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On the paper: Numerical radius preserving linear maps on Banach
algebras
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Abstract. In this note, we give a counterexample disproving two results in the
above paper.
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Let (A, ‖.‖) be a complex normed algebra with an identity e such that ‖e‖ = 1.
Let D(A, e) = {f ∈ A

′
: f(e) = ‖f‖ = 1}, where A

′
is the dual space of

A. The elements of D(A, e) are called normalized states on A. For a ∈ A, let
V (A, a) = {f(a) : f ∈ D(A, e)}, V (A, a) is called the numerical range of a. Let
sp(a) be the spectrum of a ∈ A, and let co(sp(a)) be the convex hull of sp(a).
We denote by M(A) the set of all non-zero continuous multiplicative linear func-
tionals on A.

In [4], F. Golfarshchi and A. A. Khalilzadeh proved the following results:

[4, Theorem 2]. Let A be a unital complex Banach algebra, and let f be
a linear functional on A. Then f is a normalized state on A if and only if
f(a) ∈ co(sp(a)) for all a ∈ A.

[4, Theorem 3]. Let A be a unital commutative complex Banach algebra.
Then each extreme normalized state on A is multiplicative.

Counterexample. Let (A, ‖.‖) be a non-zero commutative radical complex
Banach algebra [6, p.316]. Let Ae = {a+ λe : a ∈ A, λ ∈ C} be the unitization
of A with the identity e, and the norm ‖a + λe‖1 = ‖a‖ + |λ| for all a + λe ∈
Ae. (Ae, ‖.‖1) is a unital commutative complex Banach algebra, and M(Ae) =
{ϕ∞}, where ϕ∞ is the continuous multiplicative linear functional on Ae defined
by ϕ∞(a+ λe) = λ for all a+ λe ∈ Ae.
(1) Let a be a non-zero element of A, V (Ae, a) = {z ∈ C : |z| ≤ ‖a‖} by [2,
Remark 3.8], and sp(a) = {ϕ∞(a)} = {0}, hence co(sp(a)) = {0}  V (Ae, a)
since ‖a‖ 6= 0. Therefore the direct implication of [4, Theorem 2] doesn’t hold.
(2) By [1, lemma 1.10.3], D(Ae, e) is a nonempty weak* compact convex subset
of A

′

e, then ext(D(Ae, e)) 6= ∅. Assume that each extreme normalized state on Ae

is multiplicative, then ext(D(Ae, e)) = {ϕ∞}. Let a be a non-zero element of A,
by [1, Corollary 1.10.15] there exists f ∈ D(Ae, e) such that f(a) 6= 0 = ϕ∞(a).
Therefore co(ext(D(Ae, e))) = {ϕ∞}  D(Ae, e), which contradicts the Krein-
Milman Theorem. This shows that [4, theorem 3] is not valid.
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Remark. Theorems 5 and 6 in [4] are called into question since the authors
used [4, Theorem 3] to prove these results.

Let (A, ‖.‖) be a non-unital complex Banach algebra, and let Ae = {a + λe :
a ∈ A, λ ∈ C} be the unitization of A with the identity e. Let ‖a + λe‖op =
sup{‖(a+ λe)x‖, ‖x(a+ λe)‖ : x ∈ A, ‖x‖ ≤ 1} for all a+ λe ∈ Ae, ‖.‖op is an
algebra seminorm on Ae. We say that ‖.‖ is regular if ‖.‖op = ‖.‖ on A. If ‖.‖
is regular, it is well known that (Ae, ‖.‖op) is a complex Banach algebra. In [3],
the following question was asked: If (Ae, ‖.‖op) is a complex Banach algebra, is
the norm ‖.‖ regular ?
In [5], A. Orenstein tried to give an answer to this question in the commutative
case, but his proof is not correct since it is essentially based on the direct
implication of [4, Theorem 2].
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