kσ 2 .
This yields obviously

E µ (1 -ĥ) • µ 2 + σ ĥ 2 1/2 ≤ r H (µ) + 2σ √ K.
Finally, substituting this inequality in (2.25), we get (2.24). , where ĥ = arg min h∈H r(Y, μh ). Therefore = log g≥ ĥ π g exp -

Proof of

(1 -g) • Y 2 -(1 -ĥ) • Y 2 2βσ 2 - 1 β n i=1
[g i -ĥi ] ≥ log g≥ ĥ π g exp -

1 β n i=1 [g i -ĥi ] ≥ 0.
(2.27) Our next step is to bound from above the second term at the right-hand side of Equation (2.26). We note that for all h > ĥ , where ĥ is defined by (2.23), r(Y, μh ) -rH (Y ) ≥ 2β σ 2 h 2 -ĥ 2 + 2βσ 2 .

Let q h = exp -r(Y, μh ) -rH (Y ) 2βσ 2 and G = h ∈ H : ĥ 1 ≤ h 1 < ĥ 1 + 1 .

By Condition (1.16) we have that for all h ≥ ĥ q h ≤ exp -2σ 2 βK • ( h 1 -ĥ 1 ) 2βσ 2 -1 = exp -K • ( h 1 -ĥ 1 ) -1 .

So, we obtain with Lemma 2.3, Jensen's inequality, and (2.3) 

E µ h∈H w h (Y ) log π h w h (Y ) ≤ E µ log h≤ ĥ π h + exp[R(K • )] ≤ E µ log 1 + ĥ 2 βK • + exp[R(K • )] ≤ log 1 + E µ ĥ 2 βK • + E µ exp[R(K • )] ≤ 2 log 1 + E µ ĥ 2 βK • 1/2 + E µ exp[R(K • )]

h∈HR

  (μ h , µ)is called the oracle risk.Obviously, the oracle estimateµ * (Y ) = h * • Y, where h * = arg min h∈H R(μ h , µ),
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