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. The estimators withing this family are aggregated based on the exponential weighting method and the performance of the aggregated estimate is measured by the excess risk controlling deviation of the square losses from the oracle risk. Based on natural statistical properties of ordered smoothers, we propose a novel method for obtaining concentration inequalities for the exponential weighting method.

Introduction and main results

This paper deals with recovering an unknown vector µ ∈ R n from the noisy observations Y i = µ i + σξ i , i = 1, 2, . . . , n,

where ξ is a standard white Gaussian noise, i.e., ξ i are i.i.d. Gaussian random variables with Eξ i = 0 and Eξ 2 i = 1. For the sake of simplicity it is assumed that the noise level σ > 0 is known. It is also assumed that n is large. Let us emphasize that all results in this paper can be extended to the case n = ∞ provided that µ ∈ 2 .

Notice also that in spite of the obvious simplicity of this statistical model, it can cover a very wide class of statistical problems ranging from regression estimation to inverse problems (see, e.g., [START_REF] Kneip | Ordered linear smoothers[END_REF], [START_REF] Golubev | On universal oracle inequalities related to high dimensional linear models[END_REF]).

In this paper, the quality of an estimate μ(Y ) is measured by the mean square risk ρ(μ, µ) = E µ μ(Y ) -µ 2 ,

where E µ stands for the expectation with respect to the measure P µ generated by the observations (1.1) under given µ, and

• is the standard Euclidean norm in R n .
In what follows it is assumed that we have at our disposal a family of linear estimates μh

k (Y ) = h k Y k , h ∈ H, (1.2) 
where H is a given set of vectors in R n . This set consists of vectors with specific properties that will be described later on.

Our goal is to construct a good estimate of µ with the help of the family of linear estimates μh (Y ), h ∈ H. To explain what estimates might be viewed as good, let us notice that for given h, the risk of μh (Y ) is computed as follows :

R(µ, h) def = E µ μh (Y ) -µ 2 = (1 -h) • µ 2 + σ 2 h 2 , (1.3) 
where here and in what follows • means the component-wise multiplication of vectors in R n , i.e, z = x • y means that z k = x k y k , k = 1, . . . , n.

Of coarse, we want to find a method of combining estimates {μ h (Y ), h ∈ H} that provides an estimate with the minimal risk. If the family of estimates is reach enough, then we would be satisfied with estimators whose risks are close to the value

r(µ, H) = min h∈H (1 -h) • µ 2 + σ 2 h 2 .
This risk is often called oracle risk since it coincides with the risk of the following psudo-estimate

μ * (Y ) = h * (µ) • Y, h * (µ) = arg min h∈H (1 -h) • µ 2 + σ 2 h 2 . (1.4)
Obviously, this object is not a real statistical estimate since it depends on the unknown vector µ.

A rather natural approach to constructing new estimates with the help of the available ones is to compute their convex combination μw (Y ) = h∈H w h (Y )μ h (Y ), (1.5) where w h (Y ) are some nonnegative numbers called weights such that h∈H w h (Y ) = 1.

To simplify unessential technical details, here and below H is assumed to be finite.

The main issue in this method is evidently related to the selection of weights w h (Y ). In this paper, we focus on the so-called exponential weights defined as follows :

w h (Y ) = π h Z(Y ) exp - R(Y, h) 2βσ 2 , (1.6) 
where

Z(Y ) def = h∈H π h exp - R(Y, h) 2βσ 2 , (1.7) R(Y, h) def = μh (Y ) 2 -2 Y, μh (Y ) + 2σ 2 h∈H h k , (1.8) 
is the empirical counterpart of R(µ, h) and β, π h are positive numbers. It is clear that without loss of generality one may assume that h∈H π h = 1.

To explain heuristically how these weights can be obtained, let us simplify the initial statistical problem assuming that we have at our disposal the auxiliary observations

Y k = µ k + σξ k , k = 1, 2 . . . , n, (1.9) 
where ξ is independent of ξ in (1.1) a standard white Gaussian noise. These observations will be used to select weights

w h (Y ) in the estimate μw (Y, Y ) = h∈H w h (Y )μ h (Y ), (1.10) 
where w h (Y ) ≥ 0 and h∈H w h (Y ) = 1.

Apparently the approach to constructing new estimates with the help of the auxiliary sample were firstly studied and developed by A. Nemirovsky and, independently, by A. Catoni (see [START_REF] Nemirovski | Topics in non-parametric statistics[END_REF][START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF]). Subsequently, these methods have been adapted for a wide class of statistical models ( see, for example, [START_REF] Yang | Combining different procedures for adaptive regression[END_REF], [START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF], [START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF], [START_REF] Rigolet | Sparse estimation by exponential weighting[END_REF]).

Let us assume that Y is frozen. The idea in choosing w h (•) in (1.10) is related to the so-called roughness penalty approach yielding the weights wh (Y ) = arg min

w h 1 2 2 Y - h∈H w h μh (Y ) 2 + βK(w h , π h ) , (1.11) 
where

K(w h , π h ) = h∈H w h log w h π h
is the Kulback-Leibler divergence between probability distributions w h and the a priori weights π h . Since there is no explicit formula for wh (Y ), to simplify their computing, let us replace in (1.11) the distance between the data and the estimate

Y - h∈H w h μh (Y )
2 by the following upper bound obtained by the Jensen inequality

Y - h∈H w h μh (Y ) 2 ≤ h∈H w h Y -μh (Y ) 2 .
Thus we arrive at

w h (Y ) = arg min w h 1 2σ 2 h∈H w h Y -μh (Y ) 2 + βK(w h , π h ) .
Now, these weights can be easily computed with a simple algebra

w h (Y ) = π h Z(Y ) exp - μh (Y ) 2 -2 Y , μh (Y ) 2σ 2 β , (1.12) 
where

Z(Y ) = h∈H π h exp - μh (Y ) 2 -2 Y , μh (Y ) 2σ 2 β .
Obviously, the described above two samples estimation procedure results in loss of a significant statistical information contained in the data. Therefore computing estimates and their aggregation should be done, of course, with the help of the single sample. The main difficulty in implementing this idea is related to the inner product Y , μh (Y ) in (1.12). It is clear that we need to replace this inner product by something that should to be close to it, but depending only on Y . In order to understand how to implement this idea, let us look at the probabilistic structure of Y , μh (Y ) . We have

Y , μh (Y ) = n k=1 h k (µ k + σξ k )(µ k + σξ k ) = n k=1 h k µ 2 k +σ n k=1 h k µ k ξ k + σ n k=1 h k µ k ξ k + σ 2 n k=1 h k ξ k ξ k .
(1.13) Note that the second line in this equation contains random variables with zero mean for given h. If we want to make use of the single sample, we need first to look at 

Y, μh (Y ) = n k=1 h k (µ k + σξ k ) 2 = n k=1 h k µ 2 k + 2σ 2 n k=1 h k +2σ n k=1 h k µ k ξ k + σ 2 n k=1 h k (ξ 2 k -1). ( 1 
E Y , μh (Y ) = E Y, μh (Y ) -2σ 2 n k=1 h k .
These intuitive considerations combined with (1.12) result in the exponential weights defined by (1.6)- (1.8).

Notice that in recent years the exponential weighting method has been extensively studied and enough good upper bounds for its performance have been obtained for several statistical models [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF][START_REF] Dalayan | Sharp oracle inequalities for aggregation of affine estimators[END_REF][START_REF] Alquier | Pac-bayesian theorems for sparse regression estimation with exponential weights[END_REF][START_REF] Arias-Castro | K Variable Selection with Exponential and 0 -Penalization[END_REF].

In this paper, we study this method in the case when H is a set of ordered multipliers defined as follows : Definition 1.1. H is a set of ordered multipliers if the following properties hold:

1. h i ∈ [0, 1], i = 1, . . . , n for all h ∈ H, 2. h i+1 ≤ h i , i = 1, . . . , n for all h ∈ H, 3. if for some integer k and some h, g ∈ H, h k < g k , then h i ≤ g i for all i = 1, . . . , n.

Property 3 means that vectors in H may be naturally ordered, since for any h, g ∈ H there are only two possibilities h i ≤ g i or h i ≥ g i for all i = 1, . . . , n. Therefore the estimators defined by (1.2), where H is a set of ordered multipliers, are often called ordered smoothers [START_REF] Kneip | Ordered linear smoothers[END_REF]. Let us emphasize that ordered smoothers are very common in statistics (see for instance [START_REF] Kneip | Ordered linear smoothers[END_REF], [START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF]).

We start our study of the exponential weighting method with the case β → 0. It is easy to see that in this case the limiting estimator has the following form :

μ• (Y ) = h • (Y ) • Y, where h • (Y ) = arg min h∈H R(Y, h).
(1.15)

This standard method of estimate selection with the help of the unbiased risk estimation has long been well known in statistics and goes back to [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF][START_REF] Mallows | Some comments on C p[END_REF]. A classical fact about its performance is given by the following theorem [START_REF] Kneip | Ordered linear smoothers[END_REF].

Theorem 1.1. Let H be a set of ordered multipliers. Then for any µ ∈ R n

E µ μ• (Y ) -µ 2 2 ≤ r(µ, H) + Kσ 2 1 + r(µ, H) σ 2 , (1.16) 
where here and in what follows K denotes generic constants.

Equation (1.16) is often called oracle inequality since it controls the risk of μ• (Y ) via the oracle risk r(µ, H).

When β > 0, statistical analysis of the exponential weighting is more involved (see, e.g., [START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF]). In order to get an oracle inequality similar to (1.16), some additional assumptions about π h and H are required.

First, we will make use of a priory weights defined by the following condition Condition 1.1.

π h def = 1 -exp - h + 1 -h 1 β , (1.17) 
where h + = min{g ∈ H : g > h} and π h max = 1, h max is the maximal multiplier in H.

In this definition and below • 1 stands for 1 -norm in R n , i.e.,

h 1 = n i=1 |h i |.
Along with the above condition, we will need also the following one.

Condition 1.2. There exists a constant

K • > 0 such that h 2 -g 2 ≥ K • h 1 -g 1 (1.18)
for all h ≥ g from H.

An upper bound for mean square risk of the exponential weighting method is given by the following theorem [START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF].

Theorem 1.2. Assume that H is a set of ordered multipliers, β ≥ 4, and Conditions 1.1, 1.2 hold. Then, uniformly in µ ∈ R n , E µ μβ (Y ) -µ 2 ≤ r β (µ, H) + σ 2 C(K • , β), (1.19) 
where

r β (µ, H) def = r(µ, H) + 2βσ 2 log 2 + r(µ, H) σ 2 . (1.20)
Here and in what follows C(K • , β) denotes strictly positive and bounded constants depending on K • and β.

At first glance, it may seem comparing the remainder terms in Equations (1.16) and (1. [START_REF] Yang | Combining different procedures for adaptive regression[END_REF])-(1.20), that the exponential weighting should be significantly better than the classical methods of model selection. In fact, this is not exactly so, and to find out what is really going on, we need to understand first of all what methods were used in proving Theorems 1.1 and 1.2.

Theorem 1.1 results from the following concentration inequality (see Kneip [START_REF] Kneip | Ordered linear smoothers[END_REF]) :

P µ μ• (Y ) -µ ≥ r(µ, H) + Kσ + x ≤ exp - x 2 Kσ 2 , x ≥ 0. (1.21)
At the same time, Theorem 1.2 represents a fact of an entirely different class. At the very core in the proof of (1.19) in [START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF] is an original method proposed in [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] which is based on Stein's formula [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF] for the unbiased risk estimate. In essence, this means that in contrast to (1.21) Equation (1.19) cannot control the deviations of the square losses μβ (Y ) -µ 2 from the oracle risk.

Note also that Theorem 1.2 holds true only for β ≥ 4. Unfortunately, it is impossible to say whether this condition is crucial for practical applications of the exponential weighting, or it is a purely mathematical constraint resulting from the method of the proof.

In order to understand more profoundly statistical properties of the exponential weighting method, we focus in this paper on the so-called excess risk ∆ β (Y, H)

def = μβ (Y ) -µ 2 -r β (µ, H) + ,
where [x] + = max(0, x) and r β (µ, H) is defined by (1.20). The next theorem, controlling moments of ∆ β (Y, H), is the main result of this paper.

Theorem 1.3. Assume that H is a set of ordered multipliers and Conditions 1.1, 1.2 hold. Then, uniformly in µ ∈ R n and in m ≥ 1,

E 1/m µ ∆ β (Y, H) m + ≤ Kσ mr β (µ, H) + Kσ 2 m + C(K • , β)σ 2 .
(

Notice that compared to majority of results related to the exponential weighting, see e.g. [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF][START_REF] Rigolet | Sparse estimation by exponential weighting[END_REF][START_REF] Dalayan | Sharp oracle inequalities for aggregation of affine estimators[END_REF][START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF], the main advantage of this theorem is that it holds for any β > 0 and provides an upper bound for the excess risk that does depend neither n no the cardinality of H. It justifies, in particular, the use of the exponential weighting with β = 1 that demonstrates a good performance in practice as shown in the next section.

Combining Theorem 1.3 with the Markov inequality, one obtains the following fact similar to (1.21).

Theorem 1.4. Assume that H is a set of ordered multipliers and Conditions 1.1, 1.2 hold. Then, uniformly in µ ∈ R n and x ≥ σ,

P µ μβ (Y ) -µ ≥ r β (µ, H) + x ≤ exp - x 2 Kσ 2 + C(K • , β) .

Simulation study

To illustrate numerically Theorem 1.3, the following experiment has been carried out. Its goal was to find out how the exponential weighting with β = {0, 1, 2, 4} works in regression estimation with the help of the cubic smoothing splines. Recall that these splines are usually used in recovering an unknown smooth function f (x), x ∈ [0, 1] from the noisy observations

Y i = f (X i ) + ξ i , i = 1, . . . , n, (2.1) 
where it is assumed that the design points X i belong to (0, 1) and ξ is a standard white Gaussian noise. Smoothing spline of order 2m -1 is defined by

fα (x, X, Y ) = arg min f 1 n n i=1 [Y i -f (X i )] 2 + α 1 0 [f (m) (u)] 2 du , (2.2)
where f (m) (•) denotes the derivative of order m and α ∈ A ⊂ R + is a smoothing parameter. In what follows the set of possible smoothing parameters A is assumed to be finite.

In order to show that the regression estimation with the help of the smoothing splines is equivalent to the sequence space model described by (1.1) and (1.2), consider the Demmler-Reinsch [START_REF] Demmler | Oscillation matrices with spline smoothing[END_REF] basis

ψ k (x), x ∈ [0, 1], k = 1, . . . , n having double orthogonality ψ k , ψ l n = δ kl , 1 0 ψ (m) k (x)ψ (m) l (x) dx = δ kl λ k , k, l = 1, . . . , n, (2.3)
where δ kl = 1 if k = l, and δ kl = 0 otherwise. Here and below u, v n stands for the inner product

u, v n = 1 n n i=1 u(X i )v(X i ).
Let us assume for definiteness that the eigenvalues λ k are sorted in ascending order

λ 1 ≤ • • • ≤ λ n .
With this basis, representing the underlying regression function as follows:

f (x) = n k=1 ψ k (x)µ k , (2.4) 
we get from (2.1) and (2.3)

Y k = 1 n n i=1 Y i ψ k (X i ) = µ k + ε √ n ξ k , (2.5) 
where µ k = f, ψ k n and ξ is a standard white Gaussian noise. So, substituting (2.4) in (2.2) and using (2.3), we arrive at

fα (x, X, Y ) = n k=1 μk ψ k (x),
where μ = arg min

µ n k=1 [Y k -µ k ] 2 + α n k=1 λ k µ 2 k .
It can be seen easily that μk = Y k 1 + αλ k and thus the spline regression model (2.1)-(2.2) is equivalent to the sequence space model defined by (1.1) and (1.2) with σ = ε/ √ n and

H = h : h k = 1 1 + αλ k , k = 1, . . . , n, α ∈ A . (2.6) 
In order to simulate cubic splines, the following family of ordered multipliers was used

H = h : h k = 1 1 + [απ(k -1)] 4 , k = 1, . . . , n, α ∈ A n ,
where

A n = α : α = (1 + ε) s , s = 0, 1, . . . , log(n)/ log(1 + ε)
with ε = 0.01. The motivation of this family is due to the well-known asymptotic formula λ k (πk) 4 , k 1 (see [START_REF] Demmler | Oscillation matrices with spline smoothing[END_REF]). The simulations were organized as follows. For given A ∈ [0, 50], 40000 replications of the observations

Y k = µ k (A) + ξ k , k = 1, . . . , 300
were generated. Here µ(A) ∈ R 300 is a Gaussian vector with independent components and

Eµ k (A) = 0, Eµ 2 k (A) = A exp - k 2 2Σ 2 .
Next, the mean oracle risk

r(A, H) = E min h∈H (1 -h) • µ(A) 2 + h 2
and the absolute excess risk

∆β 1 (A) = E µ(A) -μβ (Y ) 2 -r(A, H) + ,
were computed with the help of the Monte-Carlo method. Finally, the data r(A, H), ∆β 1 (A), A ∈ [0, 50], β = 0, 1, 2, 4 are plotted on Figure 1 to illustrate graphically statistical properties of the exponential weighting method.

Looking at this picture we see that there is no universal β minimizing the excess risk uniformly in µ, but it seems that a reasonable choice would be β ≈ 1. Note also that the exponential weighting with β ∈ [START_REF] Alquier | Pac-bayesian theorems for sparse regression estimation with exponential weights[END_REF][START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF] works better compared to the classical unbiased risk estimation (β = 0) when r(µ, H)/σ 2 is not large. 3 Proofs

Auxiliary facts

In what follows it is assumed that H be a set of ordered multipliers. Basic probabilistic facts related to the ordered multipliers are described is the following lemma.

Lemma 3.1. Let ξ i be i.i.d. N (0, 1). Then for any α ∈ (0, 1/4)

P max h∈H ± n i=1 h i (ξ 2 i -1) -α n i=1 h 2 i ≥ x α ≤ exp - x K , (3.1) 
P max h∈H n i=1 (1 -h i )ξ i µ i -α n i=1 (1 -h i ) 2 µ 2 i ≥ x α ≤ exp - x K , (3.2) 
where K is a generic constant.

The proof of this lemma follows immediately from Lemma 2 in [START_REF] Golubev | On universal oracle inequalities related to high dimensional linear models[END_REF].

Lemma 3.2. I) If for some R, r ≥ 0 R ≤ r + min α∈(0, ] x 2 α + αR , then √ R ≤ √ r + |x| max 2, 2 . 
II) If for some R, r ≥ 0 R ≤ r + min α∈(0, ) x 2 α + αr , then √ R ≤ √ r + |x| max 1, 2 .
Proof. It is easy to check with a simple algebra that min α∈(0, ]

x 2 α + αR = 2|x| √ R1 x ≤ √ R + ( -1 x 2 + R)1 x > √ R 2|x| √ R1 x ≤ √ R + 2 -1 x 2 1 x > √ R . Therefore if x > √ R, then R ≤ r + 2 -1 x 2 ,
and so,

√ R ≤ √ r + √ 2|x|/ √ . Next, when x ≤ √ R we have R ≤ r + 2|x| √ R, or, equivalently, ( √ R -|x|) 2 ≤ r + x 2 . Hence √ R ≤ √ r + 2|x|.
The proof of the second part of the lemma is quite similar.

Lemma 3.3. Let ζ be a nonnegative random variable with Eζ m < ∞. Then for any A > 0

E 1/m log m (A + ζ) ≤ log(A + E 1/m ζ m ).
Proof. Consider the following function

F (z) = max x>-A log(A + x) -zx , z ∈ R + .
It can be checked with a simple algebra that

F (z) = -log(z) + Az -1.
and therefore for any z ≥ 0 log(A + x) ≤ zx + F (z).

So, we have

E 1/m log m (A + ζ) ≤ zE 1/m ζ m + F (z)
and minimizing the right-hand side at this equation in z ≥ 0, we complete the proof.

Lemma 3.4. Let ĥ = max h ∈ H : R(Y, h) -R(Y, h • ) ≤ 2β σ 2 h 2 -h • 2 + -1 , (3.3) 
where ∈ (0, 1/(2β)) and h • (Y ) is defined by (1.15). Then for any integer m ≥ 1

1 -2β E 1/(2m) µ ĥ 2m ≤ r(µ, H) σ 2 + K (m + β). (3.4) 
Proof. By the definition of R(Y, h) (see (1.8))) and (3.3), we get ĥ = max h :

(1 -h) • µ 2 + σ 2 (1 -2β ) h 2 + 2σ n i=1 (1 -h i ) 2 µ i ξ i + σ 2 n i=1 (h 2 i -2h i )(ξ 2 i -1) ≤ (1 -ĥ) • µ 2 + σ 2 (1 -2β ) ĥ 2 + 2σ n i=1 (1 -ĥi ) 2 µ i ξ i + σ 2 n i=1 ( ĥ2 i -2 ĥi )(ξ 2 i -1) + 2βσ 2 .
Let us fix some γ, γ ∈ (0, 1/4). Then we can rewrite the above equation as follows:

ĥ = max h ∈ H : σ 2 (1 -2β -γ) h 2 + 2σ n i=1 (1 -h i ) 2 µ i ξ i + (1 -h) • µ 2 + σ 2 n i=1 (h 2 i -2h i )(ξ 2 i -1) + γσ 2 h 2 ≤ (1 + γ ) (1 -ĥ) • µ 2 + σ 2 (1 -2β + γ ) ĥ 2 + 2σ n i=1 (1 -ĥi ) 2 µ i ξ i -γ (1 -ĥ) • µ 2 + σ 2 n i=1 ( ĥ2 i -2 ĥi )(ξ 2 i -1) -γ σ 2 ĥ 2 + 2βσ 2 . Hence ĥ ≤ h def = max h ∈ H : σ 2 (1 -2β -γ) h 2 + min g∈H 2σ n i=1 (1 -g i ) 2 µ i ξ i + (1 -g) • µ 2 + min g∈H σ 2 n i=1 (g 2 i -2g i )(ξ 2 i -1) + γσ 2 g 2 ≤ (1 + γ ) (1 -h • ) • µ 2 + (1 -2β + γ )σ 2 h • 2 + max g∈H 2σ n i=1 (1 -g i ) 2 µ i ξ i -γ (1 -g) • µ 2 + max g∈H σ 2 n i=1 (g 2 i -2g i )(ξ 2 i -1) -γ σ 2 g 2 + 2βσ 2 .
(3.5)

Next, bounding max and min in (3.5) with the help of Lemma 3.1, we obtain that for any integer m > 0 and any γ, γ ∈ (0, 1/4) the following inequality holds

(1 -2β -γ)σ 2 E 1/m µ h 2m ≤ (1 + γ )E 1/m µ R m (µ, h • ) + K(m!) 1/m σ 2 γ + K[(m!) 1/m + β]σ 2 γ ,
where R(•, •) is defined by (1.3).

Therefore, applying Lemma 3.2, we obtain from the above equation

1 -2β σE 1/(2m) µ h 2m ≤ E 1/(2m) µ R m (µ, h • ) + K m + βσ. (3.6)
In order to control the expectation at the right-hand side in (3.6), note that the following inequality

n i=1 [1 -h • i ] 2 Y 2 i + 2σ 2 n i=1 h • i ≤ n i=1 [1 -g i ] 2 Y 2 i + 2σ 2 n i=1 g i
holds for any given g ∈ H. Hence, we have

R(µ, h • )+2σ n i=1 (1 -h • i ) 2 µ i ξ i + σ 2 n i=1 (h • i ) 2 -2h • i )(ξ 2 i -1) ≤R(µ, g) + 2σ n i=1 (1 -g i ) 2 µ i ξ i + σ 2 n i=1 (g 2 i -2g i )(ξ 2 i -1).
So, for any γ, γ ∈ (0, 1/4], we get with this equation and Lemma 3.1

E 1/m µ R m (µ, h • ) ≤ R(µ, g) + γE 1/m µ R m (µ, h • ) + γ R(µ, g) + 2σE 1/m max h∈H - n i=1 (1 -h i ) 2 µ i ξ i - γ 2σ n i=1 (1 -h i ) 2 µ 2 i m + σ 2 E 1/m max h∈H n i=1 (2h i -h 2 i )(ξ 2 i -1) -γ n i=1 h 2 i m + 2σE 1/m max h∈H - n i=1 (1 -h i ) 2 µ i ξ i - γ 2σ n i=1 (1 -h i ) 2 µ 2 i m + σ 2 E 1/m max h∈H n i=1 (2h i -h 2 i )(ξ 2 i -1) -γ n i=1 h 2 i m ≤ R(µ, g) + Kσ 2 m γ + γE 1/m µ R m (µ, h • ) + Kσ 2 m γ + γ R(µ, g).
Next, minimizing the right-hand side in g ∈ H and applying Lemma 3.2, we obtain

E 1/(2m) µ R m (µ, h • ) ≤ r(µ, H) + Kσ √ m
and substituting this inequality in (3.6), we complete the proof.

The next lemma collects some useful facts about a priory weights defined by (1.17). Let

D h = g ∈ H : h 1 ≤ g 1 ≤ h 1 + 1 .
(3.7)

Lemma 3.5. Under Condition 1.1, for any h ∈ H, the following assertions hold:

g≥h π g exp - g 1 β = exp - h 1 β , (3.8 
)

g≤h π g ≤ 1 + h 2 K • β , (3.9 
)

g∈D h π g ≤ 1 + 1 β , (3.10 
)

g∈D h π g ≥ 1 2β exp - 1 β . (3.11) 
The proof of this lemma can be found in [START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF].

The following technical lemma, whose proof is given in [START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF], is a cornerstone in the proof of Theorem 1.3. Lemma 3.6. Suppose {q h ≤ 1, h ∈ H} is a nonnegative sequence such that for all h ≥ h

q h ≤ exp -γ h 1 -h 1 -1 , γ > 0. Let W h = π h q h g∈H π g q g -1
and G be a subset in H.

Then h∈H W h log π h W h ≤ log h≤ h π h + exp R(G, γ) ,
where

E(G, γ) = log 2 γβe + h∈G π h + h∈G π h q h -1 8 γβe + h∈G π h . (3.12)
3.2 Proof of Theorem 1.3

The proof is based essentially on the approach proposed in [START_REF] Golubev | Exponential weighting and oracle inequalities for projection estimates[END_REF][START_REF] Chernousova | Ordered Smoothers With Exponential Weighting[END_REF]. We begin with a basic inequality for the excess risk. By Jensen's inequality we have

μβ (Y ) -µ 2 = h∈H w h (Y ) h • Y -µ 2 ≤ h∈H w h (Y ) h • Y -µ 2 .
(

This is why in what follows we will deal with

h∈H w h (Y ) h • Y -µ 2 .
In order to bound this value from above, let us express h • Y -µ 2 in terms of the unbiased risk estimate of h • Y . With a simple algebra we get

h • Y -µ 2 = h • Y -Y + σξ 2 = (1 -h) • Y 2 + σ 2 ξ 2 -2σ ξ, (1 -h) • (µ + σξ) = (1 -h) • Y 2 + 2σ 2 n i=1 h i -σ 2 ξ 2 -2σ ξ, (1 -h) • µ + 2σ 2 n i=1 h i (ξ 2 i -1). (3.14) 
Denote for brevity

R(Y, h) def = (1 -h) • Y 2 + 2σ 2 n i=1 h i -σ 2 ξ 2 , r(Y, H) def = min h∈H R(Y, h), h * = arg min h∈H E R(Y, h). (3.15) 
With these notations and (3.14), we obtain

h∈H w h (Y ) h • Y -µ 2 = r(Y, H) + h∈H w h (Y ) R(Y, h) -r(Y, H) + h∈H w h (Y ) 2σ 2 n i=1 h i (ξ 2 i -1) -2σ n i=1 (1 -h i )ξ i µ i . (3.16) 
It is also obvious that

r(Y, H) ≤ R(Y, h * ) = (1 -h * ) • µ 2 + σ 2 h * 2 + σ 2 n i=1 (h * i 2 -2h * i )(ξ 2 i -1) + 2σ n i=1 (1 -h * i ) 2 µ i ξ i = r(µ, H) + σ 2 n i=1 (h * i 2 -2h * i )(ξ 2 i -1) + 2σ n i=1 (1 -h * i ) 2 µ i ξ i . (3.17) 
Recalling the definition of the weights w h (Y ), we rewrite them as follows:

w h (Y ) = π h exp - R(Y, h) -r(Y, H) 2βσ 2 g∈H π g exp - R(Y, g) -r(Y, H) 2βσ 2
and we obtain

R(Y, h)-r(Y, H) = 2βσ 2 h∈H w h (Y ) log π h w h (Y ) -2βσ 2 log h∈H π h exp - R(Y, h) -r(Y, H) 2βσ 2 . (3.18) 
Therefore, substituting Equations (3.17) and (3.18) in (3.16), we arrive at the basic inequality

h∈H w h (Y ) h • Y -µ 2 ≤ r(µ, H) + δ 1 (µ) + δ 2 (µ) + 2βσ 2 δ 3 (µ) + 2βσ 2 δ 4 (µ), (3.19) 
where

δ 1 (µ) =σ 2 n i=1 (h * i 2 -2h * i )(ξ 2 i -1) + 2σ n i=1 (1 -h * i ) 2 µ i ξ i , δ 2 (µ) = h∈H w h (Y ) 2σ 2 n i=1 h i (ξ 2 i -1) -2σ n i=1 (1 -h i )ξ i µ i , δ 3 (µ) = -log h∈H π h exp - R(Y, h) -r(Y, H) 2βσ 2 , δ 4 (µ) = h∈H w h (Y ) log π h w h (Y )
.

The first term at the right-hand side of (3.19) can be easily controlled. Indeed, denote for brevity one can check easily that

Eδ 2 1 (µ) = 2σ 4 n i=1 (h * i 2 -2h * i ) 2 + 4σ 2 n i=1 (1 -h * i ) 4 µ 2 i ≤ σ 2 8σ 2 n i=1 h * i 2 + 4 n i=1 (1 -h * i ) 2 µ 2 i ≤ 8σ 2 r(µ, H).
(3.20)

Next, since by the definition of ordered multipliers (h * i ) 2 -2h * i ≤ 0, we get by a simple algebra that for any λ > 0 and so, for any x, λ > 0

log[exp(λδ 1 (µ))] = n i=1 λσ 2 (2h * i -h * 2 i ) - 1 2 log 1 + 2λσ 2 (2h * 2 i -h * i ) 2λ 2 σ 2 (1 -h * i ) 4 µ 2 i 1 + 2λσ 2 (2h * 2 i -h * i ) ≤ n i=1 λ 2 σ 4 (2h * 2 i -h * i ) 2 + 2λ 2 σ 2 (1 -h * i ) 4 µ 2 i ≤ 4λ 2 σ 2 r(µ, H).
x m ≤ exp(λmx -m) λ m .
Thus, by (3.22)

E δ 1 (µ) σ 8r(µ, H) m + ≤ exp λ 2 m 2 2 -m log(λ) -m .
Minimizing the right-hand side at this equation in λ > 0, we arrive at

E δ 1 (µ) σ 8r(µ, H) m + ≤ exp - m 2 + m 2 log(m)
and thus

E 1/m [δ 1 (µ)] m + ≤ σ Kmr(µ, H). (3.23)
The last three terms at the right-hand side in (3.19) are bounded from above with the help of more delicate arguments. Since h∈H w h (Y ) = 1, we obtain that for any γ ∈ (0, 1/4)

δ 2 (µ) ≤2σ h∈H w h (Y ) σ n i=1 h i (ξ 2 i -1) -σγ n i=1 h 2 i + + 2σ h∈H w h (Y ) n i=1 (1 -h i )ξ i µ i - γ σ n i=1 (1 -h i ) 2 µ 2 i + + 2γ h∈H w h (Y )R(µ, h) ≤2σ 2 max h∈H n i=1 h i (ξ 2 i -1) -γ n i=1 h 2 i + + 2σ max h∈H n i=1 (1 -h i )ξ i µ i - γ σ n i=1 (1 -h i ) 2 µ 2 i + + 2γ h∈H w h (Y )R(µ, h).
Hence, using Lemma 3.1, we obtain from this equation

E 1/m µ [δ 2 (µ)] m + ≤ 2γE 1/m µ h∈H w h (Y )R(µ, h) m + Kmσ 2 γ (3.24) Our next step is to relate h∈H w h (Y )R(µ, h) and h∈H w h (Y ) µ -h • Y 2 . Since h∈H w h (Y ) µ -h • Y 2 = h∈H w h (Y )R(µ, h) + 2σ h∈H w h (Y ) (1 -h i ) -(1 -h i ) 2 µ i ξ i + σ 2 h∈H w h (Y )h 2 i (ξ 2 i -1), we get h∈H w h (Y )R(µ, h) ≤ h∈H w h (Y ) µ -h • Y 2 + 2σ h∈H w h (Y ) (1 -h i ) 2 -(1 -h i ) µ i ξ i + σ 2 h∈H w h (Y )h 2 i (1 -ξ 2 i ).
With this equation, using the same arguments as in proving (3.24), we arrive at

(1 + 2γ)E 1/m h∈H w h (Y )R(µ, h) m ≤E 1/m h∈H w h (Y ) µ -h • Y 2 m + Kmσ 2 γ .
Therefore by Lemma 3.2 we have

E 1/m µ h∈H w h (Y )R(µ, h) m 1/2 ≤ E 1/m µ h∈H w h (Y ) µ -h • Y 2 m 1/2 + σ √ Km.
Next, substituting this equation in (3.24) and using that (x+y) 2 ≤ 2x 2 +2y 2 we arrive at the following upper bound

E 1/m µ [δ 2 (µ)] m + ≤ 4γE 1/m µ h∈H w h (Y ) µ -h • Y 2 m + Kmσ 2 γ . ( 3 

.25)

Let us now consider δ 3 (µ). We have by (3.8)

log h∈H π h exp - R(Y, h) -r(Y, H) 2βσ 2 ≥ log h≥h • (Y ) π h exp - R(Y, h) -r(Y, H) 2βσ 2 = log h≥h • (Y ) π h exp - (1 -h) • Y 2 -[1 -h • (Y )] • Y 2 2βσ 2 - 1 β n i=1 [h i -h • i (Y )] ≥ log h≥h • (Y ) π h exp - 1 β n i=1 [h i -h • i (Y )] ≥ 0 (3.26)
and hence

δ 3 (µ) ≤ 0. (3.27)
The final step in the proof is to bound from above the last term at the right-hand side of Equation (3.19), namely δ 4 (µ). We will do this the help of Lemma 3.6. First of all note that for all h > ĥ , where ĥ is defined by

(3.3), we have R(Y, h) -r(Y, H) ≥ 2β σ 2 h 2 -h • (Y ) 2 + 2βσ 2 .
In order to make use of Lemma 3.6, let us set

q h = exp - R(Y, h) -r(Y, H) 2βσ 2 = exp - R(Y, h) -R(Y, h • ) 2βσ 2 , G = h ∈ H : h • 1 ≤ h 1 < h • 1 + 1 , h = ĥ .
By Condition (1.18) we have that for all h ≥ ĥ

q h ≤ exp - 2σ 2 βK • ( h 1 -h • 1 ) 2βσ 2 -1 = exp -K • ( h 1 -h • 1 ) -1 .
(3.28)

Note also that similar to (3.26) it can be checked easily that

q h ≥ exp - 1 β , h ∈ G
and thus it follows immediately from the definition of G and (3.11) that

h∈G π h q h ≥ exp - 1 β h∈G π h ≥ 1 2β exp - 2 β
and hence

E(G, K • ) ≤ C(K • , β) 2 + 1 2 log C(K • , β) . (3.29) Denote for brevity ρ(µ, H) = 2 + r(µ, H σ 2 .
With Equations (3.29), (3.9), and Lemmas 3.6, 3.3 we obtain

E 1/m µ δ 4 (µ) -log[ρ(µ, H)] m + ≤ 2E 1/m µ log m ĥ + exp[E(G, K • )/2] βK • ρ(µ, H) ≤ 2 log 1 √ 1 -2β r(µ, H) σ 2 + K √ m + β √ 1 -2β + C(K • , β) exp C(K • , β) 2 -log K • βρ(µ, H) .
(3.30) Our next step is to minimize the right-hand side at this equation in ∈ (0, 1/(2β)). Note that that for any ≤ 1/(3β) we have

1 √ 1 -2β r(µ, H) σ 2 + K √ m + β √ 1 -2β ≤ r(µ, H) σ 2 + K m + β + K r(µ, H) σ 2 + K m + β . (3.31) 
Consider the following function

Ψ(x) = min ∈[0,1/(3β)] x + C(K • , β) exp C(K • , β) 2 .
It is clear that Ψ(0) is bounded from above. It is also easy to check with = 4C(K • , β)/log(x) that for any x ≥ C(K • , β)

Ψ(x) ≤ 4C(K • , β)x log(x) + x log(x) 2 ≤ C(K • , β)x log(x) . 
Therefore, combining this equation with (3.30), (3.31), we arrive at 
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 3 21) Therefore, combining (3.20) and (3.21), we obtain that for any λ > 0 from convexity of the function exp(•) that z ≤ exp(z -1),

E 1/m µ δ 4

 4 (µ) -log[ρ(µ, H)] m + ≤ log C(K • , β) m + β . (3.32) Next, substituting (3.23), (3.25), (3.27), and (3.32) in (3.19) we arrive atE 1/m µ h∈H w h (Y ) µ -h • Y 2 m ≤ r(µ, H) + Kσ mr(µ, H) + 4γE 1/m µ h∈H w h (Y ) µ -h • Y 2 m + Kmσ 2 γ + 2βσ 2 log C(K • , β)(m + β) + 2βσ 2 log[ρ(µ, H)].
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 3211212 33)Using this equation and minimizing the right-hand at(3.33) in γ ∈ (0, 1/4), we obtain with the help of Lemma 3.(2m)µ h∈H w h (Y ) µ -h • Y 2 m ≤ K √ mσ + r β (µ, H) + 2βσ 2 log C(K • , β)(m + β) 3.33), we have that for any γ ∈ (0, 1/4)E 1/m µ h∈H w h (Y ) µ -h • Y 2 -r β (µ, H) m + Kσ mr β (µ, H) + 2βσ 2 log C(K • , β)(m + β) + 4γE 1/m µ h∈H w h (Y ) µ -h • Y 2 m + Kmσ 2 γ .and substituting in this equation (3.34), we arrive atE 1/m µ h∈H w h (Y ) µ -h • Y 2 -r β (µ, H) m Kσ mr β (µ, H) + 2βσ 2 log C(K • , β)(m + β) + γ 8r β (µ, H) + 2βσ 2 log C(K • , β)(m + β) + 16Kσ2 m is to minimize the right-hand side at this equation in γ ∈ (0, 1/4). Notice thatγ • = σ √ Km 8r β (µ, H) + 2βσ 2 log C(K • , β)(m + β) + 16Kσ 2 m -1/2is the unconstrained minimizer of the right-hand side. However it is clear that γ • ≤ 1/4 and hence we have by(3.35)E 1/m µ h∈H w h (Y ) µ -h • Y 2 -r β (µ, H) m Kσ mr β (µ, H) + 2βσ 2 log C(K • , β)(m + β) + Kσ √ m r β (µ, H) + 2βσ 2 log C(K • , β)(m + β) + Kσ 2 m Kσ √ m r β (µ, H) + Kσ 2 m Kβσ 2 log C(K • , β)(m + β) ≤ Kσ mr β (µ, H) + Kσ 2 m + Kβσ2 log C(K • , β) + Kβσ 2 log(m + β) ≤ Kσ mr β (µ, H) + Kσ 2 m + Kβ[1 + log(β)]σ 2 log C(K • , β) .

( 3 .

 3 36)In deriving this inequality it was used that2 log(x) -x ≤ 2 [1 + log( )], x > 0, > 0.(3.37)Finally, Equation (3.36) with (3.13), we finish the proof.

3. 3 1 E 1 /x 2 K 2 2 ≤ exp - x 2

 3112222 Proof of Theorem 1.4 It follows from (1.22) that for any m≥ m μβ (Y ) -µ -r β (µ, H) Kσ 2 [C(K • , β) + m] r β (µ, H) .Hence, by the Markov inequality we obtainP µ μβ (Y ) -µ ≥ r β (µ, H) + x ≤ exp -m log(x) + m log E 1/m μβ (Y ) -µ -r β (µ, H) m + ≤ exp -m log(x) + m log K √ mσ + Kσ 2 [C(K • , β) + m] r β (µ, 2 σ 2 exp(1) ,we get with (3.37) that for any x ≥ σP µ μβ (Y ) -µ ≥ r β (µ, H) + x ≤ exp -x Kσ 2 + log C(K • , β) + Kσ r β (µ, H) Kσ 2 + C(K • , β) .
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