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Concentration Inequalities for the Exponential

Weighting Method ∗

Golubev, Yu.† and Ostrovski, D. ‡

Abstract

The paper is concerned with recovering an unknown vector from
noisy data with the help of a family of ordered smoothers [11]. The
estimators withing this family are aggregated based on the exponential
weighting method and the performance of the aggregated estimate is
measured by the excess risk controlling deviation of the square losses
from the oracle risk. Based on natural statistical properties of ordered
smoothers, we propose a novel method for obtaining concentration
inequalities for the exponential weighting method.

1 Introduction and main results

This paper deals with recovering an unknown vector µ ∈ Rn from the noisy
observations

Yi = µi + σξi, i = 1, 2, . . . , n, (1.1)

where ξ is a standard white Gaussian noise, i.e., ξi are i.i.d. Gaussian
random variables with Eξi = 0 and Eξ2i = 1. For the sake of simplicity it
is assumed that the noise level σ > 0 is known. It is also assumed that n
is large. Let us emphasize that all results in this paper can be extended to
the case n =∞ provided that µ ∈ `2.

Notice also that in spite of the obvious simplicity of this statistical model,
it can cover a very wide class of statistical problems ranging from regression
estimation to inverse problems (see, e.g., [11], [8]).

∗This work is partially supported by Laboratory for Structural Methods of Data Analy-
sis in Predictive Modeling, MIPT, RF Government grant, ag. 11.G34.31.0073; and RFBR
research projects 13-01-12447 and 13-07-12111.
†Aix Marseille Université, CNRS, LATP, UMR 7353 and Institute for Information

Transmission Problems, 39 rue F. Joliot Curie, 13453 Marseille, France.
‡Moscow Institute of Physics and Technology, Institutski per. 9, Dolgoprudny, 141700,
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In this paper, the quality of an estimate µ̂(Y ) is measured by the mean
square risk

ρ(µ̂, µ) = Eµ‖µ̂(Y )− µ‖2,

where Eµ stands for the expectation with respect to the measure Pµ gen-
erated by the observations (1.1) under given µ, and ‖ · ‖ is the standard
Euclidean norm in Rn.

In what follows it is assumed that we have at our disposal a family of
linear estimates

µ̂hk(Y ) = hkYk, h ∈ H, (1.2)

where H is a given set of vectors in Rn. This set consists of vectors with
specific properties that will be described later on.

Our goal is to construct a good estimate of µ with the help of the family
of linear estimates µ̂h(Y ), h ∈ H. To explain what estimates might be
viewed as good, let us notice that for given h, the risk of µ̂h(Y ) is computed
as follows :

R(µ, h)
def
= Eµ‖µ̂h(Y )− µ‖2 = ‖(1− h) · µ‖2 + σ2‖h‖2, (1.3)

where here and in what follows · means the component-wise multiplication
of vectors in Rn, i.e, z = x · y means that zk = xkyk, k = 1, . . . , n.

Of coarse, we want to find a method of combining estimates {µ̂h(Y ), h ∈
H} that provides an estimate with the minimal risk. If the family of esti-
mates is reach enough, then we would be satisfied with estimators whose
risks are close to the value

r(µ,H) = min
h∈H

{
‖(1− h) · µ‖2 + σ2‖h‖2

}
.

This risk is often called oracle risk since it coincides with the risk of the
following psudo-estimate

µ̂∗(Y ) = h∗(µ) · Y, h∗(µ) = arg min
h∈H

{
‖(1− h) · µ‖2 + σ2‖h‖2

}
. (1.4)

Obviously, this object is not a real statistical estimate since it depends on
the unknown vector µ.

A rather natural approach to constructing new estimates with the help
of the available ones is to compute their convex combination

µ̄w(Y ) =
∑
h∈H

wh(Y )µ̂h(Y ), (1.5)

2



where wh(Y ) are some nonnegative numbers called weights such that∑
h∈H

wh(Y ) = 1.

To simplify unessential technical details, here and below H is assumed to be
finite.

The main issue in this method is evidently related to the selection of
weights wh(Y ). In this paper, we focus on the so-called exponential weights
defined as follows :

wh(Y ) =
πh
Z(Y )

exp

[
−R̄(Y, h)

2βσ2

]
, (1.6)

where

Z(Y )
def
=
∑
h∈H

πh exp

[
−R̄(Y, h)

2βσ2

]
, (1.7)

R̄(Y, h)
def
= ‖µ̂h(Y )‖2 − 2〈Y, µ̂h(Y )〉+ 2σ2

∑
h∈H

hk, (1.8)

is the empirical counterpart of R(µ, h) and β, πh are positive numbers. It is
clear that without loss of generality one may assume that

∑
h∈H πh = 1.

To explain heuristically how these weights can be obtained, let us sim-
plify the initial statistical problem assuming that we have at our disposal
the auxiliary observations

Y ′k = µk + σξ′k, k = 1, 2 . . . , n, (1.9)

where ξ′ is independent of ξ in (1.1) a standard white Gaussian noise. These
observations will be used to select weights wh(Y ′) in the estimate

µ̄w(Y, Y ′) =
∑
h∈H

wh(Y ′)µ̂h(Y ), (1.10)

where wh(Y ′) ≥ 0 and
∑

h∈Hwh(Y ′) = 1.
Apparently the approach to constructing new estimates with the help of

the auxiliary sample were firstly studied and developed by A. Nemirovsky
and, independently, by A. Catoni (see [15, 4]). Subsequently, these methods
have been adapted for a wide class of statistical models ( see, for example,
[19], [16], [12], [17]).
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Let us assume that Y is frozen. The idea in choosing wh(·) in (1.10) is
related to the so-called roughness penalty approach yielding the weights

w̃h(Y ′) = arg min
wh

{
1

2ε2

∥∥∥∥Y ′ −∑
h∈H

whµ̂
h(Y )

∥∥∥∥2 + βK(wh, πh)

}
, (1.11)

where
K(wh, πh) =

∑
h∈H

wh log
wh
πh

is the Kulback-Leibler divergence between probability distributions wh and
the a priori weights πh. Since there is no explicit formula for w̃h(Y ′), to
simplify their computing, let us replace in (1.11) the distance between the
data and the estimate ∥∥∥∥Y ′ −∑

h∈H
whµ̂

h(Y )

∥∥∥∥2
by the following upper bound obtained by the Jensen inequality∥∥∥∥Y ′ −∑

h∈H
whµ̂

h(Y )

∥∥∥∥2 ≤∑
h∈H

wh
∥∥Y ′ − µ̂h(Y )

∥∥2.
Thus we arrive at

wh(Y ′) = arg min
wh

{
1

2σ2

∑
h∈H

wh
∥∥Y ′ − µ̂h(Y )

∥∥2 + βK(wh, πh)

}
.

Now, these weights can be easily computed with a simple algebra

wh(Y ′) =
πh

Z(Y ′)
exp

[
−‖µ̂

h(Y )‖2 − 2〈Y ′, µ̂h(Y )〉
2σ2β

]
, (1.12)

where

Z(Y ′) =
∑
h∈H

πh exp

[
−‖µ̂

h(Y )‖2 − 2〈Y ′, µ̂h(Y )〉
2σ2β

]
.

Obviously, the described above two samples estimation procedure results
in loss of a significant statistical information contained in the data. There-
fore computing estimates and their aggregation should be done, of course,
with the help of the single sample. The main difficulty in implementing this
idea is related to the inner product 〈Y ′, µ̂h(Y )〉 in (1.12). It is clear that we
need to replace this inner product by something that should to be close to

4



it, but depending only on Y . In order to understand how to implement this
idea, let us look at the probabilistic structure of 〈Y ′, µ̂h(Y )〉. We have

〈Y ′, µ̂h(Y )〉 =
n∑
k=1

hk(µk + σξ′k)(µk + σξk) =
n∑
k=1

hkµ
2
k

+σ
n∑
k=1

hkµkξk + σ
n∑
k=1

hkµkξ
′
k + σ2

n∑
k=1

hkξkξ
′
k.

(1.13)

Note that the second line in this equation contains random variables with
zero mean for given h. If we want to make use of the single sample, we need
first to look at

〈Y, µ̂h(Y )〉 =

n∑
k=1

hk(µk + σξk)
2 =

n∑
k=1

hkµ
2
k + 2σ2

n∑
k=1

hk

+2σ

n∑
k=1

hkµkξk + σ2
n∑
k=1

hk(ξ
2
k − 1).

(1.14)

So, we see that the last line in this equation contains also zero mean random
variables. Therefore, comparing (1.13) and (1.14), we can conclude that

〈Y ′, µ̂h(Y )〉 ≈ 〈Y, µ̂h(Y )〉 − 2σ2
n∑
k=1

hk

in the sense that for any given h

E〈Y ′, µ̂h(Y )〉 = E〈Y, µ̂h(Y )〉 − 2σ2
n∑
k=1

hk.

These intuitive considerations combined with (1.12) result in the expo-
nential weights defined by (1.6)-(1.8).

Notice that in recent years the exponential weighting method has been
extensively studied and enough good upper bounds for its performance have
been obtained for several statistical models [13, 6, 1, 2].

In this paper, we study this method in the case whenH is a set of ordered
multipliers defined as follows :

Definition 1.1. H is a set of ordered multipliers if the following properties
hold:

1. hi ∈ [0, 1], i = 1, . . . , n for all h ∈ H,
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2. hi+1 ≤ hi, i = 1, . . . , n for all h ∈ H,

3. if for some integer k and some h, g ∈ H, hk < gk, then hi ≤ gi for all
i = 1, . . . , n.

Property 3 means that vectors in H may be naturally ordered, since
for any h, g ∈ H there are only two possibilities hi ≤ gi or hi ≥ gi for
all i = 1, . . . , n. Therefore the estimators defined by (1.2), where H is a
set of ordered multipliers, are often called ordered smoothers [11]. Let us
emphasize that ordered smoothers are very common in statistics (see for
instance [11], [5]).

We start our study of the exponential weighting method with the case
β → 0. It is easy to see that in this case the limiting estimator has the
following form :

µ̄◦(Y ) = h◦(Y ) · Y, where h◦(Y ) = arg min
h∈H

R̄(Y, h). (1.15)

This standard method of estimate selection with the help of the unbiased risk
estimation has long been well known in statistics and goes back to [3, 14]. A
classical fact about its performance is given by the following theorem [11].

Theorem 1.1. Let H be a set of ordered multipliers. Then for any µ ∈ Rn

Eµ‖µ̄◦(Y )− µ‖22 ≤ r(µ,H) +Kσ2
√

1 +
r(µ,H)

σ2
, (1.16)

where here and in what follows K denotes generic constants.

Equation (1.16) is often called oracle inequality since it controls the risk
of µ̄◦(Y ) via the oracle risk r(µ,H).

When β > 0, statistical analysis of the exponential weighting is more
involved (see, e.g., [5]). In order to get an oracle inequality similar to (1.16),
some additional assumptions about πh and H are required.

First, we will make use of a priory weights defined by the following
condition

Condition 1.1.

πh
def
= 1− exp

{
−‖h

+‖1 − ‖h‖1
β

}
, (1.17)

where h+ = min{g ∈ H : g > h} and πhmax = 1, hmax is the maximal
multiplier in H.
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In this definition and below ‖ · ‖1 stands for `1-norm in Rn, i.e.,

‖h‖1 =
n∑
i=1

|hi|.

Along with the above condition, we will need also the following one.

Condition 1.2. There exists a constant K◦ > 0 such that

‖h‖2 − ‖g‖2 ≥ K◦
(
‖h‖1 − ‖g‖1

)
(1.18)

for all h ≥ g from H.

An upper bound for mean square risk of the exponential weighting
method is given by the following theorem [5].

Theorem 1.2. Assume that H is a set of ordered multipliers, β ≥ 4, and
Conditions 1.1, 1.2 hold. Then, uniformly in µ ∈ Rn,

Eµ‖µ̄β(Y )− µ‖2 ≤ rβ(µ,H) + σ2C(K◦, β), (1.19)

where

rβ(µ,H)
def
= r(µ,H) + 2βσ2 log

[
2 +

r(µ,H)

σ2

]
. (1.20)

Here and in what follows C(K◦, β) denotes strictly positive and bounded
constants depending on K◦ and β.

At first glance, it may seem comparing the remainder terms in Equations
(1.16) and (1.19)-(1.20), that the exponential weighting should be signifi-
cantly better than the classical methods of model selection. In fact, this
is not exactly so, and to find out what is really going on, we need to un-
derstand first of all what methods were used in proving Theorems 1.1 and
1.2.

Theorem 1.1 results from the following concentration inequality (see
Kneip [11]) :

Pµ

{
‖µ̄◦(Y )− µ‖ ≥

√
r(µ,H) +Kσ + x

}
≤ exp

{
− x2

Kσ2

}
, x ≥ 0. (1.21)

At the same time, Theorem 1.2 represents a fact of an entirely different
class. At the very core in the proof of (1.19) in [5] is an original method
proposed in [13] which is based on Stein’s formula [18] for the unbiased risk
estimate. In essence, this means that in contrast to (1.21) Equation (1.19)
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cannot control the deviations of the square losses ‖µ̄β(Y ) − µ‖2 from the
oracle risk.

Note also that Theorem 1.2 holds true only for β ≥ 4. Unfortunately, it
is impossible to say whether this condition is crucial for practical applica-
tions of the exponential weighting, or it is a purely mathematical constraint
resulting from the method of the proof.

In order to understand more profoundly statistical properties of the ex-
ponential weighting method, we focus in this paper on the so-called excess
risk

∆β(Y,H)
def
=
[
‖µ̄β(Y )− µ‖2 − rβ(µ,H)

]
+
,

where [x]+ = max(0, x) and rβ(µ,H) is defined by (1.20).
The next theorem, controlling moments of ∆β(Y,H), is the main result

of this paper.

Theorem 1.3. Assume that H is a set of ordered multipliers and Conditions
1.1, 1.2 hold. Then, uniformly in µ ∈ Rn and in m ≥ 1,

E1/m
µ

[
∆β(Y,H)

]m
+
≤ Kσ

√
mrβ(µ,H) +Kσ2m+ C(K◦, β)σ2. (1.22)

Notice that compared to majority of results related to the exponential
weighting, see e.g. [13, 17, 6, 5], the main advantage of this theorem is that
it holds for any β > 0 and provides an upper bound for the excess risk that
does depend neither n no the cardinality of H. It justifies, in particular,
the use of the exponential weighting with β = 1 that demonstrates a good
performance in practice as shown in the next section.

Combining Theorem 1.3 with the Markov inequality, one obtains the
following fact similar to (1.21).

Theorem 1.4. Assume that H is a set of ordered multipliers and Conditions
1.1, 1.2 hold. Then, uniformly in µ ∈ Rn and x ≥ σ,

Pµ

{
‖µ̄β(Y )− µ‖ ≥

√
rβ(µ,H) + x

}
≤ exp

{
− x2

Kσ2
+ C(K◦, β)

}
.

2 Simulation study

To illustrate numerically Theorem 1.3, the following experiment has been
carried out. Its goal was to find out how the exponential weighting with
β = {0, 1, 2, 4} works in regression estimation with the help of the cubic
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smoothing splines. Recall that these splines are usually used in recovering
an unknown smooth function f(x), x ∈ [0, 1] from the noisy observations

Y ′i = f(Xi) + εξ′i, i = 1, . . . , n, (2.1)

where it is assumed that the design points Xi belong to (0, 1) and ξ′ is a
standard white Gaussian noise. Smoothing spline of order 2m− 1 is defined
by

f̂α(x,X, Y ′) = arg min
f

{
1

n

n∑
i=1

[Y ′i − f(Xi)]
2 + α

∫ 1

0
[f (m)(u)]2 du

}
, (2.2)

where f (m)(·) denotes the derivative of orderm and α ∈ A ⊂ R+ is a smooth-
ing parameter. In what follows the set of possible smoothing parameters A
is assumed to be finite.

In order to show that the regression estimation with the help of the
smoothing splines is equivalent to the sequence space model described by
(1.1) and (1.2), consider the Demmler-Reinsch [7] basis ψk(x), x ∈ [0, 1], k =
1, . . . , n having double orthogonality

〈ψk, ψl〉n = δkl,

∫ 1

0
ψ
(m)
k (x)ψ

(m)
l (x) dx = δklλk, k, l = 1, . . . , n, (2.3)

where δkl = 1 if k = l, and δkl = 0 otherwise. Here and below 〈u, v〉n stands
for the inner product

〈u, v〉n =
1

n

n∑
i=1

u(Xi)v(Xi).

Let us assume for definiteness that the eigenvalues λk are sorted in ascending
order λ1 ≤ · · · ≤ λn.

With this basis, representing the underlying regression function as fol-
lows:

f(x) =
n∑
k=1

ψk(x)µk, (2.4)

we get from (2.1) and (2.3)

Yk =
1

n

n∑
i=1

Y ′i ψk(Xi) = µk +
ε√
n
ξk, (2.5)
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where µk = 〈f, ψk〉n and ξ is a standard white Gaussian noise. So, substi-
tuting (2.4) in (2.2) and using (2.3), we arrive at

f̂α(x,X, Y ′) =
n∑
k=1

µ̂kψk(x),

where

µ̂ = arg min
µ

{ n∑
k=1

[Yk − µk]2 + α

n∑
k=1

λkµ
2
k

}
.

It can be seen easily that

µ̂k =
Yk

1 + αλk

and thus the spline regression model (2.1)-(2.2) is equivalent to the sequence
space model defined by (1.1) and (1.2) with σ = ε/

√
n and

H =

{
h : hk =

1

1 + αλk
, k = 1, . . . , n, α ∈ A

}
. (2.6)

In order to simulate cubic splines, the following family of ordered multi-
pliers was used

H =

{
h : hk =

1

1 + [απ(k − 1)]4
, k = 1, . . . , n, α ∈ An

}
,

where

An =
{
α : α = (1 + ε)s, s = 0, 1, . . . , blog(n)/ log(1 + ε)c

}
with ε = 0.01. The motivation of this family is due to the well-known
asymptotic formula λk � (πk)4, k � 1 (see [7]).

The simulations were organized as follows. For given A ∈ [0, 50], 40000
replications of the observations

Yk = µk(A) + ξk, k = 1, . . . , 300

were generated. Here µ(A) ∈ R300 is a Gaussian vector with independent
components and

Eµk(A) = 0, Eµ2k(A) = A exp

(
− k2

2Σ2

)
.

Next, the mean oracle risk

r̄(A,H) = E min
h∈H

{
‖(1− h) · µ(A)‖2 + ‖h‖2

}
10



and the absolute excess risk

∆̄β
1 (A) = E

[
‖µ(A)− µ̄β(Y )‖2 − r̄(A,H)

]
+
,

were computed with the help of the Monte-Carlo method. Finally, the data{
r̄(A,H), ∆̄β

1 (A), A ∈ [0, 50], β = 0, 1, 2, 4
}

are plotted on Figure 1 to illus-
trate graphically statistical properties of the exponential weighting method.

Looking at this picture we see that there is no universal β minimizing the
excess risk uniformly in µ, but it seems that a reasonable choice would be
β ≈ 1. Note also that the exponential weighting with β ∈ [1, 4] works better
compared to the classical unbiased risk estimation (β = 0) when r(µ,H)/σ2

is not large.
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Figure 1: Absolute excess risks ∆̄β
1 (·) (left panel Σ = 5; right panel Σ = 50).

3 Proofs

3.1 Auxiliary facts

In what follows it is assumed that H be a set of ordered multipliers. Basic
probabilistic facts related to the ordered multipliers are described is the
following lemma.
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Lemma 3.1. Let ξi be i.i.d. N (0, 1). Then for any α ∈ (0, 1/4)

P

{
max
h∈H

[
±

n∑
i=1

hi(ξ
2
i − 1)− α

n∑
i=1

h2i

]
≥ x

α

}
≤ exp

(
− x
K

)
, (3.1)

P

{
max
h∈H

[ n∑
i=1

(1− hi)ξiµi − α
n∑
i=1

(1− hi)2µ2i
]
≥ x

α

}
≤ exp

(
− x
K

)
, (3.2)

where K is a generic constant.

The proof of this lemma follows immediately from Lemma 2 in [8].

Lemma 3.2. I) If for some R, r ≥ 0

R ≤ r + min
α∈(0,ε]

{
x2

α
+ αR

}
, then

√
R ≤

√
r + |x|max

{
2,

√
2

ε

}
.

II) If for some R, r ≥ 0

R ≤ r + min
α∈(0,ε)

{
x2

α
+ αr

}
, then

√
R ≤

√
r + |x|max

{
1,

√
2

ε

}
.

Proof. It is easy to check with a simple algebra that

min
α∈(0,ε]

{
x2

α
+ αR

}
= 2|x|

√
R1
{
x ≤ ε

√
R
}

+ (ε−1x2 + εR)1
{
x > ε

√
R
}

2|x|
√
R1
{
x ≤ ε

√
R
}

+ 2ε−1x21
{
x > ε

√
R
}
.

Therefore if x > ε
√
R, then

R ≤ r + 2ε−1x2,

and so, √
R ≤

√
r +
√

2|x|/
√
ε.

Next, when x ≤ ε
√
R we have

R ≤ r + 2|x|
√
R,

or, equivalently,
(
√
R− |x|)2 ≤ r + x2.

Hence √
R ≤

√
r + 2|x|.

The proof of the second part of the lemma is quite similar. �
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Lemma 3.3. Let ζ be a nonnegative random variable with Eζm <∞. Then
for any A > 0

E1/m logm(A+ ζ) ≤ log(A+ E1/mζm).

Proof. Consider the following function

F (z) = max
x>−A

{
log(A+ x)− zx

}
, z ∈ R+.

It can be checked with a simple algebra that

F (z) = − log(z) +Az − 1.

and therefore for any z ≥ 0

log(A+ x) ≤ zx+ F (z).

So, we have
E1/m logm(A+ ζ) ≤ zE1/mζm + F (z)

and minimizing the right-hand side at this equation in z ≥ 0, we complete
the proof. �

Lemma 3.4. Let

ĥε = max
{
h ∈ H : R̄(Y, h)− R̄(Y, h◦)

≤ 2βεσ2
[
‖h‖2 − ‖h◦‖2 + ε−1

]}
,

(3.3)

where ε ∈ (0, 1/(2β)) and h◦(Y ) is defined by (1.15). Then for any integer
m ≥ 1

√
1− 2βεE1/(2m)

µ ‖ĥε‖2m ≤
√
r(µ,H)

σ2
+K

√
(m+ β). (3.4)

Proof. By the definition of R̄(Y, h) (see (1.8))) and (3.3), we get

ĥε = max

{
h : ‖(1− h) · µ‖2 + σ2(1− 2βε)‖h‖2

+ 2σ

n∑
i=1

(1− hi)2µiξi + σ2
n∑
i=1

(h2i − 2hi)(ξ
2
i − 1)

≤ ‖(1− ĥ) · µ‖2 + σ2(1− 2βε)‖ĥ‖2

+ 2σ
n∑
i=1

(1− ĥi)2µiξi + σ2
n∑
i=1

(ĥ2i − 2ĥi)(ξ
2
i − 1) + 2βσ2

}
.
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Let us fix some γ, γ′ ∈ (0, 1/4). Then we can rewrite the above equation as
follows:

ĥε = max

{
h ∈ H : σ2(1− 2βε− γ)‖h‖2 + 2σ

n∑
i=1

(1− hi)2µiξi

+ ‖(1− h) · µ‖2 + σ2
n∑
i=1

(h2i − 2hi)(ξ
2
i − 1) + γσ2‖h‖2

≤ (1 + γ′)‖(1− ĥ) · µ‖2 + σ2(1− 2βε+ γ′)‖ĥ‖2

+ 2σ

n∑
i=1

(1− ĥi)2µiξi − γ′‖(1− ĥ) · µ‖2

+ σ2
n∑
i=1

(ĥ2i − 2ĥi)(ξ
2
i − 1)− γ′σ2‖ĥ‖2 + 2βσ2

}
.

Hence

ĥε ≤ h̃ε def
= max

{
h ∈ H : σ2(1− 2βε− γ)‖h‖2

+ min
g∈H

[
2σ

n∑
i=1

(1− gi)2µiξi + ‖(1− g) · µ‖2
]

+ min
g∈H

[
σ2

n∑
i=1

(g2i − 2gi)(ξ
2
i − 1) + γσ2‖g‖2

]
≤ (1 + γ′)‖(1− h◦) · µ‖2 + (1− 2βε+ γ′)σ2‖h◦‖2

+ max
g∈H

[
2σ

n∑
i=1

(1− gi)2µiξi − γ′‖(1− g) · µ‖2
]

+ max
g∈H

[
σ2

n∑
i=1

(g2i − 2gi)(ξ
2
i − 1)− γ′σ2‖g‖2

]
+ 2βσ2

}
.

(3.5)

Next, bounding max and min in (3.5) with the help of Lemma 3.1, we
obtain that for any integer m > 0 and any γ, γ′ ∈ (0, 1/4) the following
inequality holds

(1− 2βε− γ)σ2E1/m
µ ‖h̃ε‖2m ≤ (1 + γ′)E1/m

µ Rm(µ, h◦)

+
K(m!)1/mσ2

γ′
+
K[(m!)1/m + β]σ2

γ
,

where R(·, ·) is defined by (1.3).
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Therefore, applying Lemma 3.2, we obtain from the above equation√
1− 2βεσE1/(2m)

µ ‖h̃ε‖2m ≤ E1/(2m)
µ Rm(µ, h◦) +K

√
m+ βσ. (3.6)

In order to control the expectation at the right-hand side in (3.6), note
that the following inequality

n∑
i=1

[1− h◦i ]2Y 2
i + 2σ2

n∑
i=1

h◦i ≤
n∑
i=1

[1− gi]2Y 2
i + 2σ2

n∑
i=1

gi

holds for any given g ∈ H. Hence, we have

R(µ, h◦)+2σ
n∑
i=1

(1− h◦i )2µiξi + σ2
n∑
i=1

(h◦i )
2 − 2h◦i )(ξ

2
i − 1)

≤R(µ, g) + 2σ
n∑
i=1

(1− gi)2µiξi + σ2
n∑
i=1

(g2i − 2gi)(ξ
2
i − 1).

So, for any γ, γ′ ∈ (0, 1/4], we get with this equation and Lemma 3.1

E1/m
µ Rm(µ, h◦) ≤ R(µ, g) + γE1/m

µ Rm(µ, h◦) + γ′R(µ, g)

+ 2σE1/m max
h∈H

[
−

n∑
i=1

(1− hi)2µiξi −
γ

2σ

n∑
i=1

(1− hi)2µ2i
]m

+ σ2E1/m max
h∈H

[ n∑
i=1

(2hi − h2i )(ξ2i − 1)− γ
n∑
i=1

h2i

]m
+ 2σE1/m max

h∈H

[
−

n∑
i=1

(1− hi)2µiξi −
γ′

2σ

n∑
i=1

(1− hi)2µ2i
]m

+ σ2E1/m max
h∈H

[ n∑
i=1

(2hi − h2i )(ξ2i − 1)− γ′
n∑
i=1

h2i

]m
≤ R(µ, g) +

Kσ2m

γ
+ γE1/m

µ Rm(µ, h◦) +
Kσ2m

γ′
+ γ′R(µ, g).

Next, minimizing the right-hand side in g ∈ H and applying Lemma 3.2, we
obtain

E1/(2m)
µ Rm(µ, h◦) ≤

√
r(µ,H) +Kσ

√
m

and substituting this inequality in (3.6), we complete the proof. �
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The next lemma collects some useful facts about a priory weights defined
by (1.17). Let

Dh =
{
g ∈ H : ‖h‖1 ≤ ‖g‖1 ≤ ‖h‖1 + 1

}
. (3.7)

Lemma 3.5. Under Condition 1.1, for any h ∈ H, the following assertions
hold: ∑

g≥h
πg exp

{
−‖g‖1

β

}
= exp

{
−‖h‖1

β

}
, (3.8)

∑
g≤h

πg ≤ 1 +
‖h‖2

K◦β
, (3.9)

∑
g∈Dh

πg ≤ 1 +
1

β
, (3.10)

∑
g∈Dh

πg ≥
1

2β
exp

(
− 1

β

)
. (3.11)

The proof of this lemma can be found in [5].

The following technical lemma, whose proof is given in [5], is a corner-
stone in the proof of Theorem 1.3.

Lemma 3.6. Suppose {qh ≤ 1, h ∈ H} is a nonnegative sequence such that
for all h ≥ h̃

qh ≤ exp
{
−γ
[
‖h‖1 − ‖h̃‖1

]
− 1
}
, γ > 0.

Let

Wh = πhqh

(∑
g∈H

πgqg

)−1
and G be a subset in H. Then∑

h∈H
Wh log

πh
Wh
≤ log

{∑
h≤h̃

πh + exp
[
R(G, γ)

]}
,

where

E(G, γ) = log

(
2

γβe
+
∑
h∈G

πh

)
+

(∑
h∈G

πhqh

)−1( 8

γβe
+
∑
h∈G

πh

)
. (3.12)
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3.2 Proof of Theorem 1.3

The proof is based essentially on the approach proposed in [9, 5]. We begin
with a basic inequality for the excess risk. By Jensen’s inequality we have

‖µ̄β(Y )− µ‖2 =

∥∥∥∥∑
h∈H

wh(Y )
(
h · Y − µ

)∥∥∥∥2
≤
∑
h∈H

wh(Y )
∥∥h · Y − µ∥∥2. (3.13)

This is why in what follows we will deal with
∑

h∈Hwh(Y )
∥∥h · Y − µ∥∥2.

In order to bound this value from above, let us express
∥∥h ·Y −µ∥∥2 in terms

of the unbiased risk estimate of h · Y . With a simple algebra we get∥∥h · Y − µ∥∥2 =
∥∥h · Y − Y + σξ

∥∥2
=
∥∥(1− h) · Y

∥∥2 + σ2
∥∥ξ∥∥2 − 2σ〈ξ, (1− h) · (µ+ σξ)〉

=
∥∥(1− h) · Y

∥∥2 + 2σ2
n∑
i=1

hi − σ2
∥∥ξ∥∥2

− 2σ〈ξ, (1− h) · µ〉+ 2σ2
n∑
i=1

hi(ξ
2
i − 1).

(3.14)

Denote for brevity

R̃(Y, h)
def
=
∥∥(1− h) · Y

∥∥2 + 2σ2
n∑
i=1

hi − σ2
∥∥ξ∥∥2,

r̃(Y,H)
def
= min

h∈H
R̄(Y, h), h∗= arg min

h∈H
ER̄(Y, h).

(3.15)

With these notations and (3.14), we obtain∑
h∈H

wh(Y )
∥∥h · Y − µ∥∥2 = r̃(Y,H) +

∑
h∈H

wh(Y )
[
R̃(Y, h)− r̃(Y,H)

]
+
∑
h∈H

wh(Y )

[
2σ2

n∑
i=1

hi(ξ
2
i − 1)− 2σ

n∑
i=1

(1− hi)ξiµi
]
.

(3.16)
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It is also obvious that

r̃(Y,H) ≤ R̃(Y, h∗) = ‖(1− h∗) · µ‖2 + σ2‖h∗‖2

+ σ2
n∑
i=1

(h∗i
2 − 2h∗i )(ξ

2
i − 1) + 2σ

n∑
i=1

(1− h∗i )2µiξi

= r(µ,H) + σ2
n∑
i=1

(h∗i
2 − 2h∗i )(ξ

2
i − 1) + 2σ

n∑
i=1

(1− h∗i )2µiξi.

(3.17)

Recalling the definition of the weights wh(Y ), we rewrite them as follows:

wh(Y ) = πh exp

[
−R̃(Y, h)− r̃(Y,H)

2βσ2

]/∑
g∈H

πg exp

[
−R̃(Y, g)− r̃(Y,H)

2βσ2

]
and we obtain

R̃(Y, h)−r̃(Y,H) = 2βσ2
∑
h∈H

wh(Y ) log
πh

wh(Y )

− 2βσ2 log

{∑
h∈H

πh exp

[
−R̃(Y, h)− r̃(Y,H)

2βσ2

]}
.

(3.18)

Therefore, substituting Equations (3.17) and (3.18) in (3.16), we arrive
at the basic inequality∑

h∈H
wh(Y )

∥∥h · Y − µ∥∥2 ≤ r(µ,H)

+ δ1(µ) + δ2(µ) + 2βσ2δ3(µ) + 2βσ2δ4(µ),

(3.19)

where

δ1(µ) =σ2
n∑
i=1

(h∗i
2 − 2h∗i )(ξ

2
i − 1) + 2σ

n∑
i=1

(1− h∗i )2µiξi,

δ2(µ) =
∑
h∈H

wh(Y )

[
2σ2

n∑
i=1

hi(ξ
2
i − 1)− 2σ

n∑
i=1

(1− hi)ξiµi
]
,

δ3(µ) =− log

{∑
h∈H

πh exp

[
−R̃(Y, h)− r̃(Y,H)

2βσ2

]}
,

δ4(µ) =
∑
h∈H

wh(Y ) log
πh

wh(Y )
.
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The first term at the right-hand side of (3.19) can be easily controlled.
Indeed, denote for brevity one can check easily that

Eδ21(µ) = 2σ4
n∑
i=1

(h∗i
2 − 2h∗i )

2 + 4σ2
n∑
i=1

(1− h∗i )4µ2i

≤ σ2
[
8σ2

n∑
i=1

h∗i
2 + 4

n∑
i=1

(1− h∗i )2µ2i
]
≤ 8σ2r(µ,H).

(3.20)

Next, since by the definition of ordered multipliers (h∗i )
2 − 2h∗i ≤ 0, we get

by a simple algebra that for any λ > 0

log[exp(λδ1(µ))] =

n∑
i=1

{
λσ2(2h∗i − h∗2i )

− 1

2
log
[
1 + 2λσ2(2h∗2i − h∗i )

] 2λ2σ2(1− h∗i )4µ2i
1 + 2λσ2(2h∗2i − h∗i )

}
≤

n∑
i=1

{
λ2σ4(2h∗2i − h∗i )2 + 2λ2σ2(1− h∗i )4µ2i

}
≤ 4λ2σ2r(µ,H).

(3.21)

Therefore, combining (3.20) and (3.21), we obtain that for any λ > 0

E exp

{
λδ1(µ)

σ
√

8r(µ,H)

}
≤ exp

(
λ2

2

)
. (3.22)

It follows immediately from convexity of the function exp(·) that

z ≤ exp(z − 1),

and so, for any x, λ > 0

xm ≤ exp(λmx−m)

λm
.

Thus, by (3.22)

E

[
δ1(µ)

σ
√

8r(µ,H)

]m
+

≤ exp

{
λ2m2

2
−m log(λ)−m

}
.

Minimizing the right-hand side at this equation in λ > 0, we arrive at

E

[
δ1(µ)

σ
√

8r(µ,H)

]m
+

≤ exp

{
−m

2
+
m

2
log(m)

}
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and thus

E1/m[δ1(µ)]m+ ≤ σ
√
Kmr(µ,H). (3.23)

The last three terms at the right-hand side in (3.19) are bounded from
above with the help of more delicate arguments. Since

∑
h∈Hwh(Y ) = 1,

we obtain that for any γ ∈ (0, 1/4)

δ2(µ) ≤2σ

[∑
h∈H

wh(Y )

(
σ

n∑
i=1

hi(ξ
2
i − 1)− σγ

n∑
i=1

h2i

)]
+

+ 2σ

[∑
h∈H

wh(Y )

( n∑
i=1

(1− hi)ξiµi −
γ

σ

n∑
i=1

(1− hi)2µ2i
)]

+

+ 2γ
∑
h∈H

wh(Y )R(µ, h)

≤2σ2 max
h∈H

[ n∑
i=1

hi(ξ
2
i − 1)− γ

n∑
i=1

h2i

]
+

+ 2σmax
h∈H

[ n∑
i=1

(1− hi)ξiµi −
γ

σ

n∑
i=1

(1− hi)2µ2i
]
+

+ 2γ
∑
h∈H

wh(Y )R(µ, h).

Hence, using Lemma 3.1, we obtain from this equation

E1/m
µ [δ2(µ)]m+ ≤ 2γE1/m

µ

[∑
h∈H

wh(Y )R(µ, h)

]m
+
Kmσ2

γ
(3.24)

Our next step is to relate∑
h∈H

wh(Y )R(µ, h) and
∑
h∈H

wh(Y )‖µ− h · Y ‖2.

Since∑
h∈H

wh(Y )‖µ− h · Y ‖2 =
∑
h∈H

wh(Y )R(µ, h)

+ 2σ
∑
h∈H

wh(Y )
[
(1− hi)− (1− hi)2

]
µiξi + σ2

∑
h∈H

wh(Y )h2i (ξ
2
i − 1),
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we get∑
h∈H

wh(Y )R(µ, h) ≤
∑
h∈H

wh(Y )‖µ− h · Y ‖2

+ 2σ
∑
h∈H

wh(Y )
[
(1− hi)2 − (1− hi)

]
µiξi + σ2

∑
h∈H

wh(Y )h2i (1− ξ2i ).

With this equation, using the same arguments as in proving (3.24), we arrive
at

(1 + 2γ)E1/m

[∑
h∈H

wh(Y )R(µ, h)

]m
≤E1/m

[∑
h∈H

wh(Y )‖µ− h · Y ‖2
]m

+
Kmσ2

γ
.

Therefore by Lemma 3.2 we have{
E1/m
µ

[∑
h∈H

wh(Y )R(µ, h)

]m}1/2

≤
{

E1/m
µ

[∑
h∈H

wh(Y )‖µ− h · Y ‖2
]m}1/2

+ σ
√
Km.

Next, substituting this equation in (3.24) and using that (x+y)2 ≤ 2x2+2y2

we arrive at the following upper bound

E1/m
µ [δ2(µ)]m+ ≤ 4γE1/m

µ

[∑
h∈H

wh(Y )‖µ− h · Y ‖2
]m

+
Kmσ2

γ
. (3.25)

Let us now consider δ3(µ). We have by (3.8)

log

{∑
h∈H

πh exp

[
−R̃(Y, h)− r̃(Y,H)

2βσ2

]}

≥ log

{ ∑
h≥h◦(Y )

πh exp

[
−R̃(Y, h)− r̃(Y,H)

2βσ2

]}

= log

{ ∑
h≥h◦(Y )

πh exp

[
−‖(1− h) · Y ‖2 − ‖[1− h◦(Y )] · Y ‖2

2βσ2

− 1

β

n∑
i=1

[hi − h◦i (Y )]

]}

≥ log

{ ∑
h≥h◦(Y )

πh exp

[
− 1

β

n∑
i=1

[hi − h◦i (Y )]

]}
≥ 0

(3.26)
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and hence
δ3(µ) ≤ 0. (3.27)

The final step in the proof is to bound from above the last term at the
right-hand side of Equation (3.19), namely δ4(µ). We will do this the help
of Lemma 3.6. First of all note that for all h > ĥε, where ĥε is defined by
(3.3), we have

R̃(Y, h)− r̃(Y,H) ≥ 2βεσ2
[
‖h‖2 − ‖h◦(Y )‖2

]
+ 2βσ2.

In order to make use of Lemma 3.6, let us set

qh = exp

[
−R̃(Y, h)− r̃(Y,H)

2βσ2

]
= exp

[
−R̃(Y, h)− R̃(Y, h◦)

2βσ2

]
,

G =
{
h ∈ H : ‖h◦‖1 ≤ ‖h‖1 < ‖h◦‖1 + 1

}
,

h̃ =ĥε.

By Condition (1.18) we have that for all h ≥ ĥε

qh ≤ exp

{
−2σ2βK◦ε(‖h‖1 − ‖h◦‖1)

2βσ2
− 1

}
= exp

{
−K◦ε(‖h‖1 − ‖h◦‖1)− 1

}
.

(3.28)

Note also that similar to (3.26) it can be checked easily that

qh ≥ exp

(
− 1

β

)
, h ∈ G

and thus it follows immediately from the definition of G and (3.11) that∑
h∈G

πhqh ≥ exp

(
− 1

β

)∑
h∈G

πh ≥
1

2β
exp

(
− 2

β

)
and hence

E(G,K◦ε) ≤
C(K◦, β)

2ε
+

1

2
log

C(K◦, β)

ε
. (3.29)

Denote for brevity

ρ(µ,H) =

[
2 +

r(µ,H
σ2

]
.
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With Equations (3.29), (3.9), and Lemmas 3.6, 3.3 we obtain

E1/m
µ

{
δ4(µ)− log[ρ(µ,H)]

}m
+

≤ 2E1/m
µ logm

{
‖ĥε‖+ exp[E(G,K◦ε)/2]√

βK◦ρ(µ,H)

}
≤ 2 log

{
1√

1− 2βε

√
r(µ,H)

σ2

+
K
√
m+ β√

1− 2βε
+

√
C(K◦, β)

ε
exp

[
C(K◦, β)

2ε

]}
− log

[
K◦βρ(µ,H)

]
.

(3.30)

Our next step is to minimize the right-hand side at this equation in
ε ∈ (0, 1/(2β)). Note that that for any ε ≤ 1/(3β) we have

1√
1− 2βε

√
r(µ,H)

σ2
+
K
√
m+ β√

1− 2βε
≤
√
r(µ,H)

σ2
+K

√
m+ β

+Kε

[√
r(µ,H)

σ2
+K

√
m+ β

]
.

(3.31)

Consider the following function

Ψ(x) = min
ε∈[0,1/(3β)]

{
εx+

√
C(K◦, β)

ε
exp

[
C(K◦, β)

2ε

]}
.

It is clear that Ψ(0) is bounded from above. It is also easy to check with
ε = 4C(K◦, β)/log(x) that for any x ≥ C(K◦, β)

Ψ(x) ≤ 4C(K◦, β)x

log(x)
+

√
x log(x)

2
≤ C(K◦, β)x

log(x)
.

Therefore, combining this equation with (3.30), (3.31), we arrive at

E1/m
µ

{
δ4(µ)− log[ρ(µ,H)]

}m
+
≤ log

[
C(K◦, β)

√
m+ β

]
. (3.32)

Next, substituting (3.23), (3.25), (3.27), and (3.32) in (3.19) we arrive
at

E1/m
µ

[∑
h∈H

wh(Y )
∥∥µ− h · Y ∥∥2]m ≤ r(µ,H) +Kσ

√
mr(µ,H)

+ 4γE1/m
µ

[∑
h∈H

wh(Y )‖µ− h · Y ‖2
]m

+
Kmσ2

γ

+ 2βσ2 log
[
C(K◦, β)(m+ β)

]
+ 2βσ2 log[ρ(µ,H)].

(3.33)
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Using this equation and minimizing the right-hand at (3.33) in γ ∈
(0, 1/4), we obtain with the help of Lemma 3.2

E1/(2m)
µ

[∑
h∈H

wh(Y )‖µ− h · Y ‖2
]m
≤ K
√
mσ

+
{
rβ(µ,H) + 2βσ2 log

[
C(K◦, β)(m+ β)

]}1/2
.

(3.34)

Similarly to (3.33), we have that for any γ ∈ (0, 1/4)

E1/m
µ

[∑
h∈H

wh(Y )
∥∥µ− h · Y ∥∥2 − rβ(µ,H)

]m
+

≤ Kσ
√
mrβ(µ,H) + 2βσ2 log

[
C(K◦, β)(m+ β)

]
+ 4γE1/m

µ

[∑
h∈H

wh(Y )‖µ− h · Y ‖2
]m

+
Kmσ2

γ
.

and substituting in this equation (3.34), we arrive at

E1/m
µ

[∑
h∈H

wh(Y )
∥∥µ− h · Y ∥∥2 − rβ(µ,H)

]m
+

≤ Kσ
√
mrβ(µ,H) + 2βσ2 log

[
C(K◦, β)(m+ β)

]
+ γ
{

8rβ(µ,H) + 2βσ2 log
[
C(K◦, β)(m+ β)

]
+ 16Kσ2m

}
+
Kmσ2

γ
.

(3.35)

Our final step is to minimize the right-hand side at this equation in
γ ∈ (0, 1/4). Notice that

γ◦ = σ
√
Km

{
8rβ(µ,H) + 2βσ2 log

[
C(K◦, β)(m+ β)

]
+ 16Kσ2m

}−1/2
is the unconstrained minimizer of the right-hand side. However it is clear

24



that γ◦ ≤ 1/4 and hence we have by (3.35)

E1/m
µ

[∑
h∈H

wh(Y )
∥∥µ− h · Y ∥∥2 − rβ(µ,H)

]m
+

≤ Kσ
√
mrβ(µ,H) + 2βσ2 log

[
C(K◦, β)(m+ β)

]
+Kσ

√
m
{
rβ(µ,H) + 2βσ2 log

[
C(K◦, β)(m+ β)

]
+Kσ2m

}1/2

≤ Kσ
√
m
{
rβ(µ,H) +Kσ2m

}1/2
+Kβσ2 log

[
C(K◦, β)(m+ β)

]
≤ Kσ

√
mrβ(µ,H) +Kσ2m+Kβσ2 log

[
C(K◦, β)

]
+Kβσ2 log(m+ β)

≤ Kσ
√
mrβ(µ,H) +Kσ2m+Kβ[1 + log(β)]σ2 log

[
C(K◦, β)

]
.

(3.36)

In deriving this inequality it was used that

2ε log(x)− x ≤ 2ε[1 + log(ε)], x > 0, ε > 0. (3.37)

Finally, Equation (3.36) with (3.13), we finish the proof. �

3.3 Proof of Theorem 1.4

It follows from (1.22) that for any m ≥ 1

E1/m
[
‖µ̄β(Y )− µ‖ −

√
rβ(µ,H)

]m
+
≤ K
√
mσ +

Kσ2[C(K◦, β) +m]√
rβ(µ,H)

.

Hence, by the Markov inequality we obtain

Pµ

{
‖µ̄β(Y )− µ‖ ≥

√
rβ(µ,H) + x

}
≤ exp

{
−m log(x)

+m log

[
E1/m

[
‖µ̄β(Y )− µ‖ −

√
rβ(µ,H)

]m
+

]}
≤ exp

{
−m log(x) +m log

[
K
√
mσ +

Kσ2[C(K◦, β) +m]√
rβ(µ,H)

]}
≤ exp

{
−m log

(
x

Kσ

)
+
m log(m)

2
+ log

[
1 +

Kσ[C(K◦, β) +m]
√
m
√
rβ(µ,H)

]}
.

Therefore choosing

m =
x2

K2σ2 exp(1)
,
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we get with (3.37) that for any x ≥ σ

Pµ

{
‖µ̄β(Y )− µ‖ ≥

√
rβ(µ,H) + x

}
≤ exp

{
− x2

Kσ2
+ log

{
C(K◦, β) +

Kσ√
rβ(µ,H)

(
x

σ

)}
≤ exp

{
− x2

Kσ2
+ C(K◦, β) +

1

2
log

(
x

σ

)2}
≤ exp

{
− x2

Kσ2
+ C(K◦, β)

}
. �
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