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Spectral Cut-off Regularizations for Ill-posed Linear

Models

Chernousova, E.∗ and Golubev, Yu.†

Abstract

This paper deals with recovering an unknown vector β from the
noisy data Y = Xβ + σξ, where X is a known n × p - matrix with
n ≥ p and ξ is a standard white Gaussian noise. In order to esti-
mate β, a spectral cut-off estimate β̂m̄(Y ) with a data-driven cut-off
frequency m̄(Y ) is used. The cut-off frequency is selected as a min-
imizer of the unbiased risk estimate of the mean square prediction
error, i.e. m̄ = argminm

{

‖Y −Xβ̂m(Y )‖2 + 2σ2m
}

. Assuming that
β belongs to an ellipsoid W , we derive uppers bounds for the maximal
risk supβ∈W E‖β̂m̄(Y ) − β‖2 and show that β̂m̄(Y ) is a rate optimal
minimax estimator over W .

Keywords: ill-posed linear model, spectral cut-off regularization, data-
driven cut-off frequency, oracle inequality, minimax risk.

2010 Mathematics Subject Classification: Primary 62C99; sec-
ondary 62C10, 62C20, 62J05.

1 Introduction and main result

This paper deals with recovering an unknown vector β ∈ R
p from the noisy

observations
Y = Xβ + σξ, (1.1)

where X is a known n × p -matrix with n ≥ p and ξ is a standard white
Gaussian noise. Let us emphasize that all results below can be extended
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to the case p = ∞ provided that Xβ ∈ ℓ2. For the sake of simplicity it is
assumed also that the noise level σ is known.

The standard way to estimate β based on the observations (1.1) is to
make use of the maximum likelihood estimate

β̂(Y ) = argmin
β

‖Y −Xβ‖2 = (X⊤X)−1X⊤Y,

where here and in what follows ‖·‖ stands for the standard Euclidean norm.
It is well known that the mean square risk of this method is given by

E‖β̂(Y )− β‖2 = σ2
p

∑

i=1

1

λ(k)
,

where λ(k) are the eigenvalues of X⊤X, i.e.

X⊤Xek = λ(k)ek, k = 1, . . . , p, (1.2)

and so, it is clear that it may be very large when X⊤X is ill-posed. In this
case a regularization of β̂(Y ) is required.

Nowadays, statisticians have at their disposal a very vast family of reg-
ularization methods (see e.g. [5]). In this paper, we focus on the so-called
spectral cut-off regularizations which are computed with the help of the
Singular Value Decomposition.

Let ek ∈ R
p be the eigenvectors of X⊤X (see (1.2)). Using this basis,

we represent the vector of interest as follows :

β =

p
∑

k=1

〈β, ek〉ek =

p
∑

k=1

β(k)ek,

where 〈·, ·〉 is the ordinary inner product in R
p, and thus we obtain

Y =

p
∑

k=1

β(k)Xek + σξ. (1.3)

Next, noticing that

e∗k =
Xek

√

λ(k)
, k = 1, . . . , p

is an orthonormal system in R
n and projecting (1.3) onto these basis vectors,

we arrive at the following equivalent representation of Y

Z(k)
def
= 〈Y, e∗k〉 =

√

λ(k)β(k) + σξ′(k), k = 1, . . . , p, (1.4)
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where ξ′ is a standard white Gaussian noise.
Spectral cut-off estimators of β are defined by

β̂m(Y )
def
=

m
∑

k=1

Z(k)
√

λ(k)
ek =

m
∑

k=1

〈Y, e∗k〉
√

λ(k)
ek, m = 1, . . . , p, (1.5)

where integer m is often called cut-off frequency.
In view of (1.4), statistical analysis of this method for a fixed cut-off

frequency is rather simple. If the performance of β̂m(Y ) is measured by the
prediction mean square error then one can check easily that

r(β,m)
def
= E‖X[β̂m(Y )− β]‖2 =

p
∑

k=m+1

λ(k)β2(k) + σ2m. (1.6)

On the other hand, for the standard mean square risk one obtains

R(β,m)
def
= E‖β̂m(Y )− β‖2 =

p
∑

k=m+1

β2(k) + σ2
m
∑

k=1

1

λ(k)
. (1.7)

Thus, we see that in the both cases the risks depend on m and to get a
good estimate of β we have to select properly the cut-off frequency. Since β
is unknown, this selection must be data-driven. The standard approaches to
the data-driven choice of m are often based on the principle of the unbiased
risk estimation and go back to [1, 13]. There are two basic methods.

The first one is related to the unbiased estimate of E‖X[β̂m(Y ) − β]‖2
and yields the following cut-off frequency :

m̄ = argmin
m

{

‖Y −Xβ̂m(Y )‖2 + 2σ2m
}

. (1.8)

Notice that there is a vast literature devoted to statistical analysis of this
method. The most precise fact about its performance was firstly obtained
in [11].

Theorem 1 Uniformly in β ∈ R
p

E‖X(β̂m̄ − β)‖2 ≤ r◦(β) +Kσ2

√

r◦(β)
σ2

, (1.9)

where K is a generic constant and r◦(β) is the so-called oracle risk defined

by

r◦(β)
def
= min

m
r(β,m).
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Unfortunately, with the help of this theorem we cannot obtain good
upper bounds for the risk of β̂m̄(Y ) measured by E‖β̂m̄(Y )−β‖2. Of course,
one can bound this risk as follows

E‖β̂m̄(Y )− β‖2 ≤ λ−1(p)E‖X(β̂m̄(Y )− β)‖2 ≈ λ−1(p)r◦(β), (1.10)

but it can be seen easily that the right-hand side in this equation may be
very far from the oracle risk (see (1.7)) defined by

R◦(β)
def
= min

m
R(β,m) (1.11)

when X⊤X is ill-posed.
Therefore, in order to get good upper bounds for E‖β̂m̃(Y ) − β‖2, the

cut-off frequency m̃ is selected as a minimizer of the unbiased risk estimate
of E‖β̂m(Y )− β‖2, i.e.,

m̃ = argmin
m

{

‖β̂(Y )− β̂m(Y )‖2 + 2σ2
m
∑

k=1

1

λ(k)

}

. (1.12)

The risk of this method is controlled by following oracle inequality (see,
[4]).

Theorem 2 Suppose λ(k) ≥ λ(1)k−α for some α > 0. Then uniformly in

β ∈ R
p

E‖β̂m̃(Y )− β‖2 ≤ R◦(β) + C(α)σ2

[

R◦(β)
σ2

](2α+1)/(2α+2)

, (1.13)

where C(α) ≥ Kα is a constant depending on α and the oracle risk R◦(β)
is defined by (1.11).

Comparing (1.9) and (1.13) one can see the principal difference between
these oracle inequalities: the remainder term in (1.9) doesn’t depend on
α, whereas the one in (1.13) goes to infinity as α → ∞. This observation
confirms a suspicion that β̂m̃(Y ) may perform poorly whenX⊤X is ill-posed.
This effect can be seen in simulation, see e.g. [4] or Section 2 below.

In order to improve the performance of the unbiased risk estimation
method in the ill-posed case, penalties heavier than 2σ2

∑m
k=1 λ

−1(k) should
be used, see for details [4, 9]. It is shown in these papers that the estimate
β̂m̃+

(Y ) with

m̃+ = argmin
m

{

‖β̂(Y )− β̂m(Y )‖2 + 2σ2

[ m
∑

k=1

1

λ(k)
+ Penλ(m)

]}

(1.14)

4



works better than β̂m̃(Y ) provided that the additional penalty Penλ(m)
is properly chosen. Unfortunately, computing good penalties Penλ(m) in
(1.14) is a time-consuming numerical problem (see, e.g. [4, 9]).

This is why the main goal in this paper is to improve significantly In-
equality (1.10) and to show that the standard spectral cut-off estimator

β̂m̄(Y ) =

m̄
∑

k=1

〈Y, e∗k〉
√

λ(k)
ek, m̄ = argmin

m

{

‖Y −Xβ̂m(Y )‖2 + 2σ2m
}

(1.15)

has a reasonable risk.
Unfortunately, in general case, point-wise oracle inequalities having the

form
E‖β̂m̄(Y )− β‖2 ≤ R◦(β) + remainder terms

cannot be proved.
However, as we will see below, it is possible to bound from above the

maximal risk supβ∈W E‖β̂m̄(Y )−β‖2 with the help of supβ∈W R◦(β), where
W is an ellipsoid in R

p defined by

W =

{

β :

p
∑

k=1

w(k)β2(k) ≤ 1

}

.

Here w(k), k = 1, . . . , p is a positive increasing sequence.
In order to obtain such upper bounds, we will need some basic notions

and facts related to the minimax estimation theory over ellipsoids. Nowa-
days, the minimax approach to ill-posed linear models is well-developed and
literature on this topic is very vast, see e.g. [2, 3, 6, 12, 14], where additional
references can be found.

With W we associate the following risks :

r(W,m)
def
= max

β∈W
r(β,m), R(W,m)

def
= max

β∈W
R(β,m),

and
r◦(W)

def
= min

m
r(W,m), R◦(W)

def
= min

m
R(W,m).

Proposition 1 For any integer m

r(W,m) =
λ(m+ 1)

w(m+ 1)
+ σ2m, R(W,m) =

1

w(m+ 1)
+ σ2

m
∑

k=1

1

λ(k)
.
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Proof. It follows immediately from (1.6) and (1.7). �

Let us emphasize that in general case the spectral cut-off estimates are
not sharp minimax over ellipsoids, they are only rate optimal. Minimax
estimates optimal up to a constant have been obtained in the seminal paper
[15].

To simplify some technical details, it is assumed in what follows that

λ(k) = Lk−α and w(k) = kγ/P,

where α, γ, L, P are some positive constants. In order to make computations
more transparent, let us assume also that the noise level is small, i.e. σ → 0.
Then we obtain easily

r(W,m) = LP (m+ 1)−γ−α + σ2m

and denoting for brevity

q
def
=

1

γ + α+ 1
,

we get a simple algebra the minimax cut-off frequency

mr(P, σ
2) = argmin

m

{

PL(m+ 1)−γ−α + σ2m
}

= (1 + o(1))

[

(γ + α)PL

σ2

]q

.

With this cut-off frequency we obtain the following formula for the min-
imax risk

r◦(W) = (1 + o(1))

(

q

1− q

)1−q

σ2

(

PL

σ2

)q

. (1.16)

The same technique is used in computing R◦(W). We have

R(W,m) = P (m+ 1)−γ +
σ2

L

m
∑

k=1

kα

and therefore we get the following minimax cut-off frequency

mR(P, σ
2) = argmin

m

{

P (m+ 1)−γ +
σ2

L

m
∑

k=1

kα
}

= (1 + o(1))

(

γPL

σ2

)q

and the minimax risk

R◦(W) =(1 + o(1))
γ−qγ

q(α + 1)
P

(

σ2

PL

)qγ

=(1 + o(1))
γ−qγ

q(α + 1)

σ2

L

(

σ2

PL

)−q(1+α)

.

(1.17)
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Comparing (1.17) and (1.16), we see that the minimax risks r◦(W) and
R◦(W) are related as follows :

R◦(W) = (1 + o(1))
γ−qγ(γ + α)(1+α)(q−1)

q(α+ 1)

σ2

L

[

r◦(W)

σ2

]α+1

. (1.18)

The second important remark is that the optimal minimax cut-off fre-
quencies have the same order, i.e.,

lim
σ→0

mR(P, σ
2)

mr(P, σ2)
=

(

γ

γ + α

)1/(1+α+γ)

. (1.19)

In practice, we cannot make use of the minimax cut-off frequencies be-
cause they strongly depend on the ellipsoid parameters that are hardly
known in practice. However, Equations (1.18) and (1.19) may be viewed
as a heuristic motivation of β̂m̄(Y ). These equations show that there are
strong links between the minimax risks r(W) and R(W) as well between the
cut-off frequencies mR(P, σ

2) and mr(P, σ
2). So, there is a hope the cut-off

frequency m̄(Y ), which is nearly optimal (see Theorem 1) when the risk is
measured by the prediction error E‖X[β̂m̄(Y ) − β]‖2, is also good for the
risk E‖β̂m̄(Y )− β‖2.

The next theorem provides a mathematical justification of this conjec-
ture.

Theorem 3 For any β ∈ W

E‖β̂m̄(Y )− β‖2 ≤2σ2

L

[

PL

σ2

]α/(α+γ)[
√

r◦(β)
σ2

+K

]2γ/(α+γ)

+
σ2

(α+ 1)L

[

√

r◦(β)
σ2

+Kα

]2α+2

+
Kσ2

L
√
2α + 1

[

√

r◦(β)
σ2

+Kα

]2α+1

+Kσ2,

(1.20)

where K is a generic constant.

With the help of this theorem one can easily check that β̂m̄(Y ) is a rate
optimal asymptotically minimax estimator over W.

Theorem 4 As σ → 0

sup
β∈W

E‖β̂m̄(Y )− β‖2 ≤ (1 + o(1))C(α, γ)R◦(W), (1.21)
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where

C(α, γ) =
γγ/(1+γ+α)

1 + α+ γ

[

2(α + 1) + (γ + α)(1+α)(α+γ)/(1+α+γ)
]

.

Proof. It is clear that r◦(β) ≤ r◦(W) for any β ∈ W, and thus by (1.16) and
(1.17) we obtain

2σ2

L

(

PL

σ2

)α/(α+γ)[
√

r◦(β)
σ2

+K

]2γ/(α+γ)

= (1 + o(1))
2σ2

L

(

PL

σ2

)α/(α+γ)[r◦(β)
σ2

]γ/(α+γ)

= 2(1 + o(1))P

(

σ2

LP

)

= 2q(α+ 1)γqγ(1 + o(1))R◦(W).

Similarly, by (1.18) we have

σ2

(α+ 1)L

[

√

r◦(β)
σ2

+Kα

]2α+2

=
1 + o(1)

1 + α

σ2

L

[

r◦(β)
σ2

]1+α

≤ qγqγ(γ + α)(1+α)(1−q)(1 + o(1))R◦(W)

and

σ2

(α+ 1)L

[

√

r◦(β)
σ2

+Kα

]2α+1

≤ o(1)R◦(W).

Substituting the above equations in (1.20), we complete the proof. �

Remark. The spectral cut-off method requires the SVD which may be
time-consuming from a numerical viewpoint when p is large. This is why for
very large linear models simpler regularization techniques are usually used.
A classic example of such a regularization is the famous Phillips-Tikhonov
method [16] known in statistics as ridge regression. In order to select the
regularization parameter in this method, the Generalized Cross Validation is
usually used (see, e.g. [7, 8]). Unfortunately, in spite of a very long history of
this idea, all known facts about its performance are related to upper bounds
for the prediction error (see e.g. Theorem 1). In view of Theorem 3, there
is a hope that bounds similar to (1.20) and (1.21) may be obtained for this
method as well, and so, the use of the GCV will be justified.
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2 Simulation study

To illustrate numerically how does the spectral cut-off method with different
data-driven cut-off frequencies work, the following simulations have been
carried out. For given A ∈ [0, 20], 20000 replications of the observations

Z(k) =
√

λ(k)µ(k) + ξ′(k), k = 1, . . . , 300

were generated. Here ξ′ is a standard white Gaussian noise, µ ∈ R
300 is a

Gaussian vector (independent from ξ′) with independent components and

Eµ(k) = 0, Eµ2(k) = A exp

(

− k2

2Σ2

)

.

To simulate the spectral cut-off estimator, the unknown vector µ is estimated
as follows:

µ̂m(k) =
Z(k)
√

λ(k)
1{k ≤ m}.

With the help of the Monte-Carlo method the following risks were com-
puted

• the oracle risk
ror(A) = min

m
E‖µ− µ̂m‖2,

• the risk related to the cut-off frequency minimizing the unbiased esti-
mate of E‖µ − µ̂m‖2 , i.e.,

rinv(A) = E‖µ− µ̂m̃‖2,

where

m̃ = argmin
m

{

‖λ−1/2 · Z − µ̂m‖2 + 2

m
∑

k=1

1

λ(k)

}

, (2.1)

• the risk related to the cut-off frequency minimizing the unbiased esti-
mate of E‖

√
λ(µ − µ̂m)‖2, i.e.,

rdir(A) = E‖µ− µ̂m̄‖2,

where
m̄ = argmin

m

{

‖Z −
√
λ · µ̂m‖2 + 2m

}

, (2.2)
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• the risk related to the cut-off frequency minimizing the over-penalized
unbiased risk estimator, i.e. ,

rovp(A) = E‖µ− µ̂m̄+‖2,

where

m̄+ = argmin
m

{

‖Z −
√
λ · µ̂m‖2 + 2m+

√

2m log(m)
}

. (2.3)

A motivation of this method and, in particular, the use of the addi-
tional penalty

√

2m log(m) can be found in [4].

Finally, the following oracle efficiencies were computed

θinv(A) =
ror(A)

rinv(A)
, θdir(A) =

ror(A)

rdir(A)
, θovp(A) =

ror(A)

rovp(A)
.

In order to compare graphically the above methods of selection of the
cut-off frequency, the data

{

A, θinv(A), θdir(A), θovp(A)
}

were plotted on
Figures 1, 2, 3, and 4.

Looking at these pictures we see that when X⊤X becomes ill-posed, the
spectral cut-off method with the cut-off frequency from (2.2) works signif-
icantly better than the cut-off frequency minimizing the unbiased estimate
of E‖µ− µ̂m‖2. Let us emphasize also that in the case of ill-posed X⊤X the
data-driven cut-off frequency from (2.3) improves the risk of the spectral
cut-off estimate.

3 Proofs

3.1 Auxiliary facts

The proof of Theorem 3 is based on two cornerstone facts. The first one is
used to control the bias of β̂m̄(Y ) and has the following form:

Lemma 1 For any β ∈ W and any integer m = 1, . . . , p

p
∑

k=m

β2(k) ≤ 2L−γ/(α+γ)Pα/(α+γ)

[ p
∑

k=m

β2(k)λ(k)

]γ/(α+γ)

. (3.1)
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Figure 1: Oracle efficiencies of data-driven cut-off frequencies from (2.1),
(2.2), and (2.3) for λ(k) = k−1 (left panel Σ = 10; right panel Σ = 100).
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Figure 2: Oracle efficiencies of data-driven cut-off frequencies from (2.1),
(2.2), and (2.3) for λ(k) = k−2 (left panel Σ = 10; right panel Σ = 100).
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Figure 3: Oracle efficiencies of data-driven cut-off frequencies from (2.1),
(2.2), and (2.3) for λ(k) = k−3 (left panel Σ = 10; right panel Σ = 100).
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Figure 4: Oracle efficiencies of data-driven cut-off frequencies from (2.1),
(2.2), and (2.3) for λ(k) = k−4 (left panel Σ = 10; right panel Σ = 100).
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Proof. Let us prove (3.1) for p = ∞. Since β ∈ W we have that for any
x ≥ 1

∞
∑

k=m

β2(k) ≤
mx
∑

k=m

β2(k) +
∑

k>mx

β2(k)

≤ 1

λ(mx)

mx
∑

k=m

λ(k)β2(k) +
1

w(xm)

≤ xα

λ(m)

∞
∑

k=m

λ(k)β2(k) +
1

w(m)xγ

=
1

w(m)

[

xα
w(m)

λ(m)

∞
∑

k=m

λ(k)β2(k) + x−γ

]

.

(3.2)

Our next step is to minimize the right-hand side in this equation in
x ≥ 1. Denote for brevity

S(m) =
w(m)

λ(m)

∞
∑

k=m

λ(k)β2(k)

and note that S(m) ≤ 1 since β ∈ W. So, we can choose x as a root of the
equation

xαS(m) = x−γ ,

or, equivalently, x =
[

S(m)
]−1/(α+γ)

. Hence, substituting this in (3.2), we
obtain

∞
∑

k=m

β2(k) ≤ 2

w(m)

[

w(m)

λ(m)

∞
∑

k=m

λ(k)β2(k)

]γ/(α+γ)

=2[w(m)]−α/(α+γ) [λ(m)]−γ/(α+γ)

[ ∞
∑

k=m

λ(k)β2(k)

]γ/(α+γ)

=2Pα/(α+γ)L−γ/(α+γ)

[ ∞
∑

k=m

λ(k)β2(k)

]γ/(α+γ)

.

Equation (3.1) follows now from this inequality if we assume that β(k) =
0, k > p. �

The following lemma plays an essential role in controlling the variance
of β̂m̄(Y ).
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Lemma 2 For any β and any µ > 0

E exp
{

µ
√

r(β, m̄)
}

≤ exp
{

µ
√

r◦(β) +Kσµ+Kσ2µ2
}

, (3.3)

where K is a generic constant.

Proof. It follows immediately from the definition of m̄ (see (1.4), (1.5), and
(1.8)) that for any given positive integer m the following inequality holds

−
m̄
∑

i=1

Z2(i) + 2σ2m̄ ≤ −
m
∑

i=1

Z2(i) + 2σ2m

or, equivalently,

r(β, m̄) ≤ r(β,m) + σ2
m̄
∑

i=1

[ξ′2(i)− 1] + 2σ

p
∑

i=m̄+1

√

λ(i)β(i)ξ′(i)

−σ2
m
∑

i=1

[ξ′2(i) − 1]− 2σ

p
∑

i=m+1

√

λ(i)β(i)ξ′(i).

We can easily derive from this inequality the following one

(1− ǫ)r(β, m̄) ≤ r(β,m) + σ2 sup
k≥1

{ k
∑

i=1

[ξ′2(i)− 1]− ǫk

}

+ 2σ sup
k≥1

{ p
∑

i=k+1

√

λ(i)β(i)ξ′(i)− ǫ

2σ

p
∑

i=k+1

λ(i)β2(i)

}

+ σ2
m
∑

i=1

[1− ξ′2(i)] − 2σ

p
∑

i=m+1

√

λ(i)β(i)ξ′(i),

(3.4)

where ǫ ∈ (0, 1).
The last line in this equation can be easily controlled since for any µ > 0

E exp

{

µ

[

σ2
m
∑

i=1

[

1− ξ′2(i)
]

−2σ

p
∑

i=m+1

√

λ(i)β(i)ξ′(i)

]}

≤ exp

[

σ2mµ− m

2
log

(

1 + 2µσ2
)

+ 2σ2µ2
p

∑

i=m+1

λ(i)β2(i)

]

≤ exp

[

σ4mµ2 + 2σ2µ2
p

∑

i=m+1

λ(i)β2(i)

]

≤ exp
[

2σ2µ2r(β,m)
]

.

(3.5)
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To bound from above supk≥1 at the right-hand side in (3.4), we make
use of the following inequalities (see Lemma 2 in [10])

P

{

max
k≥1

[ k
∑

i=1

[

ξ′2(i)− 1
]

− U(ǫ)k

]

≥ x

}

≤ exp(−ǫx),

P

{

max
k≥1

[ p
∑

i=k

ξ′(i)β(i)
√

λ(i)− ǫ

2

p
∑

i=k

β2(i)λ(i)

]

≥ x

}

≤ exp(−ǫx),

where ǫ ∈ R
+ and

U(ǫ) = −ǫ+ log[1− 2ǫ]+/2

ǫ
.

With the help of these inequalities and a simple algebra one can check easily
that for any ǫ ∈ (0, 1/4)

E exp

{

λσ2 sup
k≥1

[ k
∑

i=1

[ξ′2(i)− 1]− ǫk

]}

≤ 1

[1−Kλσ2/ǫ]+
(3.6)

and

E exp

{

2λσ sup
k≥1

[ p
∑

i=k+1

√

λ(i)β(i)ξ′(i) − ǫ

2σ

p
∑

i=k+1

λ(i)β2(i)

]}

≤ 1

[1−Kλσ2/ǫ]+
.

(3.7)

It follows from the Hölder inequality that for any random variables
ζ1, ζ2, ζ3 with bounded exponential moments the following inequality holds

E exp
[

λζ1 + λζ2 + λζ3
]

≤
3
∏

i=1

{

E exp
[

3λζi
]

}1/3
.

With this equation and (3.4)-(3.7) we obtain

E exp
{

(1− ǫ)λr(β, m̄)
}

≤ exp

{

λr(β,m) +Kσ2λ2r(β,m)

−2

3
log

[

1− Kλσ2

ǫ

]

+

}

or equivalently,

E exp
{

λr(β, m̄)
}

≤ exp

{

λr(β,m) +
ǫλr(β,m)

1− ǫ

+
Kσ2λ2r(β,m)

(1− ǫ)2
− 2

3
log

[

1− Kλσ2

(1− ǫ)ǫ

]

+

}

.
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Minimizing the right-hand side at this equation in m and recalling that

r◦(β)
def
= min

m
r(β,m),

we arrive at the following inequality

E exp
{

λ[r(β, m̄)− r◦(β)]
}

≤ exp

{

Kσ2λ2r◦(β) +Kǫλr◦(β) −
2

3
log

[

1− Kλσ2

ǫ

]

+

}

,
(3.8)

that holds for any ǫ ∈ (0, 1/2).
The next step is to minimize the right-hand side at (3.8) in ǫ ∈ (0, 1/2).

Suppose

λ ≤ 1

4Kσ2
. (3.9)

Since r◦(β)/σ2 ≥ 1, therefore

ǫ = Kλσ2 +
σ

4
√

r◦(β)
≤ 1

2
,

and substituting this ǫ in (3.8), we obtain

E exp
{

λ[r(β, m̄)− r◦(β)]
}

≤ exp

{

Kσ2λ2r◦(β) +Kσλ
√

r◦(β)

+
2

3
log

[

1 + 4Kλσ
√

r◦(β)
]

}

≤ exp
{

Kσ2λ2r◦(β) +Kσλ
√

r◦(β)
}

.

(3.10)

Let ζ be a nonnegative random variable. Then for any µ, λ > 0 we have

E exp
{

µ
√

ζ
}

=

∫ ∞

0
exp(µ

√
x− λx+ λx) dP{ζ ≤ x}

≤ exp
{

max
x≥0

[

µ
√
x− λx

]}

∫ ∞

0
exp(λx) dP{ζ ≤ x}

≤ exp

{

µ2

4λ
+ log

[

E exp(λζ)
]

}

.

and combining this equation with (3.9) and (3.10), we have

E exp
{

µ
√

r(β, m̄)
}

≤ exp

{

min
λ≤1/(4Kσ2)

[

µ2

4λ
+ λr +Kσ

√

r◦(β)λ+Kσ2r◦(β)λ
2

]}

.
(3.11)
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Note that choosing

λ =
1

4Kσ2
,

we obtain from (3.11) that for any µ ∈ R
+

E exp
{

µ
√

r(β, m̄)
}

≤ exp

{

Kµ2σ2 +K
r◦(β)
σ2

+K

√

r◦(β)
σ2

}

. (3.12)

On the other hand, if µ is small, namely,

µ ≤ 2
√

r◦(β)

4Kσ2
,

then with
λ =

µ

2
√

r◦(β)

we get from (3.11)

E exp
{

µ
√

r(β, m̄)
}

≤ exp
{

µ
√

r◦(β) +Kµ2σ2 +Kµσ
}

. (3.13)

Finally notice that if

µ ≥ 2
√

r◦(β)

4Kσ2
,

then

µ
√

r◦(β) +Kµ2σ2 +Kµσ ≥ Kµ2σ2 +K
r◦(β)
σ2

+K

√

r◦(β)
σ2

and thus in view of (3.12), Equation (3.13) holds for any µ ∈ R
+. �

The following simple technical lemma is used together with Lemma 2 to
control the variance of β̂m̄(Y ).

Lemma 3 Let η ≥ 1 be a random variable such that

E exp(λ
√
η) ≤ exp(Aλ+Bλ2)

for any λ > 0. Then for any p ≥ 1

Eηp ≤ [A+ (2p − 1)B]2p. (3.14)
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Proof. Let us consider the following function

f(x) = log2p(x), x ≥ 0

and compute its second derivative

f ′′(x) = −2p log2p−1(x)

x2
+

2p(2p − 1) log2p−2(x)

x2

=
2p log2p−2(x)[(2p − 1)− log(x)]

x2
.

So, f(x) is concave on [exp(2p − 1),∞). Therefore noticing that

ηp =
f [exp(λ

√
η)]

λ2p

and using Jensen’s inequality, we obtain that for any λ ≥ 2p− 1

Eηp ≤ f [E exp(λ
√
η)]

λ2p
=

[Aλ+Bλ2]2p

λ2p
= [A+Bλ]2p.

Minimizing the right-hand side at this equation in λ ≥ 2p− 1 we finish the
proof. �

In order to control the variance of β̂m̄(Y ), we will need to bound from
above Eζ(m̄), where

ζ(m)
def
=

m
∑

i=1

ξ′2(i)− 1

λ(i)
.

We will do this with the help of following fact. Let η(t) be a separable
zero mean random process on R

+. Denote for brevity

∆η(u, v) = η(u) − η(v).

Lemma 4 Let σ2(u), u ∈ R
+, be a continuous strictly increasing function

with σ2(0) = 0. Then for any µ > 0,

logE exp

{

µ max
0<u≤t

∆η(u, t)

σ(t)

}

≤ log(2)
√
2√

2− 1
+

+ max
0<u<v≤t

max
|z|≤

√
2/(

√
2−1)

logE exp

{

zµ
∆η(u, v)

∆̄σ(v, u)

}

,

(3.15)

where ∆̄σ(v, u) =
√

|σ2(v)− σ2(u)|.
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Proof. It is similar to the one of Dudley’s entropy bound (see, e.g., [17])
and can be found in [9]. �

Lemma 5 Assume that λ(k)/λ(1) ≥ 2−k. Then for any ǫ ∈ (0, 1/4)

Emax
m≥1

[

ζ(m)− ǫEζ2(m)
]

+
≤ K

ǫ
.

Proof. Let us apply Lemma 4 for the random process η(k) = ζ(k + k0) −
ζ(k0), k = 0, . . . , t and σ2(k) = E[ζ(k + k0) − ζ(k0)]

2. Using a Taylor
expansion, we obtain from (3.15)

E exp
{

µσ−1(t) max
k=1,...,t

η(k)
}

≤ K exp(Kµ2), µ ∈ (0, µ◦), (3.16)

where

µ◦ =

√
2− 1

4
√
2

.

Let

mǫ
k = max

{

m : Eζ2(m) ≤ 2k

ǫ2

}

.

Then we have

Emax
m≥1

[

ζ(m)− ǫEζ2(m)
]

+
≤ E

p
∑

k=0

max
m∈[mǫ

k
,mǫ

k+1
)

[

ζ(m)− ǫEζ2(m)
]

+

≤
p

∑

k=0

E
{

ζ(mǫ
k) + max

m∈[mǫ

k
,mǫ

k+1
)
[ζ(m)− ζ(mǫ

k)]− ǫEζ2(mǫ
k)
}

+
.

(3.17)

Denote for brevity

Σǫ
k =

[

2

mǫ

k+1
∑

k=mǫ

k
+1

1

λ2(k)

]1/2

.

and notice that
2k/2

4ǫ
≤ Σǫ

k ≤ 2k/2

ǫ
. (3.18)

To control the right-hand side at (3.17), we make use of the following
inequality :

E
{

ζ − x}+ ≤ µ−1 exp(−µx)E exp(µζ), x > 0,
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that holds true for any random variable ζ and any µ > 0. With this inequal-
ity, (3.16), and (3.18) we arrive at

E
{

ζ(mǫ
k) + max

m∈[mǫ

k
,mǫ

k+1
)
[ζ(m)− ζ(mǫ

k)]− ǫEζ2(mǫ
k)
}

+

= Σǫ
k E

{

ζ(mǫ
k)

Σǫ
k

+
1

Σǫ
k

max
m∈[mǫ

k
,mǫ

k+1
)
[ζ(m)− ζ(mǫ

k)]− ǫ
Eζ2(mǫ

k)

Σǫ
k

}

+

≤ KΣǫ
k exp

[

−Kǫ
Eζ2(mǫ

k)

Σǫ
k

]

≤ Kǫ−12k/2 exp
{

−K2k/2
}

.

Substituting this equation in (3.17), we finish the proof. �

3.2 Proof of Theorem 3

From the definition of the spectral cut-off estimator (see (1.5)) and (1.4) it
follows that

E‖β̂m̄(Y )− β‖2 = E

p
∑

k=m̄+1

β2(k) + σ2E

m̄
∑

k=1

1

λ(k)

+σ2E

m̄
∑

i=1

ξ′2(i)− 1

λ(i)
.

(3.19)

To bound from above the first term at the right-hand side of this equa-
tion, we combine Lemma 1, Jensen’s inequality, and Lemma 2. So, we have

E

p
∑

k=m̄+1

β2(k) ≤2L−γ/(α+γ)Pα/(α+γ)

[

E

p
∑

k=m̄+1

β2(k)λ(k)

]γ/(α+γ)

≤2L−γ/(α+γ)Pα/(α+γ)
[

Er(β, m̄)
]γ/(α+γ)

≤2L−γ/(α+γ)Pα/(α+γ)
[
√

r◦(β) +Kσ
]2γ/(α+γ)

=
2σ2

L

[

PL

σ2

]α/(α+γ)[
√

r◦(β)
σ2

+K

]2γ/(α+γ)

.

(3.20)

The second term at the right-hand side in (3.19) may be bounded with
the help of Lemmas 2 and 3. Since m̄ ≤ r(W, m̄)/σ2, we obtain from (3.3)
that for any µ > 0

E exp
{

µ
√
m̄
}

≤ exp
{

µ
√

r◦(β)/σ2 +Kµ+Kµ2
}

. (3.21)
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With the help of this equation and (3.14), we get

E

m̄
∑

k=1

1

λ(k)
≤ 1

(α+ 1)L
Em̄α+1 ≤ 1

(α+ 1)L

[

√

r◦(β)
σ2

+Kα

]2(1+α)

. (3.22)

Similar arguments may be are used in controlling the last term at the
right-hand side of (3.19). By Lemma 5 we get that for any ǫ ∈ (0, 1/4)

E

m̄
∑

i=1

ξ2(i)− 1

λ(i)
≤ ǫE

m̄
∑

i=1

1

λ2(i)
+

K

ǫ
.

Next, minimizing the right-hand side at this equation in ǫ ∈ (0, 1/4), we
obtain with the help of (3.21), Lemma 3, and a simple algebra

E

m̄
∑

i=1

ξ2(i)− 1

λ(i)
≤ K

[

E

m̄
∑

k=1

1

λ2(k)

]1/2

+K ≤ K

L
√
2α+ 1

[

Em̄2α+1
]1/2

+K

≤ K

L
√
2α+ 1

[

√

r◦(β)
σ2

+Kα

]2α+1

+K.

Finally, substituting this equation, (3.20), and (3.22) in (3.19), we finish
the proof. �
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