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Abstract

We investigate the influence of an electric field on trapped modes aris-
ing in a two-dimensional curved quantum waveguide Ω i.e. bound states
of the corresponding Laplace operator −∆Ω. Here the curvature of the
guide is supposed to satisfy some assumptions of analyticity, and decays as
O(|s|−ε), ε > 0 at infinity. We show that under conditions on the electric field
F, H(F ) := −∆Ω+F.x has resonances near the discrete eigenvalues of −∆Ω.

1 Introduction

This paper is a continuation and extension of earlier work [2]. Let us recall the
problem; for more details we refer to [2, 8]. The object of our interest is the Stark
operator

H(F ) = −∆Ω + F · x, F ∈ R
2, x = (x, y) ∈ Ω (1.1)

on L2(Ω) where Ω is a curved strip in R2 of constant width d > 0 defined around a
smooth curve Γ. The operator −∆Ω is defined in a standard way by means of DBC
on the boundary of Ω, ∂Ω [13].
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We assume that Ω is not straight, let s ∈ R → γ(s) be the signed curvature of
Γ. In [2] it is supposed that γ ∈ C2

0 (R) and d‖γ‖∞ < 1. Here we consider a more
general situation namely we assume that

(h1) γ ∈ C2(R) and there exist a0, r0 > 0 s.t. γ has an analytic extension in

Oa0,r0 = {z ∈ C, | arg z| < a0} ∪ {z ∈ C, |π − arg z| < a0} ∩ {|Rez| > r0}.

Moreover γ satisfies d‖Reγ‖∞ < 1.

(h2) There exists ε > 3 s.t. γ(z) = O(|z|−ε) as |Rez| → ∞.

Then Ω is asymptotically straight. We choose the lower boundary of Ω near s = −∞
as the reference curve. Introduce orthogonal coordinates (s, u) ∈ Ω := R × (0, d),
related to (x, y) ∈ Ω via the relations [6],

x(s, u) =

∫ s

0

cos(α(t))dt−u sin(α(s)), y(s, u) =

∫ s

0

sin(α(t))dt+u cos(α(s)) (1.2)

where α(s) =

∫ s

−∞

γ(t) dt. Set α0 =

∫ +∞

−∞

γ(t) dt.

Since we have supposed d‖γ‖∞ < 1, the operator −∆Ω is unitarily equivalent to

H = H0 + V0, H0 = Ts + Tu (1.3)

in the space L2(Ω), with DBC on ∂Ω [6], where

Ts := −∂sg∂s, Tu := −∂2u, g(s, u) = (1 + uγ(s))−2, (1.4)

and

V0(s, u) = −
γ(s)2

4(1 + uγ(s))2
+

uγ′′(s)

2(1 + uγ(s))3
−

5

4

u2γ′(s)2

(1 + uγ(s))4
. (1.5)

With our assumptions, the potential V0 is bounded and then H = H0 + V0 is a
self-adjoint operator with domain [7, 12],

D(H) = D(H0) = H1
0(Ω) ∩H2(Ω). (1.6)

Here and hereinafter we use standard notation for Sobolev space. Moreover the
essential spectrum of this operator, σess(H) = [λ0,+∞), where {λ0, λ1, ....} are the
transverse modes of the system i.e. the eigenvalues of the operator −∂2u on L2(0, d)
with DBC on the boundary {0, d} [4].
Denote the exterior field as F = F (cos(η), sin(η)). With respect to the new coordi-
nates, the field interaction is then

W (F )(s, u) := F · x = F

∫ s

0

cos (η − α(t)) dt+ Fu sin (η − α(s)) . (1.7)
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Here we study a field regime which was not considered so far i.e. the intensity
of the field is the free parameter in 0 < F < 1 and the direction η is fixed satisfying

|η| <
π

2
and |η − α0| >

π

2
. (1.8)

As discussed in the Section 2, this implies thatW (F )(s, u) → −∞ as s→ ±∞. Thus
the non trapping region for a given negative energy E contains both a neighbourhood
of s = −∞ and s = ∞.

We denote by H0(F ) = Ts + Tu + W (F ) and H(F ) = H0(F ) + V0. Then a
straightforward extension of the Theorem 2.1 of [2] shows that for F > 0, the Stark
operator H(F ) is essentially self-adjoint and σ(H(F )) = R.
We are interested in the study of the influence of the electric field on the discrete
spectrum of H . We want to show that the eigenvalues of H give rise to resonances
for the Stark operator H(F ), F > 0. The resonances of H(F ) are understood in
the standard way [1, 10, 13]. Evidently if H has no discrete eigenvalue below λ0
then this result proves that H(F) has neither resonance or embedded eigenvalue in
{z ∈ C,Rez < λ0}. For a discussion about eigenvalues of H we refer the reader to [4].

To study this problem we need an additional assumption,

(h3) Imγ(z) ≥ 0 for z ∈ Oa0,r0.

Remark 1.1. i) In fact it is only necessary to suppose that the product uImγ(z) ≥ 0
for z ∈ Oa0,r0. So the case Imγ(z) ≤ 0 is reducing to the present one by taking the
other boundary as reference curve.
ii) We can easily check that γ(s) = α

1+s2n
; n ≥ 2 for suitable α > 0 satisfies our

assumptions.

The study of the Stark effect was considered by several authors, see e.g. [3, 9]
for a discussion concerning the case of Shrödinger operators on Rn and [2, 5] for
operators defined on curved strips. In particular in [2], under assumptions on the
curvature above mentioned and if |η| < π

2
and |η−α0| <

π
2
, it is proved the existence

of Stark resonances having an width exponentially small w.r.t. F as F tends to zero.
In this paper we would like to extend this result under weaker assumptions on γ i.e.
hypotheses (h1-3) and in the field regime (1.8).
More precisely we will show the following.

Theorem 1.2. Suppose (h1-3). Let E0 be an discrete eigenvalue of H of finite mul-
tiplicity n ∈ N. There exist F0 > 0 and a dense subset A of L2(Ω) such that for
0 < F ≤ F0

i) z ∈ C, Imz > 0 → Rϕ(z) =
(

(H(F ) − z)−1ϕ, ϕ), ϕ ∈ A
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has an meromorphic extension in a complex neighbourhood νE0
of E0, through the

cut due to the presence of the continuous spectrum of H(F ).
ii) ∪ϕ∈A{poles of Rϕ(z)} ∩ νE0

contains n poles Z0(F ), ...Zn−1(F ) converging to E0

when F → 0.
iii) For 0 ≤ k ≤ n− 1 there exist two constants 0 < c1, c2 such that for 0 < F ≤ F0,

|ImZk| ≤ c1e
−

c2

F .

In this paper we only give elements we need to extend the strategy of [2] to the
situation we now consider. In particular Theorem 1.2 iii) is covered by [2, Section
6], so we omit the proof here.

The plan of this work is as follows. In section 2 we introduce a local modification
of the operator H(F ) we need to perform the meromorphic continuation of the
resolvent of H(F ). Some elements of the the complex distortion theory are given in
the Section 3. In section 4 we define the extension of the resolvent of H(F ), this
allows to define the resonances of H(F ). The existence of resonances is proved in
the Section 6. The section 7 is devoted to some concluding remarks.

2 The reference operator

To prove the theorem 1.2 we use the distortion theory such that it can be found in
[2, 3]. The first step is to consider a local modification of the operator H0(F ) called
the reference operator. It is defined as follow. Note that

if s < 0, W (F, s, u) = F
(

s cos(η) + u sin(η) + A−

)

+R−(F, s), (2.9)

where R−(F, s) = F
(

∫ s

−∞

(cos(η − α(t)) − cos(η))dt+ u(sin(η − α(s)) − sin(η))
)

.

if s ≥ 0, W (F, s, u) = F
(

s cos(η − α0) + u sin(η − α0) + A+

)

+R+(F, s) (2.10)

where R+(F, s) = F
(

∫ ∞

s

(cos(η−α0)−cos(η−α(t))dt+u(sin(η−α(s))−sin(η−α0))
)

.

The constants A−, A+ are

A− :=

∫ 0

−∞

(cos(η) − cos(η − α(t))dt, A+ :=

∫ ∞

0

(cos(η − α(t)) − cos(η − α0)dt.

In view of (h2) and

α(s) = O(
1

|s|ε−1
), as s→ −∞; α(s) = α0 +O(

1

|s|ε−1
), as s → ∞, (2.11)
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A−, A+ are well defined. Moreover we have,

R−(F, s), R+(F, s) = O(
F

|s|ε−2
), as s→ ±∞. (2.12)

Set R−(F, s) = 0 for s ≥ 0 and R+(F, s) = 0 for s < 0.
Hence it is quite natural to consider a modified interaction defined as,

W̃ (F )(s, u) = F (s cos(η) + u sin(η) + A−) for s < 0

and
W̃ (F )(s, u) = F (s cos(η − α0) + u sin(η − α0) + A+) for s ≥ 0.

In particular we get

W (F ) − W̃ (F ) = R(F ) := R+(F ) +R−(F ) = O(
F

|s|ε−2
) as s→ ±∞. (2.13)

Notice also that

R′(F ) = O(
F

|s|ε−1
), R′′(F ) = O(

F

|s|ε
)as s→ ±∞. (2.14)

Let H̃0(F ) be the reference operator in  L2(Ω),

H̃0(F ) := H0 + W̃ (F ).

H̃0(F ) differs from H0(F ) by an additional bounded operator, then it is essentially
self-adjoint and σ(H̃0(F )) = R.

3 Complex distortion

In this section, we give necessary elements for the complex distortion theory [1, 3, 10]
we need to define the family of distorted operators {Hθ(F ), F ≤ F0}, for some F0 > 0
and complex values of θ. We denote by β = Imθ.

Let E ∈ R, E < 0 be the reference energy and 0 < δE < 1
2

min{1, |E|}. Denote
E− = E − δE and E+ = E + δE. We choose a real function φ ∈ C∞(R) such that:

φ(t) =

{

1 if t < E,
0 if t > E+

(3.15)

and satisfying ‖φ(k)‖∞ = O(( 1
δE

)k).
For θ ∈ R, we introduce the distortion on Ω, sθ(s, u) := (s+ θf(s), u) where

f(s) =

{

− 1
Fcos(η)

Φ−(s) if s ≤ 0,

− 1
F cos(η−α0)

Φ+(s) if s > 0
(3.16)
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where Φ−(s) = φ
(

F cos(η)s
)

and Φ+(s) = φ
(

F cos(η − α0)s
)

. Set Φ(s) = Φ−(s) +
Φ+(s).

So for k ≥ 1, ‖Φ(k)‖∞ ≤
(

F
δE

)k
, ‖f (k)‖∞ ≤ F k−1

(δE)k
.

In view of the definition (3.16), for small F , sθ is an translation along the longi-
tudinal axis in neighbourood of s = ±∞ since

f(s) = −
1

F cos(η)
for s ≤

E

F cos η
and f(s) = −

1

F cos(η − α0)
for s ≥

E

cos(η − α0)
.

(3.17)
Assume |θ| < δE. Let Uθ be the operator defined on L2(Ω) by

Uθψ(s, u) = (1 + θf ′)
1

2ψ (sθ(s, u)) . (3.18)

The operators Uθ are unitary and generate the family,

Hθ(F ) = UθH(F )U−1
θ = H0,θ(F ) + V0,θ (3.19)

where
H0,θ(F ) := Ts,θ + Tu +Wθ(F ), (3.20)

with
Ts,θ = −(1 + θf ′)−

1

2∂s(1 + θf ′)−1gθ∂s(1 + θf ′)−
1

2 , (3.21)

gθ = (1 + uγθ)
−2, γθ = γ ◦ sθ, Wθ(F ) = W (F ) ◦ sθ and V0,θ := V0 ◦ sθ.

We also have
Ts,θ = −∂s(1 + θf ′)−2gθ∂s + Sθ, (3.22)

where

Sθ = −
5gθ
4

θ2f ′′2

(1 + θf ′)4
+
gθ
2

θf
′′′

(1 + θf ′)3
+
g′θ
2

θf
′′

(1 + θf ′)3
. (3.23)

For small F ,the analytic extension of the family {Hθ(F ), θ ∈ R, |θ| < δE} to a
complex disk |θ| ≤ θ0 for some θ0 > 0 depends strongly on the analytic property of
the dilated curvature γθ. But clearly (h1) and the definition (3.18) of sθ imply that
if 0 < F ≤ F0 with F0 is small enough, s ∈ R, θ → γθ(s) is analytic in |θ| ≤ a0.

Then the same arguments as in the proof of [2, Proposition (3.1)] lead to

Proposition 3.3. Suppose (h1-2). There exist F0 > 0 and 0 < β0 ≤ min{δE, a0}
such that for all 0 < F ≤ F0, {Hθ(F ); |θ| ≤ β0} is a self-adjoint analytic family of
operators.

It should be noted that all the critical values β0 and F0 that appear in this article
are independent from each other.
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In a similar way let H̃0,θ(F ) = H0,θ + W̃θ(F ), where W̃θ(F ) = W̃θ(F ) ◦ sθ. Since

Rθ(F ) = Wθ(F ) − W̃θ(F ) = R(F ) + iβfR′(F ) +O(
Fβ2f 2

|s|ε
), (3.24)

then from (2.13) and (2.14) and (h1), the multipliers Wθ(F )− W̃θ(F ) and V0,θ have
an analytic extension as bounded operators in |β| ≤ β0. Hence we get

Corollary 3.4. For all 0 < F < F0 the family of operators {H̃0,θ(F ); |θ| ≤ β0} is a
self-adjoint analytic family of operators.

For some technical points of the Section 6 below, we need to introduce an another
family of operators on L2(Ω), let θ ∈ R, |θ| ≤ δE and

H0,θ = Uθ(Ts + Tu)U−1
θ = Ts,θ + Tu, (3.25)

Note that H0,θ 6= H0,θ(F = 0). Indeed the distortion is supported in {|s| ≥ c′/F}
for some c′ > 0, thus at least formally H0,θ(F = 0) = H0.
Under our assumptions (h1) and (h2). Following arguments of [2, Proposition (3.1)]
evoqued above, it easy to see that there exist F0 > 0 and 0 < β0 ≤ min{δE, a0}
such that for all 0 < F < F0, {H0,θ; |θ| ≤ β0}, D(H0,θ) = D(H0) is also a self-adjoint
analytic family of operators.
In fact the main property of H0,θ we use in the Section 6 below is

Proposition 3.5. Suppose (h1-3) hold. Then there exists 0 < β0 and 0 < F0

such that for 0 < F ≤ F0, {H0,θ; |θ| ≤ β0 ≤ min{δE, a0}} is a family of sectorial
operators with a sector contained in

S = {z ∈ C,−2cβ ≤ arg(z − λ0 + ζ) ≤ 0},

for some strictly positive constant c. Here ζ is an error term with Reζ, Imζ ≥ 0 and
|ζ | = O(βF 2).

Proof. We may suppose θ = iβ, 0 ≤ β ≤ β0. Note first that for β small enough then

γθ(s) = γ(s+ iβf(s)) = γ(s) + iβfγ′(s) +O(
β2f 2

|s|ε
), (3.26)

By using (3.22) we have for ϕ ∈ D(H0), ‖ϕ‖ = 1,

((H0,θ − λ0)ϕ, ϕ) = (Gθ∂sϕ, ∂sϕ) + (Sθϕ, ϕ) + ((Tu − λ0)ϕ, ϕ) (3.27)

where Gθ = (1 + θf ′)−2gθ. Consider q := (Gθ∂sϕ, ∂sϕ) − ((Tu − λ0)ϕ, ϕ). By using
(h2), we have for F and β small,

ReG−1
θ = ((1 + uReγθ)

2 − (uImγθ)
2)(1 − β2f ′2) − 4βf ′uImγθ(1 + Reγθ)

≥ (1 + uReγθ)
2(1 − O(β2)) +O(β2F ε1) ≥ c1, (3.28)
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for some constant c1 > 0 and then Req ≥ c1‖∂sϕ‖. In the other hand,

ImG−1
θ = 2

(

βf ′
(

(1 + uReγθ)
2 − (uImγθ)

2
)

+ uImγθ(1 + Reγθ)(1 − β2f ′2)
)

. (3.29)

Since f ′ ≥ 0 and by (h3), Imγθ ≥ 0 then for β and F small ImG−1
θ ≥ 0, hence

Imq ≤ 0. In the other hand in view of (3.26), it is straightforward to check that for
F and β small enough there exist c2 > 0 such that |Imq| ≤ 2βc2‖∂sϕ‖. Then by
(3.28),

q ∈ {z ∈ C,−2cβ ≤ arg(z − λ0) ≤ 0} (3.30)

for some stricly positive constant c. But we know that (Sθϕ, ϕ) = O(βF 2), then
(3.27) together with (3.30) conclude the proof of the Proposition 3.26.

Remark 3.6. The main point in the proof of the Propositions 3.5 and 4.7 below, is
the fact that Imγθ ≥ 0 which is insured by (h3). In view of (3.26), then a necessary
condition to satisfy this condition for β small is given by

f(s)γ′ ≥ 0.

This means that the curvature has to satisfy γ′ ≤ 0 in a neighbourhood of s = −∞
and γ′ ≥ 0 in a neighbourhood of s = ∞.
Roughly speaking this last inequality is a geometrical non trapping estimate, in the
spirit of those given in [3] for the case of electric perturbations.

4 Spectral estimates

The main result in this section is the following. Let θ = iβ. f ♯ = Φ − 1 where Φ
defined above in the Section 2, clearly f ♯ < f ′. Set µθ = 1 + θf ♯ and

νθ =

{

z ∈ C, Imµ2
θ(E− + λ0 − z) < β

δE

4

}

, (4.31)

In the sequel we denote by νθ
c the complement set of νθ. Let ρ(Hθ(F )) be the

resolvent set of Hθ(F ). Consider first θ = iβ then

Proposition 4.7. Let E < 0 be an reference energy. Suppose (h1-3). Then there
exists 0 < β0 ≤ min{δE, a0} and F0 > 0 such that for 0 < β ≤ β0, and 0 < F ≤ F0,

(i) νθ ⊂ ρ(H̃0,θ(F ))

(ii) For z ∈ νθ, ‖(H̃0,θ(F ) − z)−1‖ ≤ dist−1(z, νcθ).

Proof. Note that in view of (3.21), we have

µθTs,θµθ = T1(θ) + iT2(θ) + µθ (Ts,θµθ) ,

8



where T1(θ) = −∂sRe{µ2
θ(1 + θf ′)−2gθ}∂s and T2(θ) = −∂sIm{µ2

θ(1 + θf ′)−2gθ}∂s.
T1(θ), T2(θ) are symmetric operators, let us check that under our assumptions T2(θ)
is actually negative.
It then sufficient to show that q′ := Imµ2

θ(1 − iβf ′)2(1 + uγ̄θ)
2 ≤ 0. We have

q′ =2β
(

f ♯ − f ′
) (

1 − β2f ′f ♯
) (

(1 + uReγθ)
2 − u2Imγθ

2)
)

− 2uImγθ(1 + uReγθ)
(

(1 − β2(f ♯)2)(1 − β2(f ′)2) + 4β2f ♯f ′
)

By using (3.26) together with (h1), for F and β sufficiently small we have

(

1 − β2f ′f ♯
) (

(1 + u(Reγθ)
2 − u2Imγθ

2
)

) ≥ 0

and
(1 − β2(f ′)2)(1 − β2(f ♯)2) + 4β2f ♯f ′ ≥ 0.

We know that f ♯ < f ′, therefore, in view of (h3) we get our claim.
In the other hand we have

Imµ2
θ

(

W̃θ(F ) − E−

)

=
(

1 − β2f ♯2
)

ImW̃θ(F ) + 2βf ♯
(

ReW̃θ(F ) − E−

)

= −β
(

(1 − β2(f ♯)2)Φ + 2(1 − Φ)
(

W̃ (F ) − E−

))

.

To estimate the r.h.s. of this expression, we note that from the definition of W̃ (F ),
if s ∈ supp(1 − Φ), W̃ (F ) −E− > δE +O(F ). Accordingly for F and β small,

Imµ2
θ

(

W̃θ(F ) − E−

)

≤ −β
δE

2
(4.32)

Thus we get

Imµθ

(

H̃0,θ(F ) − z
)

µθ = Imµθ(Ts,θµθ) + T2(θ) + Imµ2
θTu + Imµ2

θ

(

W̃θ(F ) −E−

)

+

Imµ2
θ(E− − z) ≤ Imµθ(Ts,θµθ) − β

δE

2
+ Imµ2

θ(E− + λ0 − z)

and since
Imµθ(Ts,θµθ) = O(β2F ), (4.33)

then for z ∈ νθ, for F and β small enough

Imµθ

(

H̃0,θ(F ) − z
)

µθ ≤ −β
δE

4
+ Imµ2

θ(E− + λ0 − z) < 0.

Thus the proof of the proposition follows (see [3] or [7] for more details).

By standard arguments the Proposition 4.7 holds for 0 < |θ| ≤ β0, 0 < Imθ and
0 < F < F0.
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5 Meromorphic continuation of the resolvent

Under conditions of the Proposition 4.7. Set Vθ = V0,θ +Wθ(F )− W̃θ(F ). Introduce
the following operator, let θ ∈ C, |θ| < β0, 0 < F ≤ F0, z ∈ νθ and

Kθ(F, z) = Vθ(H̃0,θ(F ) − z)−1. (5.34)

Then

Proposition 5.8. Suppose (h1-3). Then there exists 0 < 0 < β0 ≤ min{δE, a0}
and F0 > 0 such that for 0 < |θ| ≤ β0, Imθ = β > 0, and 0 < F ≤ F0,

(i) z ∈ νθ → Kθ(F, z) is an analytic compact operator valued function.

(ii) For z ∈ νθ, Imz > 0 large enough, ‖Kθ(F, z)‖ < 1.

Proof. Let us first show that under these conditions, Kθ(F, z), θ = iβ, Imz > 0 are
compact operators, this allows to prove the Proposition 5.8 i). We know from (3.24)
and (h1-2) that Vθ = O( F

|s|ǫ−1 ) as s → ±∞. Denote by IH the identity operator on

the space H. Let h0 = −∂2s ⊗ IL2(0,d) + IL2(R) ⊗ Tu. Then the decay property of Vθ
imply that the operator Vθ(h0 − z)−1 is compact for Rez < λ0 (see e.g. [2] or [8])

We have
H̃0,θ(F ) − h0 = ∂s(1 −Gθ)∂s + Sθ + W̃θ(F ) (5.35)

where Gθ, Sθ are given respectively by (3.27), (3.23) and W̃θ(F ) is defined in the
Section 3. Hence,

Kθ(F, z) = Vθ(h0− z)−1 +Vθ(h0− z)−1
(

W̃θ(F ) + ∂s(1−Gθ)∂s +Sθ

)

(H̃0,θ(F )− z)−1.
(5.36)

Let first show that the operator I1 := Vθ(h0−z)
−1W̃θ(F )(H̃0,θ(F )−z)−1 is compact.

This follows from the Herbst’s argument [8]. Indeed let l(s) := (1 + |s|2)1/2, then

I1 = Vθl(h0 − z)−1 W̃θ(F )

l
(H̃0,θ(F ) − z)−1+

Vθ(h0 − z)−1[l, h0](h0 − z)−1 W̃θ(F )

l
(H̃0,θ(F ) − z)−1. (5.37)

Where [A,B] denotes the commutator of the operators A and B. The operator
Vθl(h0 − z)−1 is compact since Vθ(s, u)l(s) = O( F

|s|ε−3 ) as s → ±∞ and ε > 3. This

holds true for the first operator of the r.h.s. of (5.37) since W̃θ(F )
l

(H̃0,θ(F )−z)−1 is a
bounded operator. In the other hand by the closed graph theorem, [l, h0](h0 − z)−1

is a bounded operator. So it follows that the second operator of of the r.h.s. of
(5.37) and then I1 is also compact.
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Set I2 = Vθ(h0−z)
−1∂s(1−Gθ)∂s(H̃0,θ−z)

−1. Let us show ∂s(1−Gθ)∂s(H̃0,θ(F )−
z)−1, Imz > 0 is a bounded operators. In view of the Corollary 3.4, we are left to
show that ∂s(1 −Gθ)∂s(H̃0(F ) − z)−1 is bounded. We have

∂s(1−Gθ)∂s(H̃0(F )−z)−1 = ∂s(1−Gθ)∂s(H0−z)
−1+∂s(1−Gθ)∂s(H0−z)

−1W̃ (F )(H̃0(F )−z)−1.

By the closed graph theorem ∂s(1 − Gθ)∂s(H0 − z)−1 is bounded. Now the second
term of the r.h.s. of this equality can be written as

∂s(1 −Gθ)∂sl(H0 − z)−1 W̃ (F )

l
(H̃0(F ) − z)−1+

∂s(1 −Gθ)∂s(H0 − z)−1[H0, l](H0 − z)−1 W̃ (F )

l
(H̃0(F ) − z)−1. (5.38)

Notice that under (h2) then (1 − Gθ)l as well as (1 − Gθ)l
′ are bounded functions.

Hence following the same arguments as above we are done. Evidently I3 = Vθ(h0 −
z)−1Sθ(H̃0,θ − z)−1 is also a compact operator. This proves our claim.

In the other hand the Proposition 4.7 implies ii).

We now prove the first part of the Theorem 1.2.
Let 0 < F ≤ F0 and E < 0. For 0 < |θ| < β0, Imθ > 0 by the Proposition 4.7, the
Lemma 5.8 and the Fredholm alternative theorem, the operator IL2(Ω) + Kθ(F, z)
is invertible for all z ∈ νθ \ R where R is a discrete set. In the bounded operator
sense, we have

(Hθ(F ) − z)−1 = (H̃0,θ(F ) − z)−1
(

IL2(Ω) +Kθ(F, z)
)−1

. (5.39)

This implies that νθ \ R ⊂ ρ(Hθ(F )).
Choose β0 so small that there exists a dense subset of analytic vectors associated

to the transformation Uθ in |θ| < β0 (see [2, Remark (3.3)]). We denote this set by
A. Then standards arguments of the distortion theory, and (5.39) imply that for all
ϕ ∈ A

Rϕ(z) =
(

(H(F ) − z)−1ϕ, ϕ
)

, Imz > 0 (5.40)

has an meromophic extension in νθ given by

Rϕ(z) =
(

(H̃0,θ(F ) − z)−1
(

IL2(Ω) +Kθ(F, z)
)−1

ϕθ, ϕθ̄

)

We define the resonances of the operator Hθ(F ) as the poles of Rϕ. They are locally
θ-independent and in view of (5.39) they are the discrete eigenvalues of the operator
Hθ(F ).
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6 Resonances

We want to prove the following result, let θ = iβ, 0 < β ≤ β0, β0 as in the
Proposition 5.8 and the proof of the Theorem 1.2 i). Then

Proposition 6.9. Let E0 is a negative eigenvalue of H with multiplicity n. There
exists F0 > 0 such that for 0 < F ≤ F0,Hθ(F ) has exactly n eigenvalues denoted by
Z0, ..., Zn−1, satisfying lim

F→0
|Zj − E0| = 0.

The Proposition 6.9 implying the Theorem 1.2 ii).

Proof. Following [2, Section 5], to prove the Proposition 6.9 we only have to prove
that under (h1-3), for E < 0, θ = iβ, 0 < β ≤ β0. Then

‖Kθ(F, z) −K(z)‖ → 0 as F → 0 (6.41)

uniformly in z ∈ K, where K is a compact subset of νθ
⋂

ρ(H0). By a continuity
argument it is sufficient to prove that for some z0 ∈ K. We have

Kθ(F, z0) −K(z0) =(V0,θ − V0)(H0 − z0)
−1 + (Wθ(F ) − W̃θ(F ))(H̃0,θ(F ) − z0)

−1+

V0,θ((H̃0,θ(F ) − z0)
−1 − (H0 − z0)

−1). (6.42)

From (6.42), the proof needs several steps. First we consider the two first term of
the r.h.s. of (6.42). In view of (6.42) and (3.19), we can see that

‖V0,θ − V0‖∞ ≤ C
(

‖γθ − γ‖∞ + ‖γ′θ − γ′‖∞ + ‖γ
′′

θ − γ
′′

‖∞
)

for some constant C > 0. Hence we can estimate each term of the r.h.s. of this last
inequality by using Taylor expansions w.r.t. θ (see e.g. (3.26). Then we find

‖γθ − γ‖∞, ‖γ
′
θ − γ′‖∞, ‖γ

′′

θ − γ
′′

‖∞ = O(βF ε−1)

and then ‖(V0,θ − V0)(H0 − z0)
−1‖ → 0 as F → 0. The Proposition 4.7 and (3.24)

imply that ‖(Wθ(F ) − W̃θ(F ))(H̃0,θ(F ) − z0)
−1‖ → 0 as F → 0. Hence we are left

to show that this is true for the third term of the r.h.s of (6.42) i.e.

δH(z0) := V0,θ((H̃0,θ(F ) − z0)
−1 − (H0 − z0)

−1).

Let H0,θ be the operator introduced in the Section 3. We use the estimate

‖δH(z0)‖ ≤ ‖V0,θ((H0,θ − z0)
−1 − (H̃0,θ(F ) − z0)

−1)‖+

‖V0,θ((H0,θ − z0)
−1 −H0 − z0)

−1)‖ := δ1H(z0) + δ2H(z0) (6.43)

First we consider

δ1H(z0) = V0,θ(H0,θ − z0)
−1W̃θ(F )(H̃0,θ(F ) − z0)

−1.

12



Following arguments of the proof of the Proposition (5.8) we have

δ1H(z0) =V0,θl(H0,θ − z0)
−1W̃θ(F )

l
(H̃0,θ(F ) − z0)

−1+

V0,θ[(H0,θ − z0)
−1, l]

W̃θ(F )

l
(H̃0,θ(F ) − z0)

−1. (6.44)

Clearly ‖ W̃θ(F )
l

‖ → 0 as F → 0. In the other hand we know that V0,θ, V0,θl are
bounded uniformly w.r.t. F . In view of the Propositions 3.5 and 4.7, this also holds
for the resolvents (H0,θ − z0)

−1 and (H̃0,θ(F )− z0)
−1. Let us show that this is again

true for [(H0,θ − z0)
−1, l] then this will imply that ‖δ1H(z0)‖ → 0 as F → 0.

We have,

[(H0,θ − z0)
−1, l] = −(H0,θ − z0)

−1((Gθl
′)′ + 2l′Gθ∂s)(H0,θ − z0)

−1.

and ReGθ ≥ 0, ImGθ ≤ 0. It is then sufficient to show that ‖(ReGθ)
1/2∂s(H0,θ −

z0)
−1‖ and ‖(−ImGθ)

1/2∂s(H0,θ − z0)
−1‖ are uniformly bounded w.r.t. F for F

small. Recall that H0,θ = −∂sGθ∂s + Tu + Sθ. Then our last claim follows from the
arguments evoked above and that for ϕ ∈ L2(Ω), ‖ϕ‖ = 1,

‖(ReGθ)
1/2∂s(H0,θ − z0)

−1ϕ‖ ≤ Re
(

(H0,θ − z0)
−1ϕ, ϕ

)

)

−Re
(

(H0,θ − z0)
−1ϕ, (Sθ + z0)(H0,θ − z0)

−1ϕ
)

and

‖(−ImGθ)
1/2∂s(H0,θ − z0)

−1ϕ‖ = −Im
(

(H0,θ − z0)
−1ϕ, ϕ

)

)

+Im
(

(H0,θ − z0)
−1ϕ, (Sθ + z0)(H0,θ − z0)

−1ϕ
)

.

Evidently this imply that there exists a constant c′ > 0 s.t.

‖(ReGθ)
1/2∂s(H0,θ−z0)

−1‖, ‖(−ImGθ)
1/2∂s(H0,θ−z0)

−1‖ ≤ ‖(H0,θ−z0)
−1‖+c′‖(H0,θ−z0)

−1‖2.

Now consider

δ2H(z0) = V0,θ(H0,θ − z0)
−1(Ts − Ts,θ)(H0 − z0)

−1.

For F and β small, Ts − Ts,θ = ∂sG∂s + Sθ with G = (γθ − γ)G1 + iβf ′G2 where
G1, G2 are uniformly bounded functions w.r.t. F (see e.g. (1.4) and (3.22).
Moreover we know from (3.26) that γθ − γ = O(βF ε−1), and Sθ = O(βF 2) then

‖V0,θ(H0,θ − z0)
−1(∂s(γθ − γ)G1∂s+Sθ)(H0 − z0)

−1‖ ≤ (6.45)

Cβ
(

F ε‖(H0,θ − z0)
−1‖‖∂sG3∂s(H0 − z0)

−1‖+

F 2‖(H0,θ − z0)
−1‖‖(H0 − z0)

−1‖
)
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for some constant C > 0. Where G3 is uniformly bounded w.r.t. F . So this term
vanishes as F → 0.

To study the second term, we use a different strategy. We have

V0,θ(H0,θ − z0)
−1∂sf

′G2∂s(H0 − z0)
−1 = (6.46)

V0,θ(H0 − z0)
−1(H0 − z0)(H0,θ − z0)

−1∂sf
′G2∂s(H0 − z0)

−1

We know that the operator V0,θ(H0 − z)−1 is a compact operator (see e.g. the
proof of the Lemma 5.8) then to prove that the operator in the l.h.s. of (6.46)
converges in the norm sense to 0B(L2(Ω)) as F → 0, it is sufficient to show that
(H0− z0)(H0,θ − z0)

−1∂sf
′G2∂s(H0− z0)

−1 converges strongly to 0B(L2(Ω)) as F → 0.

Recall that C = {ϕ = ϕ̃⌊Ω, ϕ̃ ∈ C∞
0 (R2); ϕ̃⌊∂Ω= 0} is a core of H0, thus for

z ∈ ρ(H0), C
′ = (H0 − z0)C is dense in L2(Ω). Set ψ = (H0 − z0)ϕ, ϕ ∈ C.

Since the field f is choosed s.t. f ′ has support contained in |s| > c′/F for some
c′ > 0 then lim

F→0
‖∂sf

′G2∂sϕ‖ = 0. By using standard arguments of the perturbation

theory and the proposition 3.5, for F small, the operator (H0− z0)(H0,θ − z0)
−1 has

a norm which is uniformly bounded w.r.t F . This proves our claim on C′.
In the other hand ∂sf

′G2∂s(H0−z0)
−1 is bounded operator with a norm uniformly

bounded w.r.t. F , for F small. Then the strong convergence follows.

7 Concluding remarks

In this last section we would like to give some remarks about the field regime related
to this problem. Let us mention that the first result was given by P. Exner in [5],
for η = π

2
and α0 = 0. But P. Exner did not consider the question of existence of

resonances.
This issue was addressed by us in [2]. In this paper we have considered the conditions
|η| < π

2
and |η−α0| <

π
2
. Roughly speaking this corresponds to the classical picture

of the Stark effect for one dimensional Schrödinger operators with local potential i.e.
the field interaction W (F ) → −∞ as s→ −∞ and W (F ) → ∞ as s→ ∞. For any
negative reference energy the non trapping region coinciding with a neighbourhood
of s = −∞. In this case we prove an analog of the Theorem 1.2.
Evidently the regime |η| > π

2
and |η−α0| >

π
2

is a symmetric to the above mentioned
case.

Suppose now that |η| > π
2

and |η − α0| <
π
2
. Then from (2.9) and (2.10),

clearly W (F ) → ∞ as s → ±∞ i.e. it is a confining potential. By using standard
arguments (see e.g. [13]) it easy to see that H(F ) has a compact resolvent and then
only discrete spectrum.
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Indeed consider the following operator in L2(Ω). Let F > 0,

h(F ) = Ts + Tu + w(F ).

where w(F ) = F cos(η)s if s ≤ 0 and w(F ) = F cos(η−α0)s if s > 0. Then by (h1)
and (h2), there exists a strictly positive constant c such that in the form sense we
have

h(F ) ≥ h1(F ) := (−c∂2s + w(F )) ⊗ Iu + Is ⊗−∂2u. (7.47)

But the operator −∂2s + w(F ) has a compact resolvent [13]. Let {pn, n ≥ 0} the
eigen-projectors corresponding to the transverse modes {λn, n ≥ 0}. Since

(h1(F ) + 1)−1 = ⊕n≥1(−c∂
2
s + w(F ) + λn + 1)−1) ⊗ pn

Then (h1(F ) + 1)−1 is a compact operator as a norm limit of compact operators.
Hence h1(F ) satisfies the Rellich criterion [13] and in view of (7.47) it is also true for
h(F ) so (h(F ) + 1)−1 is compact. Since H(F )−h(F ) is bounded then (H(F ) + 1)−1

is also a compact operator.
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